
Generic Unpacking of Self-modifying, Aggressive, Packed

Binary Programs

Piotr Bania

bania.piotr@gmail.com

March 2009

Abstract

Nowadays most of the malware applications are ei-
ther packed or protected. This techniques are ap-
plied especially to evade signature based detectors
and also to complicate the job of reverse engineers
or security analysts. The time one must spend
on unpacking or decrypting malware layers is of-
ten very long and in fact remains the most compli-
cated task in the overall process of malware anal-
ysis. In this report author proposes MmmBop as
a relatively new concept of using dynamic binary
instrumentation techniques for unpacking and by-
passing detection by self-modifying and highly ag-
gressive packed binary code. MmmBop is able to
deal with most of the known and unknown pack-
ing algorithms and it is also suitable to successfully
bypass most of currently used anti-reversing tricks.
This framework does not depend on any other 3rd
party software and it is developed entirely in user
mode (ring3). MmmBop supports the IA-32 archi-
tecture and it is targeted for Microsoft Windows
XP, some of the further deliberations will be refer-
ring directly to this operating system.

1 Introduction

Most of the currently popular malware is runtime
packed, encrypted or obfuscated. However not
only malware is packed1, packers are also success-
fully used in other popular software applications
mostly to defend against cracking and illegal
copying. Therefore solutions limited only to
packer detection cannot typify whether a packed
application is really a malware or not, because such
assumption leads to large number of false-positives

alerts. In other words this means that in most
of cases detecting, analysing of packed binary
code can be only performed after the payload is
unpacked. Appending to various external sources
[11, 6] about 79% of malware is packed, where the
most popular packers are UPX (more then 50%
of malware �les), PECompact, Upack, tElock,
Yoda's Crypter, FSG, PESpin, ASPack. Using
packing programs causes a transform of original
program into a packed program (the original code
is compressed, encrypted or both). Each packed
program is equipped with so called loader stub
(restoration routine) which works before original
program. The restoration routine task is to unpack
(restore) original packed binary code and throw
the execution to original entry point. Each packer
typically provide its own loader stub which relies
on usage of speci�c algorithms and because of that
it's hard to create one ultimate unpacker which
could handle di�erent loader stubs. Furthermore
some of the packers like tElock, PESpin, Yoda's
Crypt are creating an armored loader stub, which
takes an advantage of massive amounts of anti-
debugging, anti-reversing tricks and self-modifying
code techniques. Such protection techniques
often cause a major inconvenience in the malware
unpacking and analysis process.

This paper will present the method for by-
passing packed, obfuscated, armored layers and a
couple of methods for �nding original entry point
(OEP). Author will also try to present unpacking
mechanism used in MmmBop, its main goals,
limitations and also other related work.

1Author uses the term packed and its variations to refer
to the techniques of compressing, encrypting (armoring) and
obfuscating binary code.

1

mailto:bania.piotr@gmail.com


2 Main Goals

Like most of the currently known unpackers Mmm-
Bop was developed to ful�ll speci�c objectives,
which are:

• �nding original entry point (OEP) and stoping
the execution at its place (instrument only the
loader stub)

• bypassing the protection layers equipped with
anti-reversing tricks, obfuscated and self-
modifying code, keeping high level of trans-
parency (avoiding interferences)

As it was previously stated MmmBop is completely
userland application and it does not interfere with
the stability of operating system. It also does not
use debugging API, virtual machine or emulation
which signi�cantly decrease the risk of being de-
tected. MmmBop uses dynamic binary instrumen-
tation for tracing the execution �ow, next section
presents its general architecture.

3 Architecture

MmmBop consist of two separate modules: Injec-
tor and DBI Engine. Each of the modules will be
presented in the next subsections.

3.1 Injector module

The main tasks of the Injector module are:

1. creating a suspended process of the target ap-
plication (application to be unpacked)

2. loading DBI Engine into the process space

3. informing DBI Engine about current program
entry point

4. throwing execution to the DBI generated block

It is important to notice that the entire injec-
tion process is done virtually without physical �le
modi�cation. It especially prominent when the
loader stub of the packer is aggressive and computes
checksums from the originally packed �le. Injec-
tor module consist of an own position independent
stub, which performs the DBI Engine loading in
the target process space. When the Injector work
is done it terminates itself and resumes the target
process.

