Stack Overflows

Writing Stack Based Overflows on Windows
Part | — Basic Concepts

Nish Bhalla, 31%' May, 2005

(Nish [a-t] SecurityCompass.com)

www.SecurityCompass.com

=] compass.com

Part I Page 1 of 9

www.securitycompass.com Security Compass, Inc

Stack Overflows

Introduction

This series focuses on writing stack based overflows for windows. Before we get into writing
exploits, it is important to get some basic concepts cleared up.

The first of this multipart article will focus on explaining the basic concepts of how a
executable is loaded into memory and executed. The second part will focus on basic assembly
instructions, the third part will delve into what stack overflows are, why they exists and how to
write exploits for vulnerable applications for a local exploit and finally the part four will show how
to write your own shellcode and how to exploit a remote buffer overflow.

This article provides detailed examples, which can be used to learn the concepts. The
examples are written and based on Windows XP (No SP). The examples have been tested on
Visual Studio 6.0 and Visual Studio 7.0. Some of the examples are also demonstrated in Visual
Studio .NET (or VS 7.0). These examples are shown to display the new security features
implemented by Microsoft. The Visual Studio .NET development environment can be used to
write the applications and has some built-in default security measures to help prevent some of
the attacks displayed here. For this series of examples, the “/GS” flag option must be disabled
while compiling all the examples to ensure the exploits work and the applications are still
vulnerable. As the article goes on different tools and utilities are introduced and links to where
they can be downloaded from are also provided. The examples are available for download from
the site as well.

One of the questions that might come to mind before you read this article is, why another
article on writing exploits? Before I learnt how to write exploits I attempted to read some
excellent articles on writing exploits, but they always made some assumptions on pre-requisite
knowledge, I have attempted to cover a lot of that in this series. Secondly, most of the articles
used sample applications to demonstrate their examples however; the applications that they
choose to demonstrate those examples with, were obsolete over a period of time or were no
longer available for download. I often found spending more time searching for the exact version
of the application.

Many developers are under the false impression that the usage of the “GS” flag prevents
attacks against all buffer overflow exploits. Microsoft themselves also state that it doesn’t prevent
against all types of stack based attacks (http://msdn.microsoft.com/library/en-
us/dv_vstechart/html/vctchCompilerSecurityChecksInDepth.asp). Additionally, there are many
other development environments that are used which do not have this feature implemented.
Applications developed in those development environments are still vulnerable to these exploit
technique.

Please do not hesitate to contact me if you have any questions or suggestions (articles[a-
t]securitycompass.com).

Lastly, I would like to thank all you guys who helped critiquing the articles. Thanks.

Part I Page 2 of 9

www.securitycompass.com Security Compass, Inc

Stack Overflows

Basic Concepts: Part1I / IV

Every application is assigned 4 GB of virtua/ memory space (even though the physical
memory might be much lower than that on a system (example 128 MB or 256 MB). The 4 GB of
space is based of the 32-bit address space (2°? bytes i.e. 4294967296 bytes). When any
application executes the memory manager automatically maps the virtual address into physical
addresses where the data really exists. Memory Management is the responsibility of the operating
system, it allocates and de-allocates memory for applications (please do not think about
malloc/new etc for now).

This 4 GB of virtual space is divided between the user mode and kernel mode equally. An
application is typically loaded/execute in user mode memory, the kernel mode memory is where
the kernel mode components are loaded/executed.

An application should not be able to directly access any kernel mode memory; any attempt to
do so should result in an access violation. When an application needs to access / make calls to
the kernel, a switch is made from user mode to kernel mode.

Thus the range of 0x00000000 — Ox7fffffff is for user mode and 0x80000000 — OxBfffffff is for
kernel mode, however you are allowed to change the allocated space with the /xGB switch in the
boot.ini file, where x is the number of GB of memory for user mode.

4GB ion for 4GB tion for
Application1 Application2
User Mode User Mode
2GB 2GB
Application1.exe Application2.exe
Application1.dll PROCESS LIST Application2.dll
Etc Etc

Application1.exe
Application2.exe

Kernel Mode ST Kernel Mode

Etc.

