Passive System Fingerprinting using Network Client
Applications
Jose Nazario

crimelabs research
jose@Qcrimelabs.net

November 27, 2000

Contents

1

2

Abstract

Introduction

2.1 Current Methods and Research
2.1.1 Active Scanning
2.1.2 Passive Scanning

2.2 An Alternative Approach

Mail Clients

3.1 An Example: Pine
3.2 Other Mail Clients
3.3 Finding such information

Usenet Clients

Using Web Traffic

5.1 Web Server Fingerprinting

Telnet Clients

6.1 Fingerprinting Telnet Clients
6.2 Fingerprinting Telnet Servers

Conclusions
7.1 Recommendations for Mitigating the Risks

Acknowledgments

10

13
15

15
16
18

18
19

20

1 Abstract

Passive target fingerprinting involves the utilization of network traffic be-
tween two hosts by a third system to identify the types of systems being
used. Because no data is sent to either system by the monitoring party,
detection approaches the impossible. Methods which rely solely on the IP
options present in normal traffic are limited in the accuracy about the tar-
gets. Further inspection is also needed to determine avenues of vulnerability,
as well. We describe a method to rapidly identify target operating systems
and version, as well as vectors of attack, based on data sent by client ap-
plications. While simplistic, it is robust. The accuracy of this method is
also quite high in most cases. Four methods of fingerprinting a system are
presented, with sample data provided.

2 Introduction

Passive OS mapping has become a new area of research in both white hat
and black hat arenas. For the white hat, it becomes a new method to map
their network and monitor traffic for security. For example, a new and
possibly subversive host can be identified quickly, often with great accuracy.
For the black hat, this method provides a nearly undetectable method to
map a network, finding vulnerable hosts.

To be sure, passive mapping can be a time consuming process. Even
with automated tools like Siphon! a sufficient quantity packets to arrive to
build up a statistically significant reading of the subjects’ operating systems.
Compare this to active OS fingerprinting methods, using tools like nmap?
and queso®, which can operate in under a minute usually, and only more
determined attackers, or curious types, will be attracted to this method.

2.1 Current Methods and Research

Two major methods of operating system fingerprinting exist in varying de-
grees of use, active and passive. Active scanning involves the use of IP
packets sent to the host and the scanner then monitoring the replies to
guess the operating systems. Passive scanning, in contrast, allows the scan-
ning party to obtain information in the absence of any packets sent from

! Available from http://www.subterrain.net/projects/siphon/ .
2 Available from http://www.insecure.org/nmap/ .
3 Available from http:/ /www.apostols.org/.

the listening system to the targets. Each method has their advantages, and
their limitations.

2.1.1 Active Scanning

By now nearly everyone is familiar with active scanning methods. The
premier port scanning tool, nmap, has been equipped for some time now
with accurate active scanning measures. This code is based off of an earlier
tool, queso, from the group The Apostols. Nmap’s author, Fyodor, has
written an excellent paper on this topic in the e-zine Phrack (issue 54 article
9)%. Ofir Arkin has been using ICMP bit handling to differentiate between
certain types of operating systems®. Because ICMP usually slips below the
threshold of analysis, and most of the ICMP messages used are legitimate,
the detection of this scanning can be more difficult than, say, queso or nmap
fingerprinting.

The problems with active scanning are mainly twofold: first, we can
readily firewall the packets used to fingerprint our system, obfuscating the
information; secondly, we can detect it quite easily. Because of this, it is
less attractive for a truly stealthy adversary.

2.1.2 Passive Scanning

In a message dated June 30, 1999, Photon posted to the nmap-hackers list
with some ideas of passive operating system fingerprinting®. He set up a
webpage with some of his thoughts, which has since been taken down. In
short, by using default IP packet construction behavior, including default
TTL values, the presence of the DF bit, and the like, one can gain a confident
level of the system’s OS.

These ideas were quickly picked up by others and several lines of research
have been active since then. Lance Spitzer’s paper’ dated May 24, 2000,
on passive fingerprinting included many of the data needed to build such
a tool. In fact, two quickly appeared, one from Craig Smith®, and another
tool called pOf from Michael Zalewski®.

4This is definitely a must read to understanding how active, and hence passive, scanning
occurs. Obtain this article from http://phrack.infonexus.org/ .

