Covert TCP/IP network channels using Whitenoise prtocol

Michal Rogala

http://www.michalrogala.com/security/whitenoise
michal.rogala@gmail.com

1. Introduction

The goal of this paper is to describe Whitenoisgqmol — designed to create, manage and
transfer data over covert TCP/IP channels.

Since Rowland’s work [1] many publications were ttem about hiding data in TCP/IP
stack, but each work was focused only on straigivéied embedding information in protocol
headers and sending it from point A to point B.alAsis of openly available publications and
solutions dedicated to TCP/IP covert channels shbasall of them lack basic capabilities
that allow one to use them for purposes other thraof-of-concept demonstration. Such
capabilities include: error detection and corrattididirectional communication and
sessioning. So far only Nushu [2] by Joanna Rutkewsovided algorithms for safe delivery
of data, unfortunately lacking all other mentiormagbabilities.

The goal of creating Whitenoise protocol was tovjate flexible solution for creating
fully reliable, bidirectional covert network charsé/Nhitenoise itself is not dependent on any
method of hiding data in TCP/IP, current implemé&atacan hide data in IP ID field and TCP
ISN numbers (as described later) but can easigxbended to support any new technique.

At current state Whitenoise and its implementatesa Linux kernel module) supports:

» Using multiple data hiding techniques at one tiime (lata can be transferred using IP
ID and TCP SEQ/ISN fields simultaneously).

» Establishing and closing connection - with automatiansmission parameters
negotiation.

* Integrity checks, allowing distinguishing legitinea¥Vhitenoise packets from random
network data.

* Fully bidirectional communication.

» Parallel communication with many hosts.

» Error detection and correction by data acknowleglgind retransmission.

* Fully functional API for user-space applicationsn@nage connections and transfer
data over covert channels.

2. Overview of Whitenoise protocol

2.1 Protocol packets

Like any other network protocol, Whitenoise exchesglata using packets. Packets are
fixed-size of 16 or 32 bits, which are default dsitees that can be safely embedded in TCP/IP
packets using widely known methods of hiding dataatwork traffic.

Every schema presented here is in Little-Endiamé&dr Also bits are pictured from left
(lowest) to right (highest).

Whitenoise packets schemas are presented on Fibu2e8, 4 and 5:

Packet flag FPacket payload

4 bits 4 bits 8 bits

101X

X is packet's parity
bit

Fig. 1 — Whitenoise 16 bit control packet

Seqguence
S brle Packet payload

4 bits 4 bits 8 bits

100X

X is packet's parity
bit

Fig. 2 - Whitenoise 16 bit data packet

Packet flag Packet payload FPacket payload Packet payload

4 bits 4 bits byte 1 byte 2 byte 3
001X
X is packet's parity
bit
Fig. 3 - Whitenoise 32 bit control packet
Saquence Packet payload Packet payload et payledd
number

4 bits 4 bits byte 1 byte 2 Aﬁ\

010X

X is packet's parity
bit

Fig. 4 - Whitenoise 32 bit data packet

Each packet starts witpacket marker field — used both to distinguish Whitenoise
packets from random network data and to checlksize (16 bit packets can be embedded in
32 bit values) and typéarity bit was introduced for better discrimination of datattlook
like Whitenoise packet but is not.

Control packets are used to manage covert channel, wtidea packetstransmit data
exchanged between users. Sequence numbers inatkiatp are used by error detection and
correction algorithms.

As 32 bit data packets can transmit either 1, 3 twytes of data, there is special need for
indication how many are actually being transmitfEais problem was solved by introducing
2 types of 32 bit data packets. First, shown on #idgransmits only 2 bytes of data (3rd one is

supposed to be random) while packet shown on F{differs by packet marker) transmits 3
bytes of data. If there is need to transmit onlg bgite of data at once, 16 bit packets are used.

Sequence
ipin Packet payload Packet payload Packet payload
4 hits 4 hits byte 1 byte 2 byte 3

GO0X

X is packet's patity
bit

Fig. 4 — Whitenoise 32 bit data packet

2.2 Packet flags

In control packet, flags are used to determin&uitstion. Possible packet flag values with
their brief descriptions are shown in Table 1. Dethuse of each of those flags is described
later in this paper.

