Taking Back Netcat

Ever since Symantec added Netcat's signature to their virus database, there have been repeated
outcries against the detection of Netcat as a “Hack Tool”; while Netcat is a very useful networking
utility, like many useful tools, it can be used for both good an evil. This paper will show how to locate
the signature used to identify Netcat, and modify it so that the executable no longer matches
Symantec's signature, without interfering with any of the program's functionality. This is not an act of
defiance against Symantec, but rather an exercise in identifying and modifying sections of code (aka,
signatures) that are used by anti virus programs to identify malicious code; the tools and techniques
used here can be applied to any program that is marked as malicious by AV applications.

Changing File Signatures
While there are some easy ways of changing the signature of a program (packers, encryptors,
etc), they may not always be viable options for those wishing to bypass anti virus applications.
Additionally, it would be easy for anti virus companies to run a program such as Netcat through a few
popular packers/encryptors and add signatures for the resulting binaries to their virus databases as well.
As such, we will be manually examining and editing the Netcat program in order to create a custom
“version” of the Netcat utility.

There are two basic ways of editing a program: either by changing the original source code and
recompiling it, or by using a hex editor to change various bytes in the compiled binary; in either case,
in order to invalidate an AV signature, you must know what parts of the code are used to identify the
signature. Thus, regardless of the availability of source code, one still needs to know how to find an
AV signature in order to thwart it. While Netcat source code is available, we will be using the hex
editor approach; this allows us the opportunity to see how closed-source programs are changed in order
to slip past anti virus protection (i.e., when creating new virus strains, modifying shellcode, etc).

Tools Needed
The following tools will be used in this paper. Note that only the first three tools are required. If
you have a preference for different programs, feel free to use them instead of the listed applications,
just as long as they can provide the same basic functionality:

1. Netcat for Windows v1.11 (http://www.vulnwatch.org/netcat)
2. Norton Anti-Virus 2006 (http://www.symantecstore.com)

3. HexWorkshop v4.23 (http://www.bpsoft.com/downloads)

4. Olly Debugger (http://www.ollydbg.de)

In addition, a familiarity with disassembly, ASM, and PE editing will help you to further obfuscate an
AV signature, but they are not necessarily prerequisites for this paper. You will, however, be able to
follow along much better if you have at least some understanding of ASM, hex editing, and PE headers.

Identifying a Signature

Once your AV agent has identified a file as a virus, trojan, worm, or other malicious program,
you need to locate the section of the file that is used by the AV application to identify the program as
malicious. The easiest way to do this is through bracketing (aka, brute force, trial and error, or
whatever you'd like to call it). If you open the program in a hex editor and replace, say, the second half
of the file with a string of 0's, and the AV application no longer identifies the file as a malicious
program, then the AV signature (or at least part of it) is located in the second half of the file.
Conversely, if it is still identified as a malicious program, then the signature is located in the first half
of the file. This halving technique can be used again and again to narrow down the location of the

http://www.vulnwatch.org/netcat
http://www.ollydbg.de/
http://www.bpsoft.com/downloads
http://www.symantecstore.com/

signature, until you can positively identify the exact location and length of the signature.

To do this, first open up Netcat with Hex Workshop (right click nc.exe and select 'Hex edit with
Hex Workshop'). If you scroll to the bottom of the hex dump, you see the last byte is located at offset
EFFF. Divide EFFF in half and you get 77FF; open up a goto box (Ctl+G) and go to the offset 77FF
from the beginning of the file:

From *where
Offset: 000077 & Beginning of Fie
" Dec © Hex = Cument Position

ITI Cancel | Help | " End of File (back from]

| Fight click in your document for more goto options |

Select everything from 77FF to the end of the file (EFFF), right click, select 'Fill', and fill the selected
section with Os:

) Hex
Mumber of bytes: I‘I 423 -
(0]

= Dec

IE_ Cancel |

Fill with the following hew bute:

| Fillz the Current Selection |

Save your changes; when prompted to make a backup, say yes. Now, have Norton scan nc.exe again,
and it should still detect the file as a “Hack Tool”:

@ Morton Anti¥irus - Scan

Manual Repair - Risks more info

1 Remaining Risk

These risks have not been resolved. To view mare details on the Symantec website, select a risk name. Click Ok
to take the recommended action {*) for each item.

