An analysis of Microsoft Windows Vista’s
ASLR

Ali Rahbar <a.rahbar@sysdream.com>

Sysdream .

rrrrrrrrrrrrrrrrrr

www.sysdream.com

Since the release of the Beta 2 version of Windwgsa, Microsoft has added ASLR (address
space layout randomization) to protect it from bufbverflows. ASLR is not new and has been
available for a long time on other operating systebut the advantage of Vista’'s ASLR is that it
is activated by default.

The concept of ASLR is really simple; it changes #adress space layout of a process to prevent
predictable addresses that can be used in bufmflow exploitations. For example, in a stack
overflow exploitation the return address whicht@ed on the stack is overwritten by the address
of a buffer which is controlled by the attackertHé address of the buffer changes, the attacker
will not be able to use it as a return address.

So the important point in an ASLR implementationwhat is randomized and how it is
randomized.

As pointed out by Michel Howard in his blog
(http://blogs.msdn.com/michael_howard/archive/209&6/608315.aspxthe heap and stack of
all processes are randomized. A new PE headeridlaged to determine whether EXEs and
DLLs should be randomized. All EXEs and DLLs shigpath the OS are randomized. If a DLL
which has its randomization flag set is loaded bye&ecutable, the DLL will be randomized,
whether the executable is randomized or not. Thesma that any DLL shipped with the OS
(kernel32.dll, ntdll.dll..) will be randomized in all programs.

Now that we know what is randomized, we should reggout how they are randomized. In
Windows Vista Beta 2 (32 bits) the randomizatiodaesie on 8 bits of the address, which gives us
256 possibilities. 256 is not a big number compaedther ASLRs like PaX. In some cases
brute forcing the address is feasible.

| have tested the randomization of the stack orarapse program to determine if all 256
possibilities are used and whether they are usedllgq | have used the following program for
my tests:

#include <string.h>
void vuln(char *temp);
int main(int argc, char *argv[])
if (argc>1)

vuln(argv[1]);

return 0;

}
void wvuln(char *temp)

char buf[500];
strepy(buf,temp);

After executing the program several times undeydbly, | have found that the third byte of all
addresses are randomized. | have chosen to takaliee of EBP at the entry point for analysis.

| have used PyDbg (by Pedram Amini) to create tie Igcript that executes the program one
million times and gets the value of EBP at eactcetien. The script is the following:

from pydbg import *
from pydbg.defines import *

def handler_breakpoint (db):
ignore the first windows driven breakpoint.

if db.first_breakpoint:
return DBG_CONTINUE

a=db.stack_range()
print '%x"' % (a[1])
db.terminate_process()
del db

dbg=None

for i in range(10000):

del dbg

dbg=pydbg()

dbg.set_callback(EXCEPTION_BREAKPOINT, handler_bre akpoint)
dbg.load("c:/bufferl.exe")

dbg.bp_set(0x4012A9)

pydbg.debug_event_loop(dbg)

Because of a memory leak | had to run this scrgft imes to have one million EBP values. |
didn’t have the time to dig into it but | think tlheemory leak is in the Win32 python extension.
The big surprise came after counting the numbescotirrences of each address. | have used a
little program to count the number of occurrencesach address and to sort them. The result is
quite impressive: Windows uses only 32 of 256 pnkises.

Here are the values of EBP (for my program):

00206000
00156000
00306000
002c6000
00226000
00196000
00216000
00286000
00296000
00236000
001b6000
002a6000
002d6000
00116000

00246000
00216000

00256000
00176000
001c6000
00136000
001d6000
00276000
002b6000
00316000
00166000
00126000
00186000
002e6000
001e6000
001a6000
00266000
00146000

The following chart displays the number of timeslregalue has been used. As you can see, the
distribution between them has been done quite Bguidie most frequent address has appeared
31653 times and the less frequent one 30890 times.

31800

31600 | M

31400 | =
srzoo{ | [Tttt HYEEE miml P
a o
srooo— WL T BIEtR Bl BiINiBIREE A A - Oseriesl

30800 |

30600 |

—S1

30400

001d6000 |

00276000 |

002b6000 |
00186000 |

00306000 |

002c6000 |

00286000 |

00296000 |
00166000 |

002d6000 |

00206000 |f
00156000 |
00226000 |f
00196000 |f
00216000
00236000 |
002a6000 |f
001f6000 |
00246000
002f6000 |
00256000 |
00176000 |
001c6000 |
00136000 |
00316000 |
00166000 |
00126000 |f
002e6000 |
001e6000
001a6000 |
00266000 |f
00146000

But 32 possibilities is not much, and for bufferecdlow exploitation, in some situations it is
really feasible to do a brute force on the 32 pgmesralues. But why has Microsoft used only 32
out of 256 possibilities. The following 16x16 diagr shows the distribution of the values used
by the ASLR in the space of 256 possibilities.

The white stripe represents used numbers and Huk lalrea represents other possibilities that
have not been used by the ASLR.

To better see the dependencies between subsecleasyvhere is a 2D space phase diagram of
these numbers:

In this diagram n stands for the input sets anidl =xf[i-1]-n[i-2] ,y[i] = n[i]-n[i-1] which are the
point’s coordinates.
Here is the 3D representation in which x[i] = n[#gi-3],y = n[i-1]-n[i-2] and z =n [i]-n[i-1]

As you have seen, the ASLR of Windows Vista Beisfar from using all of its potential. | hope
that this will be fixed in the final release.

At last, | would like to thank my friend Renaud ¢hiitz who has helped me a lot on making these
diagrams.

Ali Rahbar
09/11/2006

a.rahbar@sysdream.com

