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1. Introduction 
 

The goal of this paper is to describe Whitenoise protocol – designed to create, manage and 
transfer data over covert TCP/IP channels.  
 

Since Rowland’s work [1] many publications were written about hiding data in TCP/IP 
stack, but each work was focused only on straightforward embedding information in protocol 
headers and sending it from point A to point B.  Analysis of openly available publications and 
solutions dedicated to TCP/IP covert channels shows that all of them lack basic capabilities 
that allow one to use them for purposes other than proof-of-concept demonstration. Such 
capabilities include: error detection and correction, bidirectional communication and 
sessioning. So far only Nushu [2] by Joanna Rutkowska provided algorithms for safe delivery 
of data, unfortunately lacking all other mentioned capabilities. 
 

The goal of creating Whitenoise protocol was to provide flexible solution for creating 
fully reliable, bidirectional covert network channels. Whitenoise itself is not dependent on any 
method of hiding data in TCP/IP, current implementation can hide data in IP ID field and TCP 
ISN numbers (as described later) but can easily be extended to support any new technique. 
 
At current state Whitenoise and its implementation (as a Linux kernel module) supports: 
 

• Using multiple data hiding techniques at one time (i.e. data can be transferred using IP 
ID and TCP SEQ/ISN fields simultaneously). 

• Establishing and closing connection - with automatic transmission parameters 
negotiation. 

• Integrity checks, allowing distinguishing legitimate Whitenoise packets from random 
network data. 

• Fully bidirectional communication. 
• Parallel communication with many hosts. 
• Error detection and correction by data acknowledging and retransmission.  
• Fully functional API for user-space applications to manage connections and transfer 

data over covert channels. 
 
 

 
 



2. Overview of Whitenoise protocol 
 

2.1 Protocol packets 
 

Like any other network protocol, Whitenoise exchanges data using packets. Packets are 
fixed-size of 16 or 32 bits, which are default data sizes that can be safely embedded in TCP/IP 
packets using widely known methods of hiding data in network traffic. 
Every schema presented here is in Little-Endian format. Also bits are pictured from left 
(lowest) to right (highest). 
 
Whitenoise packets schemas are presented on Figures 1, 2, 3, 4 and 5: 
 
 

 
 

Fig.  1 – Whitenoise 16 bit control packet 
 

 

 
 
 

Fig.  2 - Whitenoise 16 bit data packet 
 
 
 



 

 
 
 

Fig.  3 - Whitenoise 32 bit control packet 
 

 
 
 

 
 
 

Fig.  4 - Whitenoise 32 bit data packet  
 
 

Each packet starts with packet marker field – used both to distinguish Whitenoise 
packets from random network data and to check it’s size (16 bit packets can be embedded in 
32 bit values) and type. Parity bit was introduced for better discrimination of data that look 
like Whitenoise packet but is not.  

Control packets are used to manage covert channel, while data packets transmit data 
exchanged between users. Sequence numbers in data packets are used by error detection and 
correction algorithms. 

 
As 32 bit data packets can transmit either 1, 2 or 3 bytes of data, there is special need for 
indication how many are actually being transmitted. This problem was solved by introducing 
2 types of 32 bit data packets. First, shown on Fig. 4, transmits only 2 bytes of data (3rd one is 



supposed to be random) while packet shown on Fig. 5 (differs by packet marker) transmits 3 
bytes of data. If there is need to transmit only one byte of data at once, 16 bit packets are used. 
 
 

 
 

Fig.  4 – Whitenoise 32 bit data packet 
 
 

2.2 Packet flags 
 

In control packet, flags are used to determine its function. Possible packet flag values with 
their brief descriptions are shown in Table 1. Detailed use of each of those flags is described 
later in this paper. 

 
Table 1 - Whitenoise control packet flags 

 

Flag value (hex) Flag ID Comment 

0x01 INIT Connection initiation 

0x02 INIT_ACK 
Acknowledge of connection 

initiation 

0x03 INIT_ACK2 
Second acknowledge of 

connection initiation 

0x04 NEW_BLOCK Opening new data block 

0x05 NEW_BLOCK_ACK 
ACK of opening new data 

block 

0x06  

DATA_ACK 
ACK of received data 

0x07 CLOSE Connection close 

0x08 CLOSE_ACK ACK of connection close 

 



 
 
 

2.3 Mechanisms of Whitenoise protocol 
 
 

2.3.1 Packet validation – parity bit 
 

To allow better distinguishing of  Whitenoise packets from pseudorandom values, parity 
bit was placed into packet marker field. The value of this bit is 1 if number of  “ones” in 
whole packet is odd and is 0 if this number is even. In case of packets smaller than transport 
size (ie. 16 bit packets embedded in 32 bit values – when  last 16 bits are random) parity bit is 
computed from whole transport data. When counting bits in packet, we assume that value of 
its parity bit is 0. 
 