Name Risk Warning Details

Hackbool MebCat Hack tool

_!2 Removed spyware and adware can be retrieved using Morkon Antivirus Ouarantine and Restore

(0] | | Cancel

This indicates that the signature is somewhere in the first half of the binary file. Click Cancel on the
Norton repair window, delete the nc.exe file and rename nc.BAK (the backup made by Hex Workshop)
to nc.exe. Open up nc.exe with Hex Workshop and let's examine the first half of the hex dump. You'll
notice a few text strings such as “This program cannot be run in DOS mode”, “.text”, “.data” and
“.rdata”, followed by several hundred bytes of Os. This is the PE header section of the program; the
actual program instructions begin immediately after the section of Os at offset 1000:

H Hex Workshop - [nc.exe] &=
File Edit Disk Options Tools ‘Window Help _8l =

|zsma(tmesc|vv o ||wo(B[sLoFDd @A)«]
|=

|Scw»s2€2 sl -2 zbl|aaan [BEE % *E |
00000F3C|0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000|..... .o eeeenninninenn...]
00000FS6 (0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ... enn i annnnannns
00000F70 (0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ... enn e annnnannns _

00000FSA (0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ... ennniannnnannen
00000FA4 (0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ... enn e nannns
O0000FEBE (0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ... enn i annnnannns
00000FDS (0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ... e eannnnannes
00000FF2|0000 0000 0000 0000 0000 o000 0000 EEEC S453 8B1D GCB0 4000 5633 |...vveen.... B.Ts..1.6.v3
0000100C |FeS6 6AD1 6A0Z2 8D4C 2464 51CTF 4424 2844 0000 0089 7424 2C89 7424|.Vj.7..L3dQ.DS(D....t5,.t5
00001026 (3489 7424 3089 7424 4489 7424 4089 7424 3C89 7424 3866 8974 2458 |4.t50.t5D.t5@.t5< . t58F.t5X
00001040 (3974 245C A6GEY 7424 SACY 4424 5401 0100 0089 4424 6089 7CZ4 B4FF | .tSN.tSZ.DST. DS .| %d.
00001054 (D350 5YFF D350 FF15 68E0 4000 SEOD COEY 4000 8D54 2408 528D 4424 |.PW..F..h.@..... @..T%.R.DS
00001074 [1C50 Se56 SeRA 0156 SE51 SEFF 1564 BO40 0085 CO74 178B S424 OCBE|.PVVV].VVOV. .d.@...t..TS..
0000108E [7424 0852 FF15 &0B0 4000 SBCe SESE 53C4 54C3 5656 5656 SERA OARS |t5.R.. .@..."[..T.WWWWWj.h

oooo10A8 (60EA 4000 FF1S5 SCEO 4000 S0EE ZEBF 0000 B3C4 0OCS50 BBAC B140 OQEB|(" .@...~.@.FP........ Ph..@..
goool0ce [9ADF 0000 83C4 1C8B CeSE SBEA3 C454 C3CC CCOCC COCC COCCQ COCC COCC | ... a.s L R
Qaoolonpe |coocc CoQoC 81EC 2002 0000 A190 EO40 0056 S78B BCZ24 8CO02 0000 BEBLZ [....vieiennn @V, 5. ...,
Q00010Fs |e&00 s200 89584 Z48C 0200 008D 4424 1050 68CE 0000 0OOBD 4024 1051(7.7 S DS.Ph..... Ls.Q
00001110 |52FF 157C BO40 0085 COOF 5443 0000 0055 8B2D ¥BEO 4000 538 4424 |R..|.@......... U.-z.@.3.D%
00001124 (1032 DESS CO76 B38E 176A 003D 4424 1450 63CH 0000 0OO8SD 4CZ4 2051(.2...ve..]..DS.Ph..... Ls 0
00001144 (S2FF DSS8E 7424 1033 933 C085 Fe76 2684 5400 1480 FADA 7S0E SOFEB(R...t$5.3.3...w&.T..... ...
QDOD11GE (0D74 09C6 8404 DCOOD 000D OD40 8894 04DC 0000 0040 413B CEBA DATZ|(.t......... @....... @&:...r
goooll7e |DABE 4FO0OC eAD00 508D 8424 E400 0000 5051 FF1G5 84B1 4000 85C0 FEZE|(..0.7i.P..5....PQ....@...7. :J
NC.exe
%Hszset: 4096 [0x00001000] %"Compare Results fan =l il

We can safely eliminate the PE header, as it would not be used as part of a virus signature. Thus, we
know that the signature must be somewhere between offsets 1000 and 77FF; this can be confirmed by
zeroing out all the file contents between these two addresses as we did with the second half of the file,
and running a virus scan on nc.exe again:

@ Morton Anti¥irus - Scan

Scan Complete more info

A a No viruses, spyware, or other risks were found.

