

CCWAPSS 1.1

Common Criteria Web Application Security Scoring

CCWAPSS

CCWAPSS 1.1

Author

Frédéric Charpentier, security pentester. France. Fcharpentier@xmcopartners.com

Releases

Version 1.0 : First public release September 2007

Version 1.1 : Improvements November 2007

Thanks for theirs contributions and improvement ideas

 Abi Arroyo

 Nabil Ouchn from security-database.com

 Yann Piederriere from cyber-networks.fr

 Ricardo and anonymous people who have left messages on the Ccwapss blog.

CCWAPSS 1.1

1 INTRODUCTION TO CCWAPSS 4

1.1 KEY BENEFITS OF CCWAPSS SCORING 4
1.2 WHY DEVELOP SECURITY LEVEL SCORING ? 4
1.3 CCWAPSS DELIVERY 5
1.4 CCWAPSS FORMULA 5
1.5 SCORING ALGORITHM 5

2 SCORING PARAMETERS 6

2.1 EVALUATION 6
2.2 RISK FACTOR 6
2.3 COMMON CRITERIA 7

3 EVALUATION MATRIX 10

4 FREQUENTLY ASKED QUESTIONS 11

5 GRAPHICS (TO BE CUT AND PASTE) 13

CCWAPSS 1.1

1 INTRODUCTION TO CCWAPSS

The purpose of the scoring scale CCWAPSS (to be pronounced [sisiwaps]) is to share a common
evaluation method for web application security assessments between security auditors and final
customers.

This scale does not aim at replacing other evaluation standards but suggests a simple way to
evaluate the security level of a web application.

CCWAPSS is focused on rating the security level of a distinct web application, web services or e-
business platform. CCWAPSS does not aim at scoring a whole heterogenic perimeter.

1.1 Key benefits of CCWAPSS scoring

Key benefits of CCWAPSS :

 Fighting against the « gaussienne » inclination using a restricted granularity that forces the
auditor to clear-cut score (there is no medium choice).

 Offering a solution to interpretation problems between different auditors by providing clear
and well documented criteria.

 The maximum score (10/10) means “compliant with Best Practices”. This score could be
exceeded in case of excellence (like a medical vision evaluation such as 12/10).

 Each criteria is relative to section of the OWASP Guide 3.0.

1.2 Why develop security level scoring ?

The Common Criteria Web Application Security Scoring has been created by security consultants
familiar with web application testing for majors companies.

One of the main questions security auditors have to answer is : “What is our security level on a /10
basis ?”.

To answer this question, security auditors needs a scoring methodology which will avoid
understanding issues.

The CCWAPSS aims at suggesting such a methodology.

CCWAPSS 1.1

1.3 CCWAPSS delivery

A CCWAPSS score includes :

 The score and its graphical illustration.

 The Evaluation matrix with the 11 criteria and the scoring formula.

A comprehensive Evaluation matrix sample are provided in section 3 and graphics are provided in
section 5.

1.4 CCWAPSS Formula

Score = 10 - ∑ Risks + (∑ Excellents / ∑ Risks)

With :

Excellent : A positive point is given when the assessed system exceeds the security requirement
for a criteria. Refers to section 2.1 “Evaluation”.

Risk : Negative points are given when the application does not comply with a criteria. Risk value
depends on difficulty of exploit and business impact. Refers to section 2.2 “Risk factor”.

The application is evaluated on 11 criteria. Each criteria could be chosen between 3 possibilities :
Needs Improvement, Fair or Excellent.

Criteria evaluated as “Needs improvement” as to be linked with a risk value : 1, 2, 3 or 6.

Evaluation, Risk Factors and criteria are clearly defined in section 2. Frequently Asked Questions
are carefully answered in section 4.

1.5 Scoring algorithm

Score = 10

E = 0 ; R = 0

For each criteria (out of 10)

Define Evaluation (Needs Improvement/ Fair / Excellent)

If “Needs Improvement”

 Define Risk Factor (could this vulnerability lead to major issues?)

 R = R + Risk Factor

If “Fair”

 Do nothing

If “Excellent”

 E = E + 1

End of the loop

Score = Score – R + E/R

CCWAPSS 1.1

2 SCORING PARAMETERS

2.1 Evaluation

Needs Improvement Immediate attention should be given to the discussed issues to address significant
security exposures. Changes are required.

Fair Current solution protects the application from security issues. Moderate changes are
required to elevate the discussed areas to “Industry Best Practice” standards

Excellent Exceeds “Industry Best Practice” standards. Security behavior quickly discourages
attackers.

2.2 Risk factor

If there are multiple flaws associated to the same criteria, the highest risk factor is kept for the
scoring.

Difficulty of Exploit

Vs

Business Impact

Sophisticated

Requires the dedicated effort and
time commitment of a skilled
attacker

or

Exploitation of the vulnerability
requires a privilege (user account or
others) or a knowledge (database
name, login name of an user)

Trivial

Requires a intermediate skill set and
possible use of commonly available
tools/knowledge.

or

Critical vulnerability directly
exploitable from a public/anonymous
access

Low

Limited impact and exposures if the
vulnerability is disclosed and exploited.