This protection is not sufficient to prevent all random data to be interpreted as Whitenoise 
packets, but in such small packet sizes probably there is nothing more that can be 
implemented (MD5 could do ;). Nevertheless – due to use of some techniques (described 
later) in protocol implementation - bad interpretation of received data very rarely mean that 
transmission will be damaged. 
 
 

2.3.2 Establishing connection 
 

To establish a connection between two hosts, 3 packets need to be exchanged between 
them. It’s quite similar to the TCP handshake. First packet is sent by station performing active 
initiation (client) – its control packet with INIT flag. In response, station performing passive 
initiation (server) sends INIT_ACK packet. Then, client station responses to server with 
INIT_ACK2 packet and connection is established.  
 

During connection handshake, the most important issue is to exchange information about 
communication channels supported by both sides. The basic principle of Whitenoise protocol 
is that it should be independent from particular methods of embedding hidden data in TCP/IP 
headers. Since each side of the transmission can support (or want to use) different sets of 
those methods, there is need to negotiate them. This is done by using payload of INIT and 
INIT_ACK packets where each side puts information about it’s capabilities. This data is 
written on 8 bits – each bit of payload points to different data embedding method. Enabled (1) 
bit indicates that particular method is supported, disabled means that it’s not. Not all bits in 
payload are used and those should have random values. Figure 5 presents structure of INIT 
and INIT_ACK packets payload. 
 
 
 
 
 
 
 



 
 

 
Fig.  5 Structure of INIT/INIT_ACK packets payload 

 
 
 

As you can see, there is plenty of free space in the payload – up to 8 data hiding methods 
can be supported in Whitenoise or in the future some bits can be used to negotiate different  
connection parameters. 
 
When establishing connection, each part gets list of mechanisms supported by the other side – 
this list is compared with its internal list – methods present in both list are used to carry out 
communication. At the point of sending INIT packet, client knows nothing about mechanisms 
supported by the server – and therefore is supposed do sent this packet using each known 
method, until receiving response. 
 
Diagram showing connection handshake and negotiation of parameters is shown on Fig. 6. 
 
 

 
 

Fig.  6 Connection handshake 
 
 



 
 
 
 

2.3.3 Data transmission 
 

Having in mind, that we can store sequence number only on 4 bits, we have to group data 
into 16 bytes blocks. Sequencing each byte of transmitted data gives possibility to detect lost 
packets and retransmit them again. Each side of communication maintains two independent 
streams – one for sending data, second for receiving – providing bidirectional transmission.  

 
Transmission begins when either part has data to send and indicates it by sending 

NEW_BLOCK packet. This opens new block of data and resets the sequence counter. It must 
be acknowledged by NEW_BLOCK_ACK packet. After having confirmation of successfully 
opened block, particular side sends data, assigning each byte a sequence number. 

 
First 4 bits of NEW_BLOCK packet contain last number of byte to be sent in actually 

opened block (starting from 0), so for example setting this value for 15 mean that 16 bytes of 
data will be sent. 

 
Each byte of data must be acknowledged by the receiving part. This is done using 

DATA_ACK packet. Payload of this packet contains sequence number of actually 
acknowledged byte. As sequence number is stored on 4 bits and packet payload is 8, we have 
4 spare bits to use. This can be used to acknowledge many bytes of data at one time - if 
second value is different than 0, used with first one they indicate range of values. For example 
if we want to acknowledge bytes 3,4,5,6,7,8 we place numbers 3 and 8 into the DATA_ACK 
packet payload. Fig. 7 shows structure of this payload. 
 
 

 
 

Fig.  7 DATA_ACK packet payload 
 
 
 

During transmission, data packets are sent as fast as possible – without waiting for ACK 
each time. When all bytes in currently opened block are sent, sending part waits for given 
period of time for acknowledgment of data (of course ACK packets can arrive also during 
transmission). When timeout occurs (more about timeouts is written later) and not all bytes 
are acknowledged, those bytes are sent again and again until they’re ACK’ed. New data block 
can be opened only if all bytes from former one were successfully transmitted. Full block 
transmission procedure is shown on Fig. 8. 
 



 
 
 
 

Fig.  8 Transmission of data in Whitenoise 
 
 

2.3.4 Closing connection 
 

Connection is explicitly closed by both sides of communication when neither of them has 
data to send. Similar as in the TCP protocol, connection can be closed only by one side of 
transmission – communicating that it has nothing to send but can receive data.  
 
Procedure of closing connection is the same for each side and requires exchange of 2 packets 
– CLOSE and CLOSE_ACK. Transmission side which wants to close its part of connection 
sends CLOSE packet with 8 bit random number in payload. Receiver of this packet has to 
acknowledge it by sending CLOSE_ACK with the same number in its payload. This is shown 
on Fig. 9. 
 
 
 



 
 
 
 

Fig. 9 – Closing Whitenoise connection 
 
 
 

2.4 Error detection and correction mechanisms 
 
During any operation of the Whitenoise protocol there can be situation where particular 
packet is lost during transmission. To prevent any damage and unspecified behavior of the 
protocol, error detection and correction mechanisms were implemented. Such mechanisms are 
very similar to those used in TCP/IP protocol and utilize state machine to check actual 
communication stage and possible reactions.  
 