3.2 DBI Engine

This module is in fact the heart of MmmBop. It
is completely independent and does not rely on
any other known dynamic binary instrumentation
frameworks like DynamoRIO [1] or Pin [2]. Even
though those two mentioned DBI frameworks are
far more advanced when it comes to instrumenting
normal applications (not packed), they were not
designed to work with self-modifying, aggressive
binary code. Pin authors claim that it supports
self-modifying code, unfortunately the tests show
that it is still unable to instrument many loader
stubs - like the one produced by tElock or PESpin.
Furthermore it also contains some other logic
errors which often make the instrumentation
impossible and because of that it cannot be used in
unpacking process directed for aggressive loaders
(this will be discussed further in subsection 4.3). It
appears that Sa�ron [14] (an unpacking approach
using Pin) is also unable to work with aggressive
packers like tElock. Pin's engine is not open source
so it is hard to locate potential errors and address
a proper �x. Keeping in mind the DBI limits
presented above author managed to create own
instrumentation framework, which was developed
speci�cally to instrument the loader stub.

General DBI Engine architecture is presented below
(Figure 1):

Figure 1: General composition of MmmBop Dy-
namic Binary Instrumentation engine.

2



In current implementation MmmBop supports only
single threaded loader stubs (restoration routines)
which is enough to handle most of the known pack-
ers.

3.2.1 Code cache

Code cache is responsible for enabling native code
execution instead of performing emulation. Such
solution signi�cantly decreases the slowdown rate
(pure emulation is typically about few hundreds
times slower then native code execution). Unlike
the mechanisms used in DynamoRIO [5], Mmm-
Bop code cache stores only one block at a time and
also it does not apply any other optimizations like
direct/indirect branches linking2 or building traces.
This is one of the main assumptions of MmmBop,
even if such optimizations considerably increase the
speed of instrumented applications they are hard to
implement in self-modifying, aggressive code, like
packers restoration routines. That's why MmmBop
limits such optimizations to minimum and performs
them only for indisputable situations (ie. when
the basic block is not considered self-modifying).
Cached code contains the same logic as the origi-
nal application code, the only valuable changes are
made to the control transfer instructions, which are
modi�ed to ensure that MmmBop will always re-
tain control before the code will execute new basic
block. Additionally some other instrumentation is
injected to the cached code as well, this will be pre-
sented more deeply in next sections of this article.

3.2.2 Basic Block Builder

Basic Block Builder like the name says is responsi-
ble for creating basic blocks. Basic blocks are a sets
of instructions �nalized with a single control trans-
fer instruction (in other words basic block contains
set of instructions which have a single point of en-
try and a single point of exit for program control
�ow). General algorithm for creating a single basic
block from original application code is de�ned as
follows (Algorithm 1).

Important Note: When generating basic blocks
for aggressive binary code special care must be

2With one exception, the links are generated when spec-
i�ed basic block is considered not self-modifying and the
branch target is located in the same basic block.

Algorithm 1: Basic block generation

input : orgva

output: A cached basic block
begin

done←− false
currentva ←− orgva

while !done do
instr = disassemble(currentva)
switch instr.type do

case Control Transfer Instruction
AddRetainControlInstrumentation()
done←− true

otherwise
StoreInstruction()
break

currentva += instr.len

end

taken because sometimes the input memory ad-
dress orgva or any particular instruction following it
maybe invalid. Therefore entire basic block gener-
ation process must be protected by exception han-
dler, which will break the process if the source in-
struction is unavailable and additionally it will not
cause a fatal fault in the DBI engine.

3.2.3 Context switch

Context switch is essential for separating origi-
nal program CPU state from MmmBop internal
mechanisms. In other words all original registers,
�ags, stack space are completely separated from the
MmmBop. In this case full stack transparency is
achieved. There is one interesting (bonus) detail:
when working with completely pure stack space
(used for switching with the original stack space),
it is important to update the top of stack and
bottom of stack values in the Thread Information
Block (TIB) because otherwise the exception han-
dlers (like the one used in basic block builder) will
not get executed (and this should be considered as
fatal).