2GB 2GB
Kernel32.dll Kernel32.dll
Ntdil.dll Ntdll.dil
Etc Etc

Figure: Virtual allocation of space

DLL and EXE Files

Dynamic Linked Libraries (DLL), are binary files that contain subroutines linked together.
These libraries (DLL's) are loaded by binary executables (.EXE) when they needs to use the
subroutines built into the DLLs. DLL's and Exe files (executable binaries) are practically the same,
they both use the same PE format except for a single bit that indicates to treat the binary as a
DLL or EXE. Files with OCX (ActiveX) and CPL (Control Panel) extensions are exactly the same as
DLLs as well.

Libraries can be static libraries or dynamic libraries. Windows mainly uses dynamic libraries
which have a number of advantages including being loaded only once in memory and shared
among multiple applications. Example of some DLLs are kernel32.dll, user32.dll etc.

Part I Page 3 of 9

www.securitycompass.com Security Compass, Inc

Stack Overflows

Memory Allocation

Each executable is loaded into unique non-overlapping address space. The memory
location where a DLL for an application is loaded is exactly the same across multiple machines as
long as the version of operating system and the application stays the same.

Note: While writing exploits, the knowledge of the location of a DLL and its
corresponding functions will be used.

There are a number of tools available to view the address base where an executable is
loaded. Microsoft provides a utility called dumpbin.exe with the default install of Visual Studio.

C:\>dumpbin /headers kernel32.dll
Microsoft (R) COFF/PE Dumper Version 7.10.3077

Copyright (C) Microsoft Corporation. All rights
reserved.

Dump of file kernel32.dll

72000 base of data
77E60000 image base (77E60000 to 77F45FFF)

Other tools such as Ollydbg (a tool which will become your best friend when you start doing any
binary analysis or attempt to write exploits) and quickview plus can be used to view such
information as well.

Memory Overview
An application/process is loaded into three major memory areas, the stack segment, the data
segment and the code/text segment.

The stack segment stores the local variables and procedure calls, the data segment stores
static variables and dynamic variables and the text segment stores the program instructions.

The data and stack segment are private to each application, and no other application can
access those areas. The text segment on the other hand is a read only segment which can be
accessed by other processes too, however, if an attempt is made to write to this area, a segment
violation occurs.

Memory Layout — Stack
Stack is an area of reserved virtual memory used by applications. It is the operating system’s

method of allocating memory. A developer is not required to give any special instructions in code
to augment memory, the operating system performs this task through guard pages automatically.

Part I Page 4 of 9

www.securitycompass.com Security Compass, Inc

Stack Overflows

Top of
Memory | :
FF w
0xFF000000 ! Local Variables,]
! Command line arguments]
[B |
USER | STACK
D
A
,,,,,,,,,,,, HEAP 7
I] A
} BSS |
! Initialized Data }
,,,,,,,,,,,,,,,,,,,,,,,,,,, | B
e |
! Program Instructions i
Bottom of G |
Memory
0x00000000

Figure: Memory layout

The following code would store the character array “var” on the stack.

Example:
char var[]="www.SecurityCompass.com”;

The stack operates similar to a stack of plates in a cafe. The information is always
pushed onto (added) and popped off (removed) from the top of the stack. The stack is a “Last
In First Out” (LIFO) data structure.

Pushing an item onto a stack causes the current top of the stack to be decremented by four
bytes before the item is placed on to the stack. When any information is added to the stack, all
the previous data is moved downwards and the new data sits at the top of the stack. Multiple
bytes of data can be popped or pushed onto the stack at any given time. Since the current top of
the stack is decremented before pushing any item on top of the stack, the stack grows
downwards in memory.

Frame Layout

A stack frame is a data structure, which is created during the entry into a sub-
routine/procedure (in terms of C/C++, creation of a function). The objective of the stack frame is
to keep the parameters of the parent procedure as is and to pass arguments to the sub routine/
procedure. The current location of the stack pointer can be accessed at any given time by
accessing the stack pointer register (ESP). The current base of a function can be accessed by
using the EBP register which is called the base pointer or frame pointer and the current location
of execution can be accessed by accessing the instruction pointer register (EIP).

Part I Page 5 of 9

www.securitycompass.com Security Compass, Inc

Stack Overflows

Frame Base Pointer (EBP)
Parent EBP
Prologue
Parent EIP
function1() .
Stack Pointer (ESP)
arguments
Instructions Instruction Pointer (EIP)
Application1.
PPHCANON T ExXe RET Epilogue

Figure: Frame Layout

Memory Layout — Heap

Heap like stack is a region of virtual memory used by applications. Every application has a
default heap space, however unlike stack, private heap space can be created by C/C++
programmers by using special instructions such as “new()” or “malloc()"and freed/cleared by
using “delete()” or “free()". Heap operations are called when an application doesn’t know the size
of or the number of objects needed in advance or when an object is too large to fit onto the
stack.