Total files scanned 1]

¥iruses, spyware and other security risks
Detected o
Resolved a

Remaining a

We can continue this process of elimination by systematically modifying sections of code between
1000 and 77FF and testing the resulting file against Norton. If the file is still detected as the Netcat
“Hack Tool”, then we know that the section that was modified was not used as part of the signature; if
it is not detected, then we know that the modified section was used as part of the signature. Of course,

it is important to delete the modified file after each modification and make any new changes to a copy
of the original file (just as we did in the previous example), or else your results may be skewed and you
will have a non-functioning program to boot. For brevity, I will simply list the sections that I zeroed out
and the results that each modification had on the AV detection:

Action Taken Result
Zero out bytes 1000 through 29FE Not detected
Zero out bytes 1000 through 1CF7 Not detected
Zero out bytes 1734 through 1CF7 Detected
Zero out bytes 12AC through 1734 Detected
Zero out bytes 1000 through 111C Not detected
Zero out bytes 1000 through 10CC Not detected
Zero out byte 1130 Not detected
Zero out byte 1220 Detected
Zero out byte 120C Detected
Zero out byte 11F8 Not detected
Zero out byte 1210 Detected
Zero out byte 120F Detected
Zero out byte 1203 Detected
Zero out byte 1202 Detected
Zero out byte 11FE Not detected
Zero out byte 1201 Detected
Change byte 1200 from 0 to 1 Detected

Zero out byte 11FF

Not detected <---This is the end of the signature

Now that we've found the end of the signature, we need to identify where it begins:

Action Taken Result
Zero out byte 10B8 Not detected
Zero out byte 1040 Not detected
Zero out byte OFFF Detected

Zero out byte 1000

Not detected <---Beginning of the signature

As you can see, the code located between offsets 1000 and 11FF are used by Norton as a signature to
uniquely identify this program as Netcat. Modifying any given byte in between these addresses will

cause the signature in Norton's database to not match the code in the program. The problem is, if we
modify the wrong byte, or modify it the wrong way, the program won't work anymore. The easiest way
to identify where and how to change the program code is to open it up in a disassembler/debugger and
analyze the resulting assembly code; for this we will use OllyDbg. Open up the original copy of nc.exe
in Olly, and scroll up to the top of the code window. Notice that the code starts at offset 1000, and that
the hex dump of the code located there matches the hex dump at offset 1000 in Hex Workshop. This
confirms our previous assumption that this offset was the beginning of the actual program instructions:

HE4E1EEE (s 83EC 54 Sle ESF‘ 54 —
aaqaieaz | . 52 FLEH —
ga4aiaEg ||, SB10D eCBO48EE | MO EBK I:Ill.ll:IRD PTR DS: [<&KERMEL3Z2.GetCur] kernel32.GetCurrentProcess

aad4aiEEAi]l . 56 FLIEH _—
aad4aieEe | . 33F6 H“OR ESI ESI

BE4aieeni] . e FUSH ESI Foptions => @

Ba4a1E6E|] « 6H 81 PUSH 1 Inheritable = TRUE

aad4aiaiall . &R B2 FLEH = Acocess = 2

cEd4aialzil . SD4C24 &4 LER ECX,DWORD FTR S5:[ESP+&4]

BaqEieiel]l .« 51 FUEH ECX phTargst

aE4EiEl?] . CP4424 28 448 MOU DWORD PTR SS5:[ESP+281, 44

aad4aiaiF il . 897424 ZC MOL DWORD PTR S5: [ESF+2C],ESI

pEqEiezzl]l . 297424 24 MOW DWORD PTR SS5: [ESP+24]1,ES]

Ba4a1e27 |1 « 897424 36 HMOL DWORD PTR S55: CESP+38]1,ESI

aE4E1EzE] - 897424 44 MO OWORD PTR S5: [ESF+441,ESI

cEd4aiezFl . 297424 48 MOL DWORD PTR S5: [ESF+48],ES]

pEqEiezzl . 297424 20 MOW DWORD PTR SS5: [ESP+2C],ES]