3.2.4 Dispatcher

As it was previously stated special instrumentation
is used for control transfer instructions to make
sure MmmBop will retain control before executing
new basic block. In fact in such situations the

3



control retains to the Dispatcher element, which
decides what to do next. Typically Dispatcher
executes Basic Block Builder to create new basic
block pointed by the original destination of control
transfer instruction. After this is done execution is
transfered to the newly generated cached code (of
course after performing the context switch).

Besides the presented dispatcher, MmmBop uses
few more to follow the original execution process
correctly. Those dispatchers will be presented in
next sections.

3.2.5 Exception Dispatcher

Causing (generating) exceptions is a very popular
trick among PE �le protectors. Typical scenario
works as follows:

1. Setup Structured Exception Handler

2. Generate Exception (execution is thrown to
SEH frame)

3. In SEH frame: check the EXCEPTION_RECORD

[8] and CONTEXT [7] structures, basing on the
values decide what to do next.

When the exception is generated the
EXCEPTION_RECORD and CONTEXT structures
are �lled respectively. Whenever the exception will
happen in the cached code, the ExceptionAddress
and Context.Eip �elds will be �lled too, however
they will point to the cached code not to the orig-
inal address. Whenever loader stub makes use of
those two values it is almost certain that the instru-
mentation process will fail. To address this issue
MmmBop hooks the KiUserExceptionDispatcher
[9] function, which is called before the execution of
the actual structured exception handler. This gives
MmmBop the opportunity to �lter and �x the
ExceptionAddress entry from EXCEPTION_RECORD

and Eip entry from CONTEXT structure. If the
exception happened in cached code, MmmBop
will calculate the corresponding location and
update both of mentioned entries with pointer to
original exception address (since both structures
are located in writeable memory this is a fairy
easy step). Unlike Sa�ron no kernel module is
developed to �lter generated exceptions, this
solution has it good and bad sides. Special care
should be taken with hiding the hook more deeply

since loader stub may look for it. However this
solution worked perfectly with all tested packers.

3.2.6 Continue Dispatcher

Some packers use NtContinue [13] function to
transfer the execution to other location (for ex-
ample Yoda's Crypter uses this method to return
the execution to the original entry point (OEP)).
This function is also executed when exception han-
dler returns EXCEPTION_CONTINUE status. Since
this function will change the thread context indi-
rectly, MmmBop will loose the track of the ex-
ecution chain. To resolve this issue MmmBop
hooks NtContinue, saves old Context.Eip and up-
dates it with its own handler. After executing
NtContinue the control is thrown to MmmBop
handler which continues the instrumentation from
previously saved Context.Eip.

4 Unpacking Issues

In this section author will try to describe some of
the most important issues that were necessary to
solve to make MmmBop e�ective. Sometimes to
illustrate speci�c issue more deeply additional real
world examples will be provided as well.

4.1 Instrumenting CALL

The CALL instruction saves procedure linking
information on the stack (return address) and
calls de�ned procedure. Besides the normal usage,
self-modifying code uses this instruction to address
relatively to the return address placed on the stack,
this is often referred as GetPC code (the variant
of {CALL/POP reg/SUB reg,IMM32} instructions
is sometimes named as delta handling). Following
code (Listing 1) presents how PESpin uses CALL

instruction for relative addressing.

004040 D8 CALL 2.004040DD

004040 DD MOV EBX ,DWORD PTR SS:[ESP]

004040 E0 ADD EBX ,12

004040 E3 SUB DWORD PTR DS:[EBX],6B1E8

Listing 1: Fragment of PESpin code, that illus-
trates using CALL return address as a operand for
relative addressing and self code modi�cation.

4



CALL instruction at 0x004040D8 transfers the
execution to 0x004040DD and simultaneously
pushes the return address (0x004040DD) on the
stack. This address is then loaded into EBX

register (instruction at 0x004040DD) and increased
with 0x12 (instruction at 0x004040E0). The EBX

register (now containing 0x004040EF value) is
used via the SUB instruction at 0x004040E3 to
decode (self-modify) instruction bytes located at
0x004040EF. Therefore the return address must
point to original code location, not the correspond-
ing location in code cache, because even though
the cached code does keeps the same program logic
it is extended with instrumentation instructions
and it is limited to one basic blcok. In other words
the same decoding process in reference to cached
code may provide other (unstable) results, so
executing the instruction located at 0x004040E3

may be fatal in this case. MmmBop takes care of
this situation and points the return address to the
original location.

