
DNS Pinning and Web Proxies

DNS Pinning and Web Proxies

An NGSSoftware Insight Security Research (NISR) Publication

©2007 Next Generation Security Software Ltd

Abstract

DNS-based attacks can be used to perform a partial breach of browser same origin
restrictions in some situations, enabling a malicious web site to perform two-way interaction
with a different domain.

The attacks that are normally conceived against browser-based DNS pinning are capable of
being resolved through additional safeguards within browsers. However, the same attacks
can also be performed against web proxies, where browser DNS pinning does not apply.
Corporate web users accessing the Internet via a proxy are at risk from such attacks.

There are various ways in which DNS-based attacks against web proxies could potentially be
prevented through changes to proxy and browser software. Each of the fixes considered
suffers from important shortcomings. In the meantime, there are other defences that
organisations and individuals can employ to prevent attacks against them.

Author

Dafydd Stuttard, Principal Security Consultant – email: daf[at]ngssoftware[dot]com

NGSSoftware Insight Security Research Page 1 of 9 http://www.ngssoftware.com

DNS Pinning and Web Proxies

Background
DNS-based attacks against browsers have been known about for many years. These
attacks have become the subject of increased attention recently, following the
discovery of defects in browser-based DNS pinning defences.

So far, discussion has focused solely on browser issues and has ignored the fact that
web proxies are also vulnerable to the same attacks.

Browser same origin policy
The browser same origin policy is designed to place barriers between different web
sites that are being accessed by the browser, to prevent them from interfering with
each other. The implementation of this concept involves various subtleties, but for
present purposes it may be summarised as follows: a web site may generate a
request to a different domain, but it may not retrieve and process the response data
returned from that domain.

Cross-site request forgery
Because a web site can generate arbitrary requests to a different domain, there is a
category of vulnerability known as cross-site request forgery. For example, if you are
logged into your bank’s web application and visit a malicious web site in the same
browser, the malicious site can generate requests to your bank to carry out arbitrary
actions, such as transferring funds to the attacker’s account. Because your browser
automatically submits your cookies to the banking application (which typically include
your session token), the attacker-generated requests occur within the context of your
session with that application, exactly as if you had performed them yourself.

The browser same origin policy means that code running on the malicious web site
cannot retrieve and process the responses to any of the requests that it generates to
the banking application. So, for example, the malicious web site cannot read the
contents of your bank statements. For this reason, cross-site request forgery is often
described as a “one way” attack.

Quick-swap DNS
To understand what DNS pinning is and why it is implemented, consider the following
attack, which uses “quick-swap DNS” to retrieve and process data from a different
domain:

 1. An unwitting user follows a link to the URL http://wwww.attacker.com/.
 2. The user’s browser resolves the domain name www.attacker.com. To do

this, it performs a DNS look-up on the attacker’s name server. The name
server responds with the IP address of the attacker’s web server (1.2.3.4),
with a time to live (TTL) of one second.

 3. The user’s browser issues the following request to IP address 1.2.3.4:
GET / HTTP/1.1
Host: www.attacker.com

 4. The attacker’s web server returns a page containing a script that waits for
two seconds, and then performs two actions. The first action is to use the
JavaScript object XMLHttpRequest to make an asynchronous request for
http://www.attacker.com/. Because this is the same domain which

NGSSoftware Insight Security Research Page 2 of 9 http://www.ngssoftware.com

DNS Pinning and Web Proxies

invoked the script, the script is permitted to retrieve the response from this
URL.

 5. Because the browser has waited for two seconds, its previous DNS look-up
on www.attacker.com has now expired, and so the browser performs a
second look-up. This time, the attacker’s name server responds with the IP
address of www.niceapp.com, which is 5.6.7.8.

 6. The user’s browser issues the following request to IP address 5.6.7.8:
GET / HTTP/1.1
Host: www.attacker.com

 7. The www.niceapp.com server responds with its content, which the
attacker’s script is able to process via the responseText property of the
XMLHttpRequest object.