5These papers can be found online at http://www.sys-security.com/ .

5This note is available from the MARC archives of the nmap-hackers list, at
http://marc.theaimsgroup.com/ .

"Please see http://www.enteract.com/~Ispitz/pubs.html for this paper.

8This tool can be found at http://www.enteract.com/~Ispitz/passfing.tar.gz .

9p0f can be found at http://lcamtuf.hack.pl/pOf.tgz .

One very interesting tool that is under active development, extending
the earlier work, is Siphon. By utilizing not only IP stack behavior, but also
routing information and spanning tree updates, a complete network map
can be built over time. Passive port scans also take place, adding to the
data. This tool promises to be truly useful for the white hat, and a patient
black hat.

One limitation of these methods, though, is that they only provide a
measure of the operating system. Vulnerabilities may or may not exist, and
further investigations must be undertaken to evaluate if this is the case.
While suitable for the white hat for most purposes (like accounting), this
is not suitable to a would-be attacker. Simply put, more information is
needed.

2.2 An Alternative Approach

An alternative method to merely fingerprinting the operating system is to
perform an identification by using client applications. Quite a number of
network clients send revealing information about their host systems, either
directly or indirectly. We use application level information to map back to
the operating system, either directly or indirectly.

One very large advantage to the method described here is that in some
situations, much more accurate information can be gained about the client.
Because of stack similarities, most Windows systems, including 95, 98 and
NT 4.0, look too similar to differentiate. The client application, however, is
willing to reveal this information.

This provides not only a measure of the target’s likely operating system,
but also a likely vector for entrance. Most of these client applications have
numerous security holes, to which one can point malicious data. In some
cases, this can provide the key information needed to begin infiltrating a
network, and one can proceed more rapidly. In most cases it provides a
starting point for the analysis of vulnerabilities of a network.

One major limitation of this method, however, comes when a system
is emulating another to provide access to client software. This includes
OpenBSD using the BSDI version of the Netscape browser, and both Solaris
and SCO’s support for Linux binaries. As such, under these circumstances,
the data should be taken with some caution and evaluated in the presence
of other information. This limitation, however, is similar to the limitation
that IP stack tweaking can place on passive fingerprinting at the IP level,
or the effect on active scanning from these adjustments or firewalling.

Four different type of network clients are discussed here which provide

suitable fingerprinting information. Email clients, which leave telltale in-
formation in most cases on their messages; Usenet clients, which, like mail
applications, litter their posts with client system information; web browsers,
which send client information with each request; and even the ubiquitous
telnet client, which sends such information more quietly, but can just as
effectively fingerprint an operating system.

Knowing this, one now only needs to harvest the network for this in-
formation and map it to source addresses. Various tools, including sniffers,
both generic and specialized, and even web searches will yield this informa-
tion. A rapid analysis of systems can be quickly performed. This works
quite well for the white hat and the black hat hacker, as well.

In this paper is described a low tech approach to fingerprinting systems
for both their operating system and a likely route to gaining entry. By
using application level data sent from them over the network, we can quickly
gather accurate data about a system. In some cases, one doesn’t even have
to be on the same network as the targets, they can gather the information
from afar, compile the information and use it at their discretion at a later
date.

3 Mail Clients

One of the largest type of traffic the network sees is electronic mail. Nearly
everyone who uses the Internet on a regular basis uses email in those trans-
action sessions. They not only receive mail, but also send a good amount of
mail, too. Because it is ubiquitous, it makes an especially attractive avenue
for system fingerprinting and ultimately penetration.

Within the headers of nearly every mail message is some form of system
identification. Either through the use of crafted message identification tags,
as used by Eudora and Pine, or by explicit header information, such as
headers generated by OutLook clients or CDE mail clients.

The scope of this method, both in terms of information gained and the
potential impact, should not be underestimated. If anything, viruses that
spread by email, including ones that are used to steal passwords from sys-
tems, should illustrate the effectiveness of this method.