While working with self-modifying code it is good
to not assume that like in normal application af-
ter every CALL instruction, RET instruction will be
used to retain control. In such situations it is quite
possible that the execution will never land to the
return address stored by CALL in fact this is a pretty
known trick for disabling the functionality of STEP
OVER in debuggers.

4.2 Handling self-modifying code

Since MmmBop only processes one basic block
at a time, instruction which modi�es memory
corresponding to di�erent basic block is simply
ignored. However the problems start when an
instruction modify memory in range of current
basic block. This means that the basic block
located in code cache does not correspond to the
original one any longer (since it was modi�ed) -
and the general logic is probably changed. Most
of aggressive protectors make use of this technique
like PESpin (see Listing 2 - extended previous
listing).

004040 D7 PUSHAD

004040 D8 CALL 2.004040DD

004040 DD MOV EBX ,DWORD PTR SS:[ESP]

004040 E0 ADD EBX ,12

004040 E3 SUB DWORD PTR DS:[EBX],6B1E8

004040 E9 DEC BYTE PTR DS:[EBX -3]

004040 EC SUB BYTE PTR SS:[ESP],17

004040 F0 OUT 46,AL

004040 F2 ADD BYTE PTR DS:[EBX],CL

004040 F4 IN AL ,74

004040 F6 SAHF

004040 F7 JNZ SHORT 2.004040FA

Listing 2: STAGE1: Fragment of PESpin code, il-
lustrating code before self-modi�cation.

As it was previously explained instruction at
0x004040E3 will cause a memory modi�cation
pointed by EBX register 0x004040EF. Next instruc-
tion located at 0x004040E9 will also cause a mem-
ory modi�cation to the area 0x004040EC. This will
cause the modi�cation of the basic block logic, now
it presents following instructions (Listing 3)
.

004040 EC SUB DWORD PTR SS:[ESP],2.0040342F

004040 F3 OR ESP ,ESP

004040 F5 JE SHORT 2.00404095

004040 F7 JNZ SHORT 2.004040FA

Listing 3: STAGE2: Fragment of PESpin code, il-
lustrating code after self-modi�cation.

Instruction located at 0x004040EC is completely
di�erent then the one before performing decoding
process. In addition to subsection 4.1, if the return
address placed by CALL instruction would be not
faked properly, PESpin stub would use the wrong
value for further unpacking process (this would
result in fault).

To resolve such situations additional instrumenta-
tion was used. Typically there are two ways of
facing such problems both rely on instrumenting
instruction which refers to memory in write mode:

1. monitor memory writes and check if the desti-
nation memory is located in the range of orig-
inal basic block

2. monitor memory writes and check if the origi-
nal basic block checksum has changed

Both of the listed mechanisms are implemented in
MmmBop and both are comparable in the terms of
speed. First mechanism requires some additional
code instrumentation since generally the requested
memory address can not be statically calculated.
After the execution of 'memory write instruction'

5



MmmBop dispatcher checks if it a�ected current
basic block. When MmmBop detects such action, it
breaks the current basic block and creates new one
(starting after the last executed instruction). Sec-
ond solution does not require additional instrumen-
tation code for calculating the destination memory
address. So after every creation of basic block, a
checksum is generated from original code (here the
partial Adler-323[20] is used as a checksum algo-
rithm). Every time memory write occurs in the
basic block, the checksum is calculated one more
time from the original basic block code and then it
is compared with the previously calculated one. If
there is a di�erence the currently cached basic block
is destroyed and next one is generated from the be-
ginning of last instruction that caused the memory
write. Current MmmBop implementation enables
using one of the two presented methods. The speed
comparison between those two mechanisms will be
presented in Testimonials section (section 6).

On the side note it's obvious that Prefetch Input
Queue (PIQ) [19] tricks like the one used in PE-
Spin (REP STOSB instruction used to overwrite it-
self) have no in�uence on MmmBop.