 8. The attacker’s script loaded in Step 4 performs its second action, which is to
transmit the data retrieved in Step 7 to a location controlled by the attacker.
Recall that any web site can issue a request to any other domain, and in this
case the attacker’s script posts the captured data to www2.attacker.com.

This attack succeeds in retrieving data across domains, however it only constitutes a
partial breach of the same origin policy. Crucially, in Step 3 the user’s browser
believes it is submitting a request to the domain www.attacker.com, and this is the
context in which the request is made. Any cookies that the user has for the domain
www.niceapp.com, such as session tokens, are not transmitted. Unlike in a cross-
site request forgery attack, the attacker-generated request does not occur within the
context of the user’s session (if any) with www.niceapp.com. This means that the
content retrieved in the attack will be the same as if the attacker had simply visited
http://www.niceapp.com/ directly himself.

So what does the attack achieve? It is effective in retrieving content from web sites
which the user can access but which the attacker cannot:

• If the user is on a corporate LAN, the attacker can browse intranet sites on the
LAN.

• If the user is on a home DSL connection, the attacker can communicate with
the administrative interface on their router, which only listens on the internal
home network.

• The attacker can interact with any web-based services on the user’s own
computer, even if these are protected by a personal firewall.

In these situations, the attacker can reach web servers that are defended by the
network topology rather than by authentication and sessions. A sophisticated attack
could turn the user’s browser into an open proxy, allowing the attacker to capture
data from, and perform arbitrary actions against, any target that the user can access.
Clearly, the targets of the attack are at nothing like the level of risk that they would be
if they could be accessed directly by malicious users on the Internet. However, in
many contexts, the attack described could present a serious threat.

Browser DNS pinning
It is to prevent the attack just described that browser DNS pinning exists.

In the Firefox browser, when a domain name has been resolved to an IP address, the
browser caches the IP address for the duration of the current browser session,
regardless of the TTL value specified in the response to the look-up. Hence, in Step
5 of the attack, the browser continues to associate www.attacker.com with the

NGSSoftware Insight Security Research Page 3 of 9 http://www.ngssoftware.com

DNS Pinning and Web Proxies

original IP address 1.2.3.4, and so does not make any request to the server at
www.niceapp.com.

Internet Explorer does not specifically implement DNS pinning as a defence, however
it caches DNS look-ups regardless of the TTL, and so effectively achieves the same
result.

Attacks against browser DNS pinning
In August 2006, Martin Johns discovered that browser DNS pinning can be defeated
by refusing HTTP connections. In Step 5 of the attack, the user’s browser enforces
DNS pinning and so makes the subsequent request to the original IP address
1.2.3.4. However, if the attacker’s server rejects this connection attempt (for
example, by firewalling its HTTP port), then the user’s browser drops the DNS
pinning and performs a fresh look-up on www.attacker.com. At this point, the
attacker responds with the IP address 5.6.7.8 and the attack proceeds as originally
described. This behaviour means that the protection offered by DNS pinning can be
trivially defeated by any serious attacker.

A further twist in the DNS pinning story relates to the HTTP Host header. Notice that
in Step 6, the request to the www.niceapp.com web server contains the domain
www.attacker.com in its Host header, because the user’s browser still believes it
is accessing the attacker’s domain. This means that web sites could seek to defend
against anti-DNS pinning by checking the Host header in all requests, and rejecting
those specifying a different domain. However, an attacker can spoof an arbitrary Host
header through various means, including older versions of XMLHttpRequest and
Flash. Hence, checking the Host header should not be considered a reliable means
of thwarting anti-DNS pinning attacks.