Example:
OBJECT *var = NULL;
var = malloc(sizeof (OBJECT)) ;

The Windows Heap Manager operates above the Memory Manager and is responsible for
providing functions which allocates or de-allocates chunks of memory. Every application starts
out with a default of 1 MB (0x100000) of reserved heap size (view output from dumpbin below)
and 4k (0x1000) committed if the image does not indicate the allocation size. Heap grows over
time and it does not have to be contiguous in memory.

C:\WINDOWS\system32>dumpbin /headers kernel32.dll
<Deleted for brevity>
100000 size of heap reserve (1 MB)
1000 size of heap commit (4k)
<Deleted for brevity>

Heap Structure

Each heap block starts of and maintains a data structure to keep track of the memory blocks
that are free and the ones that are in use. Heap allocation has a minimum size of eight bytes,
and an additional overhead of eight bytes (heap control block).

Part I Page 6 of 9

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

2 Bytes Size of this block / 8

2 Bytes Size of previous block / 8

4 Bytes Flags (8bit)

4(EBKtXe)s DATA if in use, else previous free-block pointer
4 Bytes DATA if in use, else next free-block pointer
(ECX)

Figure: Heap Layout

The heap control block among other things also contains pointers to next free block. As and
when the memory is freed or allocated, these pointers are updated.

Note: Heap in XP SP2 and Windows 2003

Microsoft has introduced an additional random value of 1 byte long which is stored in the
control block of the heap. If this value is tampered with an error is generated, however, it is
important to remember that since it is only a byte long, there are only 255 possibilities to guess
this value (a possible brute forcer can be written for this part)

Note: Stack Protection with the "/GS” Flag

With Microsoft Visual Studio .NET a new compiler flag namely the “/GS” Flag has been
introduced. This when set (set by default) sets up a canary value between a variables declaration
on the stack and return address. Review the “Hello World” code in the next part which is
compiled with this compiler option set.

Part I Page 7 of 9

WWw.securitycompass.com Security Compass, Inc

Stack Overflows

Glossary:

e Stack: Stack is memory that is statically allocated and is managed by the windows
memory manger.

e Heap: Heap is memory that is dynamically allocated.
e Stack Frame: Stack frame is a data structure created during the entry into a function.

¢ Physical Memory: The amount of physical memory that is actually present in a
computer.

e Virtual Memory: Virtual memory is a feature implemented in operating systems to
extend the amount of memory available to programs. It allows operating systems to use
more memory than the computer actually has physically present. In Microsoft Windows
this is done using a pagefile.

e Binaries: When code is compiled to produce either .exe, .dll or other executable files,
these files are known as binaries. DIl and .exe files both use the exact format, the only
difference is a single bit that indicates if the file should be treated as an EXE or as a DLL.

e DLL: Dynamic Linked Libraries as opposed to static libraries do not copy data into a
executable or library at compile time. These binaries with extensions such as .OCX
(ActiveX controls) and .CPL (Control Panel applets files) are also DLLs but with different
extensions.

e PE Format: Portable executable format is the format a typical windows executable is
compiled into.

Utilities:

e Ollydbg: ollydbg is a GUI based user mode debugging utility. This utility is very useful if
you plan to get deep into writing exploits. This is available from http://www.ollydbg.de/.

e Dumpbin: Dumpbin is a utility that is installed with Visual C++. It is not in the default
path of the users. It is typically installed in the “<visual studio home
directly>\VC7\BIN\dumpbin”.

e http://www.labri.fr/Perso/~betrema/winnt/ This site has links to articles on memory
management.

e http://developer.intel.com/design/processor/ Intel’s website has assembly language
guides (Intel Software Developers Guide) with examples of assembly code and basic
instruction they are among the best reference manuals for assembly for windows.

Part I Page 8 of 9

www.securitycompass.com Security Compass, Inc

Stack Overflows

To Do (Mini Exercise — Paper Part I):

1. Convert the following characters from ASCII to Hex characters.
AAAA, BBBB, ABCD, A1B2
2. Convert the following characters from Hex characters to ASCII.
0x44434241, 0x61616161

3. Find the range for hex characters between A — z(Capital A to lowercase z).

Part I Page 9 of 9

www.securitycompass.com Security Compass, Inc