4.3 Pre�xes

Special care should be taken while instrumenting
control transfer instructions which are encoded to-
gether with IA-32 pre�xes. Some of the pre�xes
encoded together with control transfer instruction
are used deliberately to cause exceptions (like for
example LOCK (0xF0) or OPERAND-SIZE (0x66)
pre�x). On the side note Pin tends to ignore such
pre�xes, such assumption makes it vulnerable to
such attacks.

4.4 Hardware breakpoints

The IA-32 architecture provides special sets of reg-
isters called debug registers, used by the processor
for debugging purposes. Those registers allow
setting various debug conditions associated with
four debug addresses written in DR0-DR3 registers
where the breakpoint condition is stored in the DR7
register. Unlike software breakpoints, hardware

3Author is aware of Adler-32 checksum algorithm weak-
nesses (ie. forging), however they don't represent a impor-
tant issue in this case.

breakpoint (often called as debug breakpoints)
do not require changing the original code. The
tElock protector makes a pretty nasty usage of
this feature, following code illustrates how tElock
restoration routine setups hardware breakpoints
(Listing 4).

00404120 MOV EAX ,DWORD PTR DS:[ECX+B4]

00404126 LEA EAX ,DWORD PTR DS:[EAX +24]

00404129 MOV DWORD PTR DS:[ECX+4],EAX

0040412C MOV EAX ,DWORD PTR DS:[ECX+B4]

00404132 LEA EAX ,DWORD PTR DS:[EAX+1F]

00404135 MOV DWORD PTR DS:[ECX+8],EAX

00404138 MOV EAX ,DWORD PTR DS:[ECX+B4]

0040413E LEA EAX ,DWORD PTR DS:[EAX+1A]

00404141 MOV DWORD PTR DS:[ECX+C],EAX

00404144 MOV EAX ,DWORD PTR DS:[ECX+B4]

0040414A LEA EAX ,DWORD PTR DS:[EAX +11]

0040414D MOV DWORD PTR DS:[ECX+10],EAX

00404150 XOR EAX ,EAX

00404152 AND DWORD PTR DS:[ECX+14], FFFF0FF0

00404159 MOV DWORD PTR DS:[ECX +18] ,155

Listing 4: Fragment of tElock restoration routine,
which setups debug breakpoints.

Instructions at 0x00404129, 0x00404135,
0x00404141, 0x0040414D write the breakpoint
location to the DR0-DR3 debug registers respec-
tively. Instruction at 0x00404152 updates the DR6
registers and �nally instruction at 0x00404159
enables four hardware breakpoints by setting
the DR7 register bits. Since direct changes to
debug registers require ring0 privileges, following
code executes in the exception handler and it
operates on the CONTEXT structure (ECX). The
modi�ed context is then passed to NtContinue
function which applies it to the selected thread,
after resuming the execution selected hardware
breakpoints are set. After the CPU will execute
instruction corresponding the breakpoint address
EXCEPTION_SINGLE_STEP will be thrown. This
exception is �ltered by tElock exception handler
and following code is executed (see Listing 5).

00404113 CALL 2.00404119

00404118 DB 00

00404119 POP EAX

0040411A INC BYTE PTR DS:[EAX]

0040411C SUB EAX ,EAX

0040411E JMP SHORT 2.00404160

Listing 5: Fragment of tElock restoration routine,
which handles single step exceptions.

Whenever tElock handles single step exception, it
increases the byte variable located at 0x00404118
(which is in fact a counter) and it resumes the ex-
ecution afterwards. This counter value is used in

6



the further parts of the unpacking process. There-
fore whenever hardware breakpoints will not be hit
the �le will not be unpacked correctly. In this
case when the cached code is executed instead of
the original one it's obvious that the breakpoints
will not be detected and the unpacking process will
fail. To correctly handle such situations Mmm-
Bop monitors the context passed to NtContinue

function and writes down all the enabled hard-
ware breakpoints locations. Whenever the basic
block builder meets the speci�ed breakpoint loca-
tion MmmBop simply links current instruction to
the original breakpoint address. Because of this
mechanism breakpoints are correctly handled and
MmmBop retains the program control immediately
after the exception is thrown.