Preventing DNS-based attacks in the browser
Today’s browsers have not yet implemented any new measures to address the
defect discovered in DNS pinning. However, the attack based on refusing HTTP
connections could be prevented in various ways. The reason browsers drop DNS
pinning when a server refuses connections is that web servers may change location
for perfectly legitimate reasons. If the browser did not drop DNS pinning in these
circumstances, users would need to open a fresh browser instance to continue using
the site. Hence, one possible way to balance the competing requirements of security
and usability would be for browsers to present users with a warning message
advising them of what has happened and asking whether they trust the web site
which has just moved, or whether they are suspicious and wish to stop using it. For
example:

NGSSoftware Insight Security Research Page 4 of 9 http://www.ngssoftware.com

DNS Pinning and Web Proxies

DNS-based attacks against web proxies
Even if DNS-based attacks are completely addressed within browsers, the problem is
not going to go away altogether. Browser DNS pinning does not apply when a web
proxy is being used, because in this situation DNS resolution is performed by the
proxy, not the browser. The browser sends HTTP requests to the proxy containing
the full URL for the requested resource, including the domain name of the web site,
for example:

GET http://www.niceapp.com/foo HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, applic
ation/x-shockwave-flash, application/vnd.ms-excel, application/vnd.
ms-powerpoint, application/msword, */*
Referer: http://www.niceapp.com/
Accept-Language: en-gb,en-us;q=0.5
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.niceapp.com

The web proxy parses the domain name from the URL in the first line of the request,
and uses this to determine which destination IP address the request should be
forwarded on to. There is no way in the HTTP specification for the browser to instruct
the proxy which IP address it should connect to, as distinct from the domain name in
the URL. In many corporate environments, internal users cannot access external
DNS, and yet are able to browse the Internet because the proxy handles external
DNS resolution for them.

The defence of DNS pinning cannot be straightforwardly applied to web proxies. That
defence involves ignoring the TTL specified in DNS responses, and caching each
look-up for the duration of the browser session. But the proxy server does not have
any concept of a browser session. It receives HTTP requests from a variety of
clients, and it can certainly determine which client is responsible for each request,
either via the client IP address or (preferably) using proxy authentication. However,
the proxy cannot determine which browser instance on the user’s computer created
the request. Requests generated by two separate browser processes may be
identical in every respect.

Attacks against proxies using DNS trickery do not appear to have been anticipated in
today’s web proxy software, and no defensive measures are implemented to fill the
gap left by the absence of browser DNS pinning in this situation:

• Recent versions of Microsoft ISA server implement their own DNS cache for
performance reasons. In a default installation, when a look-up returns a TTL of
1 second, the result is cached for approximately six minutes. This presents an
obstacle to trivial attacks, but not an insuperable one.

• Recent versions of Squid proxy server also cache DNS look-ups, but the TTL
is observed, meaning that the attack originally described works against users
of squid proxy, just as if browser DNS pinning had never existed.

In the original scenario, an attacker succeeded in gaining two-way interaction with
web sites that the user could access but the attacker could not, due to the network
topology. The most significant opportunities for such attacks arise within
organisations that expose sensitive information and web applications to their internal
users. The attack effectively opens those organisations’ corporate intranets to the
world. Very many such organisations require their internal users to use a proxy
server to access the Internet. Hence, a large proportion of the most obvious targets

NGSSoftware Insight Security Research Page 5 of 9 http://www.ngssoftware.com

DNS Pinning and Web Proxies

for DNS-based attacks will still be vulnerable even if DNS pinning is properly fixed
within the browser.

An important caveat to note here is that DNS-based attacks against web proxies may
face a partial limitation in their scope, depending on the network configuration. In
attacks against browsers, the attacker gains access to any web site that the user can
access from their browser. In attacks against web proxies, the attacker gains access
to any web site that the user can access via the proxy. If the proxy server does not
allow internal users to connect to internal servers, and this restriction is enforced at
the network layer rather than by domain name, then the attacker cannot leverage the
proxy to access those servers. This point is elaborated on more fully later.

Software solutions to DNS-based attacks against web proxies
How could today’s software be modified to prevent the attacks described?

Unfortunately, there is nothing as obvious or conceptually simple as browser DNS
pinning that can be applied to web proxies. There are various possible solutions that
may be considered for addressing the problem, involving modifications to proxies,
browsers or both. However, each of these suffers from important shortcomings.