3.1 An Example: Pine

Pine itself is one of the worst offenders of any application for the system it
is on. It gives away a whole host of information useful to an attacker in one

fell swoop. To wit!?:
Message-ID: <Pine.LNX.4.10.9907191137080.14866-100000@somehost .example.ca>

It is clear it’s Pine, we know the version (4.10), and we know the system
type. Too much about it, in fact. This is a list of the main ports of Pine as
of 4.30:

a4l IBM RS/6000 running AIX 4.1 or 4.2

a32 IBM RS/6000 running AIX 3.2 or earlier

aix IBM S/370 AIX

aos A0S for IBM RT (untested)

mnt FreeMint

aux Macintosh A/UX

bsd BSD 4.3

bs3 BSDi BSD/386 Version 3 and Version 4

bs2 BSDi BSD/386 Version 2

bsi BSDi BSD/386 Version 1

dpx Bull DPX/2 B.0.S.

cvx Convex

d54 Data General DG/UX 5.4

d41 Data General DG/UX 4.11 or earlier

d-g Data General DG/UX (even earlier)

ult DECstation Ultrix 4.1 or 4.2

gul DECstation Ultrix using gcc compiler

vul VAX Ultrix

os4 Digital Unix v4.0

osf DEC OSF/1 v2.0 and Digital Unix (0SF/1) 3.n
sos DEC 0SF/1 v2.0 with SecureWare

epx EP/IX System V

bsf FreeBSD

gen Generic port

hpx Hewlett Packard HP-UX 10.x

hxd Hewlett Packard HP-UX 10.x with DCE security
ghp Hewlett Packard HP-UX 10.x using gcc compiler
hpp Hewlett Packard HP-UX 8.x and 9.x

shp Hewlett Packard HP-UX 8.x and 9.x with Trusted Computer Base
gh9 Hewlett Packard HP-UX 8.x and 9.x using gcc compiler

107 have tried to sanitize all network addresses or hostnames. If T missed a few, it was
inadvertant, and I apologize. You should be running more secure software, anyhow.

isc
1nx
1np
slx
sl4
s15
lyn
mct
osx
neb
nxt
bso
scb
sco
ptil
ptx
dyn
sgi
sgb
sob
gsb
so4
gs4d
sun
ssn
gsu
s40
svéd
uw?2
wnt

Interactive Systems Unix
Linux using crypt from the C library
Linux using Pluggable Authentication Modules (PAM)
Linux using -lcrypt to get the crypt function
Linux using -1lshadow to get the crypt() function
Linux using shadow passwords, no extra libraries
Lynx Real-Time System (Lynxos)
Tenon MachTen (Mac)
Macintosh 0S X
NetBSD
NeXT 68030’s and 68040’s Mach 2.0
OpenBSD with shared-1ib
SCO Open Server 5.x
SCO Unix
Sequent Dynix/ptx vi.4
Sequent Dynix/ptx
Sequent Dynix (not ptx)
Silicon Graphics Irix
Silicon Graphics Irix >= 6.5
Sun Solaris >= 2.5
Sun Solaris >= 2.5 using gcc compiler
Sun Solaris <= 2.4
Sun Solaris <= 2.4 using gcc compiler
Sun Sun0S 4.1
Sun Sun0S 4.1 with shadow password security
Sun0S 4.1 using gcc compiler
Sun Sun0S 4.0
System V Release 4
UnixWare 2.x and 7.x
Windows NT 3.51

Pine system types used in Message-1D tags as of Pine 4.30. This table was

gathered from the supported systems listed in the Pine source code

documentation, in the file pine4.30/doc/pine-ports, and was edited for

brevity.

Hence, with the above message ID, one knows the target’s hostname,
an account on that machine that reads mail using Pine, and that it’s Linux
without shadowed passwords (the LNX host type). Hang out on a mailing
list, maybe something platform agnostic, and collect targets. In this case,

one could use a well known exploit within the mail message, grab the system
password file and send it back to ourselves for analysis. This can easily scaled
to as many clients as has been fingerprinted; one mass mailing, and sit back
and wait for the password files to come in.