5 OEP Finding

MmmBop may use di�erent approaches directed for
�nding original entry point of the packed program.
Since it is able to instrument all the instructions
which cause memory writes, techniques that rely
on this approach (detecting the execution of previ-
ously written area) may be applied as well. Cur-
rently MmmBop focus on control transfer checks,
so whenever the control is returned to a basic block
located at speci�ed memory range, MmmBop as-
sumes the original entry points was reached. The
memory range used in this process generally corre-
sponds to the borders of �rst section of the packed
�le. Since most of the packers do not erase such in-
formation this solution plays out quite well. From
the other hand packers like uPack merge all of the
original sections into one4, this requires some man-
ual guessing of the down border of the original ex-
ecutable section. In the more hard situations it
seems to be possible to deliver another assumption,
like every unpacked program tends to use API func-
tions delivered by the operating system or by addi-
tional libraries. Therefore the �rst5control transfer
to outside library may be used for further manual
analysis (since typically the API call is located just
after original entry point), however this should be
treated as an alternative technique because it is not

4On the side note similar mechanism is used in the Jol-
lyRoger virus.

always reliable. Additionally some other techniques
may be applied to solve the extra cases (ie. the
dual-mappings [17] problem), for example like in-
tercepting the mapping �le API6 (MapViewOfFile
and related functions) or using the technique simi-
lar to the one from PolyUnpack [16].

6 Testimonials

Following section will present sample results ob-
tained in the process of unpacking (original entry
point �nding) custom executable by MmmBop.
In the tests a sample, 8 192 byte application was
used. The packers tested were: UPX ver. 3.03w,
WinUpackRY ver. 0.39 �nal, Yoda's Crypter
ver. 1.3 (options: CRC check, anti dumping,
clear import information, API redirect), tElock
ver. 0.98 (options: debugger detection, IAT-
redirection), PESpin ver. 1.32 (options: debugger
detection, API redirection, antidump protection,
code redirection). For each packing tools �le
was unpacked 10 times (5 times within the usage
Adler checksum algorithm, 5 times within the
usage of normal instrumentation) and the average
value was calculated. The results are written in
Table 1 and also illustrated on the chart below
(Figure 2). The number of basic block transfers
required by speci�ed packer is presented in Table 2.

Packer Name UtACRC [s] UtInstr [s]
PESpin 4.6084 4.5795
tElock 1.2804 1.3159
yC 0.7611 0.9472
UPX 0.0759 0.0789
WinUpackRY 0.5930 0.5964

Table 1: Time required by MmmBop to unpack
a single �le in reference to di�erent packers and
methods.

Where:

• UtACRC is the time required to unpack a �le
while using Adler-32 checksum approach

5Author assumes that the API calls done by the loader
stub are ignored.

6Of course this may require developing a kernel module
because native API [12, 4] may be used instead.

7



• UtInstr is the time required to unpack a �le
while using normal instrumentation (without
the Adler-32 checksum)

Figure 2: Chart illustrating time required by
MmmBop to unpack a single �le in reference to
di�erent packers and methods.

Packer Name Basic Block Transfers [#]
PESpin 2364189
tElock 311614
yC 180234
UPX 15909
WinUpackRY 131424

Table 2: Number of basic block transfers in refer-
ence to speci�ed packer.

The results show that both methods used for de-
tecting basic block modi�cation (Adler-32 check-
sum or the instrumentation approach) produced
comparable results. PESpin required the highest
amount of time because it uses a lot of control
transfers between the basic blocks. It should be ob-
vious that time required for the unpacking process
will increase proportionally to the size of packed
code (since more iterations will be required to com-
plete the restoration routine). Generally as for
the initial MmmBop implementation the results are
enough satisfying.

Figure 3: Chart illustrating number of basic block
transfers in reference to speci�ed packer.

7 Limitations

Most of the dynamic binary instrumentation solu-
tions need to modify target process address space.
Unfortunately this is unavoidable. Some more so-
phisticated packers may use this fact for detection
purposes. However this may be not so easy to im-
plement, because other software products (like an-
tivirus solutions, �rewalls) typically interfere with
the target process address space as well (by inject-
ing additional libraries and so on). Packers, espe-
cially commercial solutions must work on such ma-
chines too, so it is very unlikely such risky solution
will be implemented for MmmBop detection. From
the other hand packers based on Virtual Machines
(VM) approach will not be a�ected by MmmBop
solution. However, in such cases MmmBop may
be used for recording the execution trace, which is
often very helpful in the further unpacking process.