At the beginning, protocol is in the IDLE state. From this point user can change it either to 
LISTEN (when station should act as server and wait for connections) or INIT_SENT when 
connection should originate from the station (since setting this state Whitenoise tries to 
initiate connection by sending INIT packets). 
 
After setting initial state, any sent or received Whitenoise packet changes internal protocol 
state as shown on Fig. 10. After each packet is sent, timeout count is set. As  time measuring 
is pointless (TCP/IP stack can exchange packets at any rate – even few per hour, and 
Whitenoise can’t do much about it) timeout occurs when desired response is not present in 



particular amount of received TCP/IP packets. After timeout – current protocol state allows to 
check which packet was lost and it’s being sent again. Neither of the communication parts is 
able to check whether sent packet was lost or response to it, so part which didn’t get response 
replays the request and the other part must response – even if this response had been already 
sent before. Every packet which doesn’t  match particular protocol state must be discarded. 
 
Described mechanisms apply to packets which manage covert channels. After connection is 
established and protocol is in state ESTABLISHED_ACTIVE or ESTABLISHED_PASSIVE, 
exchange of user data takes place. Each independent data receiving/sending mechanism has 
its internal state register (which changes the way shown on Fig. 10.) and timeout counters. 
Detection and correction of lost packets occurs after all packets in current transmission block 
have been sent. After sending last packet, timeout counter is set – if all data packets are 
acknowledged before timeout, transmission block is considered to have been sent correctly. 
Otherwise – lost data packets are transmitted again until success. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 10. Protocol states and transitions between them 



 

2.5 Protocol security 
 
Current implementation of Whitenoise can embed its packets into either IP ID 16 bit fields or 
32 bit TCP ISN fields (or use both fields simultaneously). While embedding packets into IP 
ID can be easily detected (value of this field usually is not random), it can be really hard to 
spot Whitenoise in TCP ISN fields. Usually, detecting covert channels in TCP involves 
checking randomness of ISN numbers – repeated or close to each other values may indicate 
that someone tampered the protocol (see http://lcamtuf.coredump.cx/newtcp/ for more info 
about evaluating randomness of TCP ISN numbers).  
 
As Whitenoise packets are very repetitive data structures, protocol’s implementation uses 
some techniques to make covert communication harder to spot. One of the most important 
features is the ability to place original ISN numbers when there is no Whitenoise packet to 
send (instead of some kind of  predefined NULL packet). As Whitenoise packets use parity 
bit for simple integrity checking, then such random value won’t be interpreted as protocol’s 
packet and cause some unpredictable change to the connection. If original ISN can be 
interpreted as Whitenoise packet, it’s lowest bit is simply changed – it’s enough as 
countermeasure. 
 
Another feature involves situation when some fields in Whitenoise packets are not used in 
particular case -  then those values are set to random value, adding some additional small 
entropy. Below is list of fields that can be set to random values: 
 

• Reserved bits of  control packets with FLAG_INIT or FLAG_INIT_ACK flag 
• Payload (8 bits) of FLAG_INIT_ACK2 control packet 
• Payload (8 bits) of CLOSE control packet 
• Last byte of 32 bit data packet with 010 marker (carrying only 2 bytes of transmission) 
• Last 2 bytes of 32 bit value carrying 16 bit packet. 

 
Last security feature that can be used is cryptography. At the present Whitenoise 
implementation uses dumb XOR mode with shared key – this is mainly to prevent detection 
of packets by marker, flag and parity bit. For packets to appear as true random ISN values the 
encryption key must be different for each one. This can be accomplished by using key 
initialization vector based on TCP/IP constant packet values as for example source/destination 
ports. 
 

3. Implementation 
 
The implementation code (for Linux 2.6.x) can be found  at 
http://www.michalrogala.com/security/whitenoise/whitenoise-release.zip 
 
After successful loading of the kernel module,  /proc/whitenoise file should be visible. User-
space applications use ioctl calls on this file to establish connection and read/write functions 
to transfer data through covert channel. Up to 16 simultaneous connections with different 
hosts can be established (this can be changed in whitenoise.h file).You can use two 
applications: apps/white_client.c and apps/white_server.c to transfer files between hosts – by 
default IP ID method is used – this can be changed in the source code of both files. More 



information about implementation and full Whitenoise API can be found in my thesis: 
http://www.michalrogala.com/security/whitenoise/ukryte_kanaly_tcp_ip.pdf 
 
(it’s in Polish – source code speaks for itself, in any other case – use google translate ;) 
 
 
 
ATTENTION!!!!!   When replacing TCP ISN numbers, internal kernel structures are 
modified so TCP/IP driver assumes that these are its valid numbers. So there is no need to 
maintain additional “proxy” kernel service that translates “fake” ISN into valid ISN and all 
established TCP connections work correctly after unloading the Whitenoise kernel module. 
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