Ba4a1a37 |1 « 897424 38 MOW OWORD PTR 55: CESP+321,ESI

aE4EiEsE|]l o 662897424 53 (MOU WORD PTR 53: [ESP+581, &1

cEd4@iadall . 297424 EC MO DWORD PTR S5: EESP+EC] ESI

apanin4s|| o 66:937424 SR |MOU WORD PTR 55: [ESP+EAT,5I
aEd4Eia43]l . CP4424 54 618 MOU DWORD PTR S3: [ESP+541, 161

aa4alasi|] .- 294424 &8 MO DWORD PTR 55: [ESP+&81,ERX

BE4E1EEE|] . BYFCE4 &4 MO OWORD PTR S55: [ESP+&41,E0I

BEa4a1a52l . FFD32 CALL EBEX CE=tCurrentProcess
AA4E1E5E|| . 58 FUUSH ERAX hTargetProcess
aa4alasci] . 57 FUSH EDI hSouroe

BE4E1EED|] .« FFO3 CHLL EEX CGetCurrentProcess
HE4E1EEF|] . E@ FUSH ERX hSouroceProcess

cEd4aioes|] . FFLE &2BB4008(CALL DWORD PTR DS: [{&KERMELZ2.DuplicatelLDuplicateHandle
GEqEites || . SBBD CBEF4G008(MOY ECH,DWORD PTR DS: [4G6EVCHE]
ga4aiacc)|]« 805424 B8 LER EDH,DOWORD PTR S5: CESP+3]

aad4aiaya)| .« 52 FUSH ED= FoProcessInfo

aad4ala7i|l .« 204424 1C LER ERX,DWORD PTR 55:[CESP+1C]

BE4E1E7s (] . 58 FUSH ER¥ pStartuplnfo

Ba4a1evsal]l .« 56 FUSH ESI CurrentDir =% MULL
aa4a1a77 || . 56 FUSH ESI pEnwironment =» HULL
aE4E1ETE] . E6 PUSH ESI CreationFlags => 0
aa4aiaw™a] . &R 81 FUSH 1 InheritHandles = TRUE
Ba4a1a67vE(] . 56 FUSH ESI pThreadSecurity =* MULL
aE4E1ETC|] . E6 PUSH ESI pProcessSecurity -> MULL
BE4a1e70] .« 51 FUSH EC¥ CommandLine => MULL
BE4a16vE(] .« 56 FUSH ESI Modu LeF i leMame =* MULL
BE4a167F || . FF1S &4B84668|CALL OWORD PTR DS: [{&KERMEL3Z2.CreateProm kCreateProcessh

aa4alass(| - 85CA TEST ERX,ERH

BE4E1887 (] 74 17 JE SHORT nc. @848168A8

Ga4ai1a29(] .« SBE424 Ac MOL ED:, DWORD PTR S5: CESP+C]

aE4ales0|] - BBF424 @8 MaL ESI..I:Ill.II:IRD PTR S55:[ESP+E1] r

If we scroll down the code a little bit, we find a string of INT3 instructions starting at offset 10D1:

BE4816A1 S& FLUIEH ESI

BE4E1EAZ = FUISH ESI

BE481E6A2 =] FIISH ESI

BE4816A04 S& FLUSH ESI

BE4816A5 &R FLSH B8R Aros = QE8E0EER
AE4E1EA7 (] « &2 SHERLEEEA FUSH nc. 88 Hro2 = BE4EEAGE
aE4E16AC|] « FFIS SCBA4068| CALL I:IU.IIZIRI:I PTR I:IS [<{&KERMELZ2.GetLastEr)| CG=tLastError
aE481682(] - 58 FUSH ERX Argl

aE4a16E2|] - ES 2ESF@@88 CALL nc.B8a4a3FEE nc. B84 E3FES
BE4E1EES 23C4 Bac ADD ESF, BC

BE4818EE|] - USH ER

HE4E1EEC | .« &8 ACEl40@0a PUSH nc.G@48E1AC ASCII "Failed to execute shell, error = Hs™
AE4E1EC1|]« ES SABFEEER CALL nc.B884828568

aE4a1acsa|l .« 83C4 1C AOO ESP, 1C

BE48168C3 SBCE HMOU ERX, EST

BE4816CE SE FOFP ESI

BE4E1ECC =] FOFP EEX

BE481EC0 23C4 &4 AODO ESP, B4

AE481606| L. C3 RETH

BE481E601 CC INT=

BE481602 CC INTS

BE4816803 [INTS

aE481604 cC INTS

BE48 1605 CC INT=

BE48 1805 CC INTS

BE4816807 [INTS

BE481602 cC INTS

BE481609 CC INT=

BE481E80R [INTS

BE48160E cC INTS

BE481E0C CC INT=

BE481E800 CC INTS

BE48180E [INTS

BE48180F cC INT=

BE4E1EEE| . B1EC SBE2EEO0E| SUE ESF, 228

BE4E1EES| o A1 SBEB4E8E8 MOU ERH, OWORD PTR DS: [48EE9E]