8 Related Work

There are a number of unpackers available nowa-
days, this section will try to describe most of the
related ones:

• OllyBonE [18] is a plugin for OllyDbg [21]
which relies on similar mechanism like PaX
or Shadow Walker does. It changes the page
memory protection of selected region (typically
�rst section) and waits until exception happens

8



at that range. If the exception address (ex-
ception EIP) points somewhere inside the pro-
tected region then original entry point is found.
On the side note similar approach for unpack-
ing purposes was created before by author of
this article. The engine was called dEPACKiT
and was developed and announced earlier [3]
- unfortunately it was not released to public.
Unlike OllyBonE it was a completely ring3 ap-
plication.

• Renovo [10] uses an emulated environment
to monitor program execution and memory
writes. As the emulated environment TEMU is
used. Renovo tries to �nd original entry point
by detecting code execution from previously
written memory.

• Paradyn Project [15] is a very similar approach
to MmmBop. Paradyn uses dynamic binary
instrumentation for analyzing packed binary
code (it uses Dyninst for this purpose). How-
ever it appears to be directed for Unix oper-
ating systems and currently it cannot handle
self-modifying code.

• Sa�ron [14] also uses dynamic binary instru-
mentation technique (it uses Pin framework
as the dynamic binary instrumentation frame-
work) to monitor program execution together
with monitoring memory writes. Additionally
it uses hardware paging features in a similar
way like OllyBonE and related mechanisms do.
Because Sa�ron relies on Pin framework it is
unable to handle such aggressive packers like
tElock, PESpin etc.

9 Future Work

MmmBop is an initial concept of generic unpacker,
together with the evolution of the evading and
anti-debugging techniques MmmBop must be con-
stantly extended as well. Future MmmBop version
should consider handling multi-threading loader
stubs and cover more of the aggressive packers. It
is quite possible that MmmBop can be quite more
optimized the initial version was build without any
additional optimizations.

10 Acknowledges

Author would like to thank Matt "skape" Miller
and Julien Vanegue for helping with writing this
article.

References

[1] DynamoRIO. http://www.cag.lcs.mit.

edu/dynamorio/.

[2] Pin. http://rogue.colorado.edu/pin/.

[3] Piotr Bania. dEPACKiT. http:

//www.security-express.com/archives/

dailydave/2005-q4/0188.html.

[4] Piotr Bania. Windows Syscall Shell-
code. http://www.securityfocus.com/

infocus/1844/1.

[5] Derek L. Bruening. E�cient, Transparent,
and Comprehensive Runtime Code Manipula-
tion. PhD thesis, Massachusetts Institute of
Technology, 2004.

[6] Pedro Bustamante. Mal(ware)formation
statistics. http://research.

pandasecurity.com/archive/Mal_2800_

ware_2900_formation-statistics.aspx,
2007.

[7] Microsoft Corporation. Context struc-
ture. http://msdn.microsoft.com/en-us/

library/ms679284(VS.85).aspx.

[8] Microsoft Corporation. Exception_record
structure. http://msdn.microsoft.com/

en-us/library/aa363082(VS.85).aspx.

[9] Ken Johnson. A catalog of NTDLL ker-
nel mode to user mode callbacks, part 2:
KiUserExceptionDispatcher. http://www.

nynaeve.net/?p=201.

[10] Min Gyung Kang, Pongsin Poosankam, and
Heng Yin. Renovo: A Hidden Code Extractor
for Packed Executables. http://bitblaze.

cs.berkeley.edu/papers/renovo.pdf.

[11] Maik Morgenstern and Andreas Marx. Run-
time Packer Testing Experiences. 2nd Interna-
tional CARO Workshop, May 2008.