Solution 1: Validate DNS resolution through reverse look-ups
When the proxy server resolves each domain name to an IP address, the proxy could
also perform a reverse look-up on the IP address to confirm that it belongs to that
domain, and reject the resolution if it does not.

However, this stringent approach to name resolution would block access to very
many legitimate web sites that do not have valid reverse DNS records.

Solution 2: Extend the DNS cache duration
Microsoft ISA server caches DNS look-ups for longer than the period specified in the
TTL, and this presents an obstacle to trivial exploitation. Hence, it might be
considered that extending the cache duration further would increase the size of this
obstacle, making a successful attack highly unlikely.

However, this solution does not address the core problem, and attacks could still
succeed regardless of the cache duration chosen. For example, if lookups are
cached for six hours, and a single corporate user visits a malicious web site at 9am,
this means that all users of the same web proxy will be vulnerable to an attack
carried out at 3pm, when the next look-up occurs.

A second issue with this solution is how to deal with rejected HTTP connections,
which may be assumed to occur more frequently if look-ups are cached long beyond
their TTL. The solution suggested earlier for fixing DNS pinning in the browser
involved presenting the user with a warning, and letting them decide whether to
continue using a web site that has moved. But applying this solution to the proxy
situation is harder. Firstly, the proxy would need to communicate the alert back to the
browser, and receive the user’s decision. This could possibly be achieved using new
HTTP headers and status codes, or by presenting the proxy’s own warning as HTML
content. Secondly, if a single user makes the decision to accept the newly-located
server, then presumably all other users of the same proxy will be affected.

Solution 3: Communicate DNS resolution information to the browser
Proxy servers could add a new HTTP response header indicating to the browser the
IP address from which each response was retrieved. For example, if the original

NGSSoftware Insight Security Research Page 6 of 9 http://www.ngssoftware.com

DNS Pinning and Web Proxies

attack were to be performed against a proxy server, then in Step 8 the proxy could
add the header:
X-Originating-IP: 5.6.7.8

Browsers could use the IP resolution information to simulate DNS pinning even
where a web proxy is being used. The idea here would be that the browser would
track within each session the IP address used to retrieve responses from each
different domain name that it accesses. If the IP address associated with a domain
changed within a single session, then the browser would alert the user in the way
already described.

However, this solution will generate false positive alerts with web sites that use
round-robin DNS. When the TTL expires on a domain name that has been resolved
by the proxy, it will re-perform the resolution, and the look-up will probably return a
different IP address, causing an alert within the browsers of all users currently
accessing the site. Because many high-volume web sites use round-robin DNS for
load balancing, false positives will occur frequently and will quickly lead users to
ignore the resulting security alerts.

Round-robin DNS does not cause problems for traditional browser-based DNS
pinning, of course, because the TTL is ignored and each rotated resolution occurs
within a different browser session.

Solution 4: Perform DNS resolution in the browser
Browsers could be modified to perform their own DNS resolution even when they are
using a web proxy. Instead of using the web site’s domain name in the first line of
each request, they would use the resolved IP address, ensuring that the proxy
forwards the request to the intended (and pinned) destination.

However, many organisations employing web proxies will be reluctant to accept this
change in behaviour, because it may diminish their security in other ways. Firstly,
allowing internal users to perform external DNS look-ups may result in unauthorised
communication channels that bypass the corporate proxy and any other network-
layer defences. Any protocol can be tunnelled over DNS to a cooperating server.
Secondly, using IP addresses in requests to the web proxy prevents the proxy from
performing any filtering or access control on the basis of domain names. Many
organisations presently use their web proxies for this purpose.

Solution 5: Track browser sessions on the proxy
As already noted, the reason browser DNS pinning cannot be straightforwardly
implemented in web proxies is that the proxy does not have any concept of a browser
session. To address this core problem, proxies could be modified to keep track of
browser sessions using ephemeral cookies. This would enable proxies to maintain a
per-session DNS cache, and carry out per-session DNS pinning in the same way as
is currently done by browsers. Proxies would still need a way of alerting the user
when DNS pinning is dropped due to rejected connections, but this could now be
done on a per-user basis, unlike in solution 2.