Table 1 - Whitenoise control packet flags

Flag value (hex) Flag 1D Comment
0x01 INIT Connection initiation
Acknowledge of connection

0x02 INIT_ACK initiation

0x03 INIT_ACK2 Second acknowledge of
- connection initiation

0x04 NEW_BLOCK Opening new data block

OXO05 NEW BLOCK ACK ACK of opening new data

- - block

0x06 DATA_ACK ACK of received data

0x07 CLOSE Connection close

0x08 CLOSE_ACK ACK of connection close

2.3 Mechanisms of Whitenoise protocol

2.3.1 Packet validation — parity bit

To allow better distinguishing of Whitenoise pask&om pseudorandom values, parity
bit was placed into packet marker field. The vabdighis bit is 1 if number of “ones” in
whole packet is odd and is O if this number is evercase of packets smaller than transport
size (ie. 16 bit packets embedded in 32 bit valuedien last 16 bits are random) parity bit is
computed from whole transport data. When countitg ibh packet, we assume that value of
its parity bit is O.

This protection is not sufficient to prevent alhdmm data to be interpreted as Whitenoise
packets, but in such small packet sizes probabéreths nothing more that can be
implemented (MD5 could do ;). Nevertheless — duaide of some techniques (described
later) in protocol implementation - bad interpretatof received data very rarely mean that
transmission will be damaged.

2.3.2 Establishing connection

To establish a connection between two hosts, 3giaakeed to be exchanged between
them. It’s quite similar to the TCP handshake.tfpecket is sent by station performing active
initiation (client) — its control packet with INITlag. In response, station performing passive
initiation (server) sends INIT_ACK packet. Thenient station responses to server with
INIT_ACK2 packet and connection is established.

During connection handshake, the most importanieiss to exchange information about
communication channels supported by both sides.bBlse principle of Whitenoise protocol
is that it should be independent from particulathods of embedding hidden data in TCP/IP
headers. Since each side of the transmission ggpodu(or want to use) different sets of
those methods, there is need to negotiate thens. i$hdone by using payload of INIT and
INIT_ACK packets where each side puts informatidiowd it's capabilities. This data is
written on 8 bits — each bit of payload points iffedent data embedding method. Enabled (1)
bit indicates that particular method is supportidabled means that it's not. Not all bits in
payload are used and those should have randomsvdtigure 5 presents structure of INIT
and INIT_ACK packets payload.

Bit O

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

IP 10

TCP ISN

resened

resened

resened

resemned

resened

resened

Fig. 5 Structure of INIT/INIT_ACK packets payload

As you can see, there is plenty of free spaceamptyload — up to 8 data hiding methods
can be supported in Whitenoise or in the futureesdaits can be used to negotiate different

connection parameters.

When establishing connection, each part getsflistaxhanisms supported by the other side —
this list is compared with its internal list — metls present in both list are used to carry out
communication. At the point of sending INIT packstent knows nothing about mechanisms
supported by the server — and therefore is suppdeesknt this packet using each known
method, until receiving response.

Diagram showing connection handshake and negatiatiparameters is shown on Fig. 6.

AND

Megotiated channel is IP ID

Fig. 6 Connection handshake

2.3.3 Data transmission

Having in mind, that we can store sequence numibigran 4 bits, we have to group data
into 16 bytes blocks. Sequencing each byte of inatesd data gives possibility to detect lost
packets and retransmit them again. Each side ofreoritation maintains two independent
streams — one for sending data, second for regetviproviding bidirectional transmission.

Transmission begins when either part has data mol sad indicates it by sending
NEW_BLOCK packet. This opens new block of data sests the sequence counter. It must
be acknowledged by NEW_BLOCK_ACK packet. After hmyvconfirmation of successfully
opened block, particular side sends data, assigranh byte a sequence number.