1

2

High

Significant financial impact, probable negative
media exposure, damage to reputation capital.

3

6

CCWAPSS 1.1

2.3 Common criteria

Authentication

Best Practices Authentication mechanisms should prevent users without credentials from accessing
application functionality and prevents against brute-force attacks by restricting smartly block
malicious passwords guessing attempts.

Common issues Login processs bypass, auto-login script, identity switching, …

OWASP Topics: Section 12 “Guide to Authentication”

Authorization

Best Practices Mechanisms should prevent authenticated users from accessing others users data or
functionalities without the appropriate privileges.

Common issues Hidden or guessable privileged functionalities, a user A can read/modify data of an user B,
GET/POST parameters fuzzing…

OWASP Topics: Section 13 “Guide to Authorization”

User’s Input Sanitization

Best
Practices

All user-controlled data should be checked for validity. Bounds checking should be used to
prevent buffer overflows and/or variable assignment violations.

Syntax checking should be enforced to prevent data encoding, data injection, and/or format
string attacks, and to reject forbidden characters.

Output data generated using users controlled inputs must be sanitized and properly formatted
to avoid any client-side script injection through the application.

Common
issues

Parameters overflow, JavaScript injection, SQL Injection, Cross Site Scripting, server-side file
inclusion, …

OWASP Topics: Section 21 “Buffer Overflows”, Section 15 “Data Validation”, Section 16 “Interpreter Injection”

Error Handling and Information leakage

Best
Practices

The application should trap error messages that provide detailed system information or
application business logic help lead an attacker to compromise the system.

Common
issues

SQL verbose errors messages with backend database structures leakage, informative error
messages detailing file system path information, logon process notifies whether the account or
the password is erroneous, servers banners with release version,…

OWASP Topics: Section “18 Error Handling”, Section 24 “Configuration”

CCWAPSS 1.1

Passwords/PIN Complexity

Best
Practices

Length and complexity requirements for user authentication should be enforced to protect
against brute forcing of passwords and PINs.

Common
issues

Four digits passwords, common accounts like demo/demo or admin/admin, default installation
passwords, …

OWASP Topics: Section 12 “Guide to Authentication”, Section 24 “Configuration”

User’s data confidentiality

Best
Practices

The application should maintain privacy and confidentiality of user’s data throughout the
entire data flow lifecycle.

Application should ensure confidential data (such as passwords, PINs or MSISDN) are not stored
in web server or reverse proxy log files or reside in unencrypted form in cookies or browser
cache data.

Proper authorization has been implemented to ensure application users are not able to view
sensitive information owned by another application user.

Common
issues

Credit card numbers and CCV2 code are stored, password appears in clear text in logfiles,
administrators can read passwords of others users, logfiles can be read by a unauthorized
person, …

OWASP Topics: Section 8 “Handling E-Commerce Payments”, Section 12 “Guide to Authentication”

Session mechanism

Best
Practices

Session management should rely on strong mechanisms and session identifiers. Session
identifiers, such as cookie or session-id, are difficult to predict, tamper or guess. Session
identifiers can not be replayed.

Common
issues

Stolen session cookies can be re-used from another IP address. Malicious identity switching by
fuzzing parameters.

OWASP Topics: Section 14 “Session Management”, Section 23 “Guide to Cryptography”

Patch management

Best
Practices

All exposed and enabled components of the web application (webapp framework, reverse-proxy,
modules, …) must be up-to-date regarding the latest critical security patches and
particularly when exploits are available.

Common
issues

A security patch for an exploitable vulnerably is missing and an exploit is in the wild.

OWASP Topics: Section 27 “Maintenance”

CCWAPSS 1.1

Administration interfaces

Best
Practices

Administration functionality should be isolated from the rest of the application. Only authorized
users should be allowed to administer the product or application.

Common
issues

Common administration URLs, admin functionalities can be called from the main application and
profiles, …

OWASP Topics: Section 22 “Administrative Interface”

Communication security

Best
Practices

Communication of sensitive information should be encrypted to prevent unauthorized
eavesdropping and to ensure data integrity.

Common
issues

Passwords are sent encoded with Base64, HTTPS is not used when logon/password or
confidential data are posted or received, …

OWASP Topics: Section 23 “Guide to Cryptography”

Third-Party services exposure

Best
Practices

Any third party dependencies or others services that are deployed by default should be heavily
audited to ensure that they do not compromise the security of the product or application being
supported.

Network level filters should be deployed in order to restrict access to third-party services
resources or a restrictive rule set must disallow connection from unknown clients.

Common
issues

Database listener is accessible from the network, unnecessary services like Finger or RPC are
exposed to the clients ...

OWASP Topics: Section 24 “Configuration”, Section 26 “Deployment”, Section 19 “File System”

CCWAPSS 1.1

3 EVALUATION MATRIX

The following evaluation matrix is recommended as an attachment to the scoring results. This
matrix helps the auditor and the customer to explain the score and to understand evaluation
choices.