This solution appears to avoid the problems affecting the previous options. However,
it imposes a considerable performance overhead that is likely to be considered
prohibitive.

Solution 6: Leverage the browser to implement a per-session DNS cache
The same functional solution as described in solution 5 could be achieved without
incurring the overhead of tracking browser sessions on the proxy or implementing a

NGSSoftware Insight Security Research Page 7 of 9 http://www.ngssoftware.com

DNS Pinning and Web Proxies

per-session cache. The proxy could use ephemeral cookies to store within the
browser the resolved IP address of each domain name accessed during the session.
In this solution, when a request arrives that contains the cookie, the proxy forwards
the request to that address. When a request arrives that does not contain the cookie,
the proxy uses the address stored in its own cache (or performs a new look-up) and
sets the appropriate cookie.

To prevent users (and malicious web sites) tampering with the IP address stored in
the cookie, so as to subvert the behaviour of the proxy, the cookie would need to be
encrypted.

This solution still entails some performance overhead on the web proxy, and involves
a significant re-engineering of its core behaviour that may be considered
disproportionate to the scale of the threat.

Preventing DNS-based attacks within infrastructures
It seems likely that attacks against web users based on DNS trickery will not be
prevented by either browsers or web proxies for the foreseeable future. In the
meantime, how can organisations and individuals protect themselves against these
attacks?

There are two main areas in which defences can be implemented, affecting internal
web-based resources and the use of proxy servers.

Firstly, web-based resources that appear to be protected from unauthorised access
by the network topology should be treated as if they are accessible from the public
Internet, if web users who can access them can also access the Internet:

• Sensitive content should be protected by robust authentication that can
withstand the range of attacks that exist against authentication mechanisms.
Using domain credentials for HTTP-based authentication may be ineffective if
these are automatically submitted by browsers on behalf of the logged-in user.

• Internal web applications should be subjected to the same level of security
testing and hardening as is desirable for public-facing applications. It is
common for organisations to tolerate flaws such as SQL injection in internal
applications, on the basis that their employees are trusted and lack the
technical knowledge required to exploit them. These assumptions are probably
wrong in any case, but the DNS-based attacks described mean that malicious
web sites on the Internet can also probe for and exploit those flaws.

• SSL can be used to protect access to internal web servers. If an internal user
falls victim to a DNS-based attack, their browser will produce a security alert
because the domain name being used to access the server does not match the
domain name on the server’s certificate.

The second area of defence applies in situations where internal users access the
Internet via a web proxy. To defend against DNS-based attacks targeting internal
web resources, the proxy can be prevented from accessing those resources. Note
that blocking access by domain name within the proxy’s own configuration will not be
effective here, because the whole point of the attack is that an external domain is
pointed at an internal IP address after a user has begun accessing it. The safest
place to implement the defence is probably at the network layer, by preventing the
proxy server from initiating connections to any internal web servers. Of course, users
will need a means of accessing internal web sites – they can do so directly, or via a
different web proxy that cannot be used to access the Internet.

NGSSoftware Insight Security Research Page 8 of 9 http://www.ngssoftware.com

DNS Pinning and Web Proxies

Conclusion
The DNS-based attacks described enable a malicious web site to gain two-way
interaction with web-based resources that cannot be reached from the Internet due to
the network topology. Clearly, those resources are not at the same level of risk as
they would be if they could be reached directly from the Internet. Nevertheless, in
some situations DNS-based attacks may present a serious threat to organisations
and individuals.

As with other areas of security, as general awareness of web security threats
matures, attention is slowly moving from the server side to the client side. Attacks
against web users by malicious sites are going to be an increasing area of concern,
and preventing breaches of the browser same origin policy is going to be a growing
objective for software manufacturers and users. Hopefully, the ideas discussed in this
paper provide some food for thought as to how some of those breaches may be
defended against.

NGSSoftware Insight Security Research Page 9 of 9 http://www.ngssoftware.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