9

http://www.cag.lcs.mit.edu/dynamorio/
http://www.cag.lcs.mit.edu/dynamorio/
http://rogue.colorado.edu/pin/
http://www.security-express.com/archives/dailydave/2005-q4/0188.html
http://www.security-express.com/archives/dailydave/2005-q4/0188.html
http://www.security-express.com/archives/dailydave/2005-q4/0188.html
http://www.securityfocus.com/infocus/1844/1
http://www.securityfocus.com/infocus/1844/1
http://research.pandasecurity.com/archive/Mal_2800_ware_2900_formation-statistics.aspx
http://research.pandasecurity.com/archive/Mal_2800_ware_2900_formation-statistics.aspx
http://research.pandasecurity.com/archive/Mal_2800_ware_2900_formation-statistics.aspx
http://msdn.microsoft.com/en-us/library/ms679284(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms679284(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa363082(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa363082(VS.85).aspx
http://www.nynaeve.net/?p=201
http://www.nynaeve.net/?p=201
http://bitblaze.cs.berkeley.edu/papers/renovo.pdf
http://bitblaze.cs.berkeley.edu/papers/renovo.pdf


[12] Gary Nebbett. Windows NT/2000 Native API
Reference. Sams - PEARSON, 2000.

[13] Tomasz Nowak. NtContinue. http:

//undocumented.ntinternals.net/

UserMode/Undocumented%20Functions/

NT%20Objects/Thread/NtContinue.html.

[14] Danny Quist and Valsmith. Covert
Debugging Circumventing Software
Armoring Techniques. http://www.

offensivecomputing.net/bhusa2007/

dquist-valsmith-covert-debugging-paper.

pdf.

[15] Kevin Roundy. Analysis and Instrumenta-
tion of Packed Binary Code. Paradyn Project.
Condor Week University of Wisconsin Madi-
son, April 29 � May 2, 2008.

[16] Paul Royal, Mitch Halpin, David Dagon,
Robert Edmonds, and Wenke Lee. Polyun-
pack: Automating the hidden-code extraction
of unpack-executing malware. College of Com-
puting Georgia Institute of Technology.

[17] Matt "skape" Miller. Using dual-mappings
to evade automated unpackers. Uninformed
Journal, 2008.

[18] Joe Stewart. OllyBonE v0.1, Break-
on-Execute for OllyDbg. http://www.

joestewart.org/ollybone.

[19] Wikipedia. Prefetch input queue.
http://en.wikipedia.org/wiki/Prefetch_

input_queue.

[20] Mark Adler Wikipedia. Adler-32 Check-
sum Algorithm. http://en.wikipedia.org/

wiki/Adler-32.

[21] Oleh Yuschuk. OllyDbg. http://ollydbg.

de/.

10

http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Thread/NtContinue.html
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Thread/NtContinue.html
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Thread/NtContinue.html
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Thread/NtContinue.html
http://www.offensivecomputing.net/bhusa2007/dquist-valsmith-covert-debugging-paper.pdf
http://www.offensivecomputing.net/bhusa2007/dquist-valsmith-covert-debugging-paper.pdf
http://www.offensivecomputing.net/bhusa2007/dquist-valsmith-covert-debugging-paper.pdf
http://www.offensivecomputing.net/bhusa2007/dquist-valsmith-covert-debugging-paper.pdf
http://www.joestewart.org/ollybone
http://www.joestewart.org/ollybone
http://en.wikipedia.org/wiki/Prefetch_input_queue
http://en.wikipedia.org/wiki/Prefetch_input_queue
http://en.wikipedia.org/wiki/Adler-32
http://en.wikipedia.org/wiki/Adler-32
http://ollydbg.de/
http://ollydbg.de/

	1 Introduction
	2 Main Goals
	3 Architecture
	3.1 Injector module
	3.2 DBI Engine
	3.2.1 Code cache
	3.2.2 Basic Block Builder
	3.2.3 Context switch
	3.2.4 Dispatcher
	3.2.5 Exception Dispatcher
	3.2.6 Continue Dispatcher


	4 Unpacking Issues
	4.1 Instrumenting CALL
	4.2 Handling self-modifying code
	4.3 Prefixes
	4.4 Hardware breakpoints

	5 OEP Finding
	6 Testimonials
	7 Limitations
	8 Related Work
	9 Future Work
	10 Acknowledges