Criteria Evaluation

Needs improvement / Fair / Excellent

Recommendation

Authentication Excellent

Authorization Excellent

User’s Input Sanitization Needs Improvement Sanitize input the « id » parameter of
the show_all.asp script from caracters :
< > % « ‘ ; //

Risk Factor : 3

Error Handling and Information
leakage

Fair

Password/PIN Complexity Excellent

User’s data confidentiality Fair

Session mechanism Fair

Communication security

Needs Improvement Use Digest authentication method or
use HTTPS when passwords are
transmitted.

Risk Factor :1

Patch management Fair

Administration interfaces

Fair

Third-Party services exposure

Needs Improvement Restrict access to Oracle TNS service
from Internet.

Risk Factor : 1

Score = 10 – (3 + 1 + 1) + ((1+ 1) / 6) = 5.33

If the company modifies the way the webapp handles javascript malicious inputs, the score would be :

Score = 10 - 1 - 1 + ((1 + 1)) / 2 = 8.5

Pentest context :

In this particular case, in addition to the http port, the server exposes an Oracle listener (port 1521). Even if
this port is reachable, all exploits and connections are forbidden (that’s why the risk factor is lowered to “1”).
On the web application, a XSS vulnerability could lead to session robbery if an attacker knows how to send
email to users (that ‘s why the risk factor is on the Sophisticated side). Finally, the login process is a “Basic
Authent”, which does not protect properly the password. However, this web application is on the Internet (and
not on a LAN), so network sniffing probability is limited.

CCWAPSS 1.1

4 FREQUENTLY ASKED QUESTIONS

What is a good score ?

A score of 7 and above is considered to be "good."

Scoring a security level is stupid !

For years, we said that. But when we are delivering pentest results, customers often asks “could
you give us a kind score” ? Then, auditor made an evaluation based on instinct and experiences
and thus the customers asks “why ?, which criteria ?”.

CCWAPSS is made to respond to the why question and to allow discuss on distinct criteria between
clients and auditors.

The score can exceed 10 / 10 !

Yes. If the web application obtains a 10 CCWAPSS score, it simply means that the application is
more than compliant with current Best Practices. The scale has been designed in the objective that
way : 10 is not a limit. Thus, great secured application can exceed 10.

Regarding the risk factors, why not a “medium” risk ? It’s too binary !

This scale aims at impose the auditor to do clear-cut choices. Otherwise, in a classic
low/medium/high scale, the medium choice will often be favored.

How to implement this scale in an automated vulnerability scanner such as Nessus ?

The CCWAPSS scale has been created to be a real smart and to be focused real-world web
application risks.

The CCWAPSS scale is not meant to be automatically rated with automated scanners : evaluation
have to be performed by a skilled and experienced security auditor.

Even though vulnerability scanners are a great help in the vulnerability assessment process, only
human being can made choose between “low or high” or find a vulnerability in the way the
application handles privacy between profiles

Difference between Authorization and sessions management ?

Session management criteria is focused on session mechanisms.

If a parameter like “Cookie : id=334T55466; Level=4” can be tampered with “Level=5” and thus
the user can access to privileged functions : It’s a session management problem because the
problem is due to a weak session mechanism which does not ensure protection against tampering.

In another hand, if a user A can read/modify/call a function/date of a user B without being
authorized to, it’s a Authorization problem.

CCWAPSS 1.1

How to choose between Fair and Excellent ?

When the application exceeds the security requirement / Best Practices.

For instance, “Excellent” could be used if the protection is effective and a security warning is
prompted to the attacker or if the protection seems “bullet-proof”.

How to rate multiple web applications ?

If the web applications are linked (http link, forms redirecting…) : rate together.

If the web applications are not linked by any kind of business/services logic : rate separately.

There is no zero score !

Indeed. Graphics end at 1/10 because we think that delivering a zero score is not constructive
regarding the customer and developers. A very low score can often be corrected with simple fixes
and tuning. Low scores do not mean that the application must be fully re-engineered.

How to rate when there are multiple flaws associated to the same criteria ?

While auditing a vulnerable web application, the auditor could find more than one flaw which can
be rated under the same criteria.

For instance, if an application does not properly enforce authorization controls, the auditor could
find lot of different flaws linked to this global lack of control : possibilities to call administrative
functions, “jumps” between profiles, authorization bypasses, etc.

There were two ways to handle that kind of situation : adding or majoring.

The problem with adding flaws is that, when there are more than 2 flaws linked to the same
criteria, the CCWAPSS score will quickly go to 1/10 while all these flaws are in fact due to the same
problem. And, if the developer fixes this problem, all flaws will be annihilated in a row.

So, CCWAPSS chooses the “majoring” point of view: even though one or more flaws are detected
under the same criteria, the highest will be kept for the scoring.

Why is auditory criteria missing ?

Logs recording and monitoring are one of the most essential things in IT security. But, CCWAPSS
aims to score webapps exclusively regarding the penetration testing point of view. So, even if an
accurate log system is set, logs will not prevent a hacker from breaking into the webapp. This is
why CCWAPS did not used auditory level as an evaluation criteria.

CCWAPSS 1.1

5 GRAPHICS (TO BE CUT AND PASTE)