BE4816EE| . 5& FUSH ESI

BE4818EC| . 57 FUSH ECI

aE4E16ED| o SBBC24 SCBzom MOy EDI, DI.LIDRD FTR £5: EESP+28E]

BE4818F4| . SBIV HOU EDX, DWORD FTR OS:

AE4E1EFE| . &R @A PUSH lZl pReEmains = MULL
BE4E1EFE| . &R BA USH & FAvailable = MULL
BE4E1EFA| o 298424 SCEZEE MIZIU OWORD PTR S5: [ESP+22C1,ERX

aE4811681 SD04424 1@ LEA ERX, OWORD FTR S5: [EZF+18]

aE4a1185| . 5@ FUSH EA% pRead

BE4E11BE8| . &2 CORBEEER FUSH BCa2 EufSize = C8B (206,)
AE4E116E| . SD4C24 1C LEA ECx,OWORD PTR S5: [CESF+1C]

AE481 16F 51 FLISH ECH Euffer -

INT3 is a software interrupt that is used by debuggers to pause program execution. Since Netcat
obviously doesn't pause indefinitely during execution, these bytes are just filler and can be modified
without worrying about affecting the program execution flow. Additionally, they are within the
signature code which we need to modify. If you are using Olly, select one of these INT3 instructions (I
chose the first one at 10D1), and press the space bar. In the 'Assemble' text box that appears, enter 'nop
(no quotes) and click assemble:

Assemble at 00401001

Ir'u:up

X
[

¥ Fill with HOP's

Azzemble Cancel I

Now right click the code window, and select 'Copy to executable -> All modifications' (if prompted to
“Copy selection to executable?”, select 'Copy'). Right click the new window that appears and select
'Save file', then save the program as an executable file.

If you do not have OllyDbg, you can still make the above observations and modifications. The
hexadecimal equivalent of the INT3 instruction is CC and the hex equivalent of the NOP instruction is
90. Using Hex Workshop, you can go to offset 10D1 and see that the same string of INT3 instructions
(they are just displayed in their hexadecimal format of 'CC'); change one of those CC's to 90 and save
the changes.

The final test of course is to see if Netcat does indeed evade detection by Norton, and still functions
properly. First, let's scan the file with Norton:

@ Morton AntiVirus - Scan

Scan Complete mare info

O No viruses, spyware, or other risks were found.

Total files scanned a

Yiruses, spyware and other security risks

Detected a
Resolved u]
Remaining a

So far so good, now let's create one instance of Netcat to listen for connections and spawn a command
shell when one is received ('nc.exe -1 -p 8080 -e cmd.exe'), and a second instance of Netcat to connect
to the first ('nc.exe 127.0.0.1 8080"):

= =10l x|

Microzoft Windows XP [UVerszion 5.1.26801]
CC» Copyright 1?85-2881 Microsoft Corp.

C:wDocuments and Settings~Craigrcd Desktop
C:“Documents and Settings“Craig“DesktopX*nc -1 —-p 8080 —e cmd.exe

S WINDOWS system32 cmnd.exe - nc 127.0.0.1 8080

Microsoft Windows HP [Uersion 5.1.26HH1]
¢G> Copyright 1?85-20H1 Microsoft Corp.

C:~Documents and Settings“~Craigrcd Desktop

C:sDocuments and SettingssCraig“Desktop>nc 127.0.8.1 8A8H
Microsoft Windows HP [Uersion 5.1.26801

CC» Copyright 1785-20H1 Microsoft Corp.

C:wDocuments and Settings~Craig-Deszsktop>

Closing Thoughts
As this paper has demonstrated, it is quite simple for someone with even a rudimentary
understanding of assembly code to take a potentially malicious program and modify it to bypass anti
virus protection mechanisms, using nothing more than a hex editor. This is by no means a
groundbreaking conclusion, and has been going on for many years. However, it is my hope that this
paper has achieved at least one of three things:

1. Shown to the average user, even if they were not able to follow the paper in detail, that anti
virus is not an end-all security solution, as seems to be the common belief among both
consumers and vendors (or, at the very least, vendor marketing).

2. Provided, in detail, an example of how easy it is to invalidate an AV signature to those with
little or no experience with binary file modification.

3. Proven to all the script kiddies who keep whining about Symantec, that unfortunately, their
“133t h4x0r” days with Netcat are not over...