First 4 bits of NEW_BLOCK packet contain last numio¢ byte to be sent in actually
opened block (starting from 0), so for exampleisgtthis value for 15 mean that 16 bytes of
data will be sent.

Each byte of data must be acknowledged by the viecgipart. This is done using
DATA ACK packet. Payload of this packet containsquence number of actually
acknowledged byte. As sequence number is storedbs and packet payload is 8, we have
4 spare bits to use. This can be used to acknoeletgny bytes of data at one time - if
second value is different than 0, used with first they indicate range of values. For example
if we want to acknowledge bytes 3,4,5,6,7,8 we @lagmbers 3 and 8 into the DATA_ACK
packet payload. Fig. 7 shows structure of this qay!

Bit O Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit6 Bit 7

first sequence number second sequence number

Fig. 7 DATA_ACK packet payload

During transmission, data packets are sent asafappssible — without waiting for ACK
each time. When all bytes in currently opened black sent, sending part waits for given
period of time for acknowledgment of data (of ceusCK packets can arrive also during
transmission). When timeout occurs (more aboutdineis written later) and not all bytes
are acknowledged, those bytes are sent again amal @gtil they're ACK’ed. New data block
can be opened only if all bytes from former one eveuccessfully transmitted. Full block
transmission procedure is shown on Fig. 8.

I

NEW_BLOCK_ACK
_ ‘packet

Lra—

data packet - #2 —r)

DATA_ACK packet - #1

A— DATA_ACK packet - #2

DATA_ACK packet - #3

Fig. 8 Transmission of data in Whitenoise

2.3.4 Closing connection

Connection is explicitly closed by both sides ofmrounication when neither of them has
data to send. Similar as in the TCP protocol, cotime can be closed only by one side of
transmission — communicating that it has nothingetiod but can receive data.

Procedure of closing connection is the same foh s&e and requires exchange of 2 packets
— CLOSE and CLOSE_ACK. Transmission side which wdatclose its part of connection
sends CLOSE packet with 8 bit random number inqed/l Receiver of this packet has to

acknowledge it by sending CLOSE_ACK with the sammber in its payload. This is shown
on Fig. 9.

Station 1 -active
close
random
[J e 11 {o|1]olo|1]o|1 ﬁ [J

M . -
CLOSE_ACK

Station 2 -
active close

ol1|1]o]1]|1]|1]0 Frbm.G [

bits

CLOSE_ACK

Fig. 9 — Closing Whitenoise connection

2.4 Error detection and correction mechanisms

During any operation of the Whitenoise protocolréghean be situation where particular

packet is lost during transmission. To prevent dagnage and unspecified behavior of the
protocol, error detection and correction mechaniame implemented. Such mechanisms are
very similar to those used in TCP/IP protocol arilize state machine to check actual

communication stage and possible reactions.

At the beginning, protocol is in the IDLE stateoffr this point user can change it either to
LISTEN (when station should act as server and waaitonnections) or INIT_SENT when
connection should originate from the station (sirsetting this state Whitenoise tries to
initiate connection by sending INIT packets).

After setting initial state, any sent or receivedhit¥noise packet changes internal protocol
state as shown on Fig. 10. After each packet i§ sareout count is set. As time measuring
is pointless (TCP/IP stack can exchange packetangtrate — even few per hour, and
Whitenoise can’t do much about it) timeout occutsew desired response is not present in

particular amount of received TCP/IP packets. Afiteeout — current protocol state allows to
check which packet was lost and it's being sentraddeither of the communication parts is
able to check whether sent packet was lost or respto it, so part which didn’t get response
replays the request and the other part must respemsen if this response had been already
sent before. Every packet which doesn’'t matchiqadar protocol state must be discarded.

Described mechanisms apply to packets which maoagert channels. After connection is
established and protocol is in state ESTABLISHED TAME or ESTABLISHED PASSIVE,
exchange of user data takes place. Each indepedd&nteceiving/sending mechanism has
its internal state register (which changes the slaywn on Fig. 10.) and timeout counters.
Detection and correction of lost packets occursradtl packets in current transmission block
have been sent. After sending last packet, timeounter is set — if all data packets are
acknowledged before timeout, transmission blockoissidered to have been sent correctly.
Otherwise — lost data packets are transmitted ag#ihsuccess.

IDLE

Y
LISTEN
Y INIT
INIT_SENT e
INIT_ACK h 4
- INIT_ACK_SENT
L4 INIT_ACKZ2
ESTABLISHED ACTIVE =
h 4
ESTABLISHED FASSIVE
data transmission

Protocol automatically changes state to
CLOSED after finishing data
transmission

CLOSED

Fig 10. Protocol states and transitions betweemthe

2.5 Protocol security

Current implementation of Whitenoise can embegatskets into either IP ID 16 bit fields or
32 bit TCP ISN fields (or use both fields simultansly). While embedding packets into IP
ID can be easily detected (value of this field liyua not random), it can be really hard to
spot Whitenoise in TCP ISN fields. Usually, detegticovert channels in TCP involves
checking randomness of ISN numbers — repeatedose ¢b each other values may indicate
that someone tampered the protocol (stp://Icamtuf.coredump.cx/newtcfdr more info
about evaluating randomness of TCP ISN numbers).

As Whitenoise packets are very repetitive datacsires, protocol’s implementation uses
some techniques to make covert communication haaodspot. One of the most important
features is the ability to place original ISN numgowhen there is no Whitenoise packet to
send (instead of some kind of predefined NULL gackAs Whitenoise packets use parity
bit for simple integrity checking, then such randeaiue won't be interpreted as protocol’s
packet and cause some unpredictable change toateection. If original ISN can be
interpreted as Whitenoise packet, it's lowest lut simply changed - it's enough as
countermeasure.

Another feature involves situation when some figldsVhitenoise packets are not used in
particular case - then those values are set tdoranvalue, adding some additional small
entropy. Below is list of fields that can be setandom values:

* Reserved bits of control packets with FLAG_INITRtAG_INIT_ACK flag

» Payload (8 bits) of FLAG_INIT_ACK2 control packet

» Payload (8 bits) of CLOSE control packet

» Last byte of 32 bit data packet with 010 markerr§gag only 2 bytes of transmission)
» Last 2 bytes of 32 bit value carrying 16 bit packet

Last security feature that can be used is crypfgra At the present Whitenoise
implementation uses dumb XOR mode with shared k#ys-is mainly to prevent detection
of packets by marker, flag and parity bit. For pgtsko appear as true random ISN values the
encryption key must be different for each one. Téa®1 be accomplished by using key
initialization vector based on TCP/IP constant paskalues as for example source/destination
ports.

3. Implementation

The implementation code (for Linux 2.6.x) can berfo at
http://www.michalrogala.com/security/whitenoise/whienoise-release.zip

After successful loading of the kernel modulp;oc/whitenoise file should be visible. User-
space applications use ioctl calls on this filestablish connection and read/write functions
to transfer data through covert channel. Up toidubaneous connections with different
hosts can be established (this can be changediianeise.h file).You can use two
applications: apps/white_client.c and apps/whitevesec to transfer files between hosts — by
default IP ID method is used — this can be chamgéide source code of both files. More

information about implementation and full Whiter@&P1 can be found in my thesis:
http://www.michalrogala.com/security/whitenoise/ier kanaly tcp ip.pdf

(it's in Polish — source code speaks for itselfaimy other case — use google translate ;)

ATTENTION!! When replacing TCP ISN numbers, internal kertreicsures are
modified so TCP/IP driver assumes that these anealid numbers. So there is no need to
maintain additional “proxy” kernel service thatristates “fake” ISN into valid ISN and all
established TCP connections work correctly aftéoasting the Whitenoise kernel module.

Bibliography:

[1] Rowland C.H, Covert channels in the TCP/IP protocol suite, FirstMonday - Peer
Reviewed Journal on the Internet,
http://www.firstmonday.org/issues/issue2_5/rowland/

[2] Rutkowska J., Passive Covert Channels Implementation in Linux Kernel, 2004,
http://invisiblethings.org/papers/passive-covert-channels-linux.pdf