3.2 Other Mail Clients

This is not to say that other mail clients are not vulnerable to such infor-

mation leaks. Most mail clients give out similar information, either directly

or indirectly. Direct information would be an entry in the message headers,

such as an X-Mailer tag. Indirect information would be similar to that seen

for Pine, a distinctive message ID tag. When this information is coupled to

the information about the originating host, a fingerprint can occur rapidly.
Some examples:

User-Agent: Mutt/1.2.4i

X-Mailer: Microsoft Outlook Express 5.00.3018.1300
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.3018.1300

X-Mailer: dtmail 1.2.1 CDE Version 1.2.1 Sun0S 5.6 sun4u sparc
X-Mailer: PMMail 2000 Professional (2.10.2010) For Windows 2000 (5.0.2195)

X-Mailer: QUALCOMM Windows Eudora Version 4.3.2
Message-ID: <4.3.2.7.2.20001117142518.043ad100@mailserver3.somewhere.gov>

While not all clients give out their host system or processors, such as
Mutt or Outlook Express, this information can be used by itself to get
a larger vulnerability assessment. For example, if we know what version
strings appear only on Windows, as opposed to a MacOS system, we can
determine the processor type. The dtmail application is entirely too friendly
to someone determining vulnerabilities, giving up the processor and OS
revision. Given the problems that have appeared in the CDE suite, and in
older versions of Solaris, an attack would be all too easy to construct.

3.3 Finding such information

There are two main avenues for finding this information for lots of clients
quickly. First, we can sniff the network for this information. Using a tool like
mailsnarf, ngrep or any sniffer with some basic filtering, a modest collection

of host to client application data can be gathered. The speed of collection
and the ultimate size of this database depends chiefly on the amount of traffic
your network segment sees. This is the main drawback to this method, a
limited amount of data.

A much more efficient method, and one that can make use of this above
information, is in offline (for the target with respect to the potential at-
tacker) system fingerprinting, with an exploit path included. How do we do
this? We search the web, with it’s repleat mailing list archives, and we turn
up some boxes.

Altavista: 2,033 pages found (for pine.ult)
Google results 1-10 of about 141,000 for pine.lnx
Altavista: 16,870 pages found (for pine.osf)

You get the idea. Tens of thousands of hits, thousands of potentially
exploitable boxes ready to be picked. Simply evaluate the source host in-
formation and map it to the client data and a large database of vulnerable
hosts is rapidly built.

The exploits are easy. Every week, new exploits are found in client soft-
ware, either mail applications like Pine, or methods to deliver exploits using
mail software. Examples of this include the various buffer overflows that
have appeared (and persist) in Pine and OutLook, the delivery of malicious
DLL files using Eudora attachments, and such. We know from viruses like
ILOVEYOU and Melissa that more people than not will open almost any
mail message, and we know from spammers that it’s trivial to bulk send
messages with forged headers, making traceback difficult. These two items
combine to make for a very readily available exploit.

4 Usenet Clients

In a manner similar to electronic mail, Usenet clients leave significant infor-
mation in the headers of their posts which reveal information about their
host operating systems. One great advantage to Usenet, as opposed to email
or even web traffic, is that posts are distributed. As such, we can be remote
and collect data on hosts without their knowledge or ever having to gain
entry into their network.

Among the various newsreaders commonly used, copious host info is
included in the headers. The popular UNIX newsreader ’tin’ is among the
worst offenders of revealing host information. Operating system versions,
processors and applications are all listed in the "User-Agent’ field, and when

10

coupled to the NNTP-Posting-Host information, a remote host fingerprint
has been performed:

User-Agent: tin/1.5.2-20000206 ("Black Planet") (UNIX) (Sun0S/5.6(sun4u))
User-Agent: tin/pre-1.4-980226 (UNIX) (FreeBSD/2.2.7-RELEASE (i386))
User-Agent: tin/1.4.2-20000205 ("Possession") (UNIX) (Linux/2.2.13(i686))
NNTP-Posting-Host: host.university.edu

The standard web browsers also leave copious information about them-
selves and their host systems, as they do with HT'TP requests and mail. We
will elaborate on web clients in the next section, but they are also a problem
as Usenet clients:

X-Http-User-Agent: Mozilla/4.75 [en] (Windows NT 5.0; U)
X-Mailer: Mozilla 4.75 [en] (X11; U; Linux 2.2.16-3smpi686)

And several other clients also leave verbose information about their hosts
to varying degrees. Again, when combined with the NNTP-Posting-Host or
other identifying header, one can begin to amass information about hosts
without too much work:

Message-ID: <Pine.LNX.4.21.0010261126210.32652-100000@host .example.co.nz>
User-Agent: MT-NewsWatcher/3.0 (PPC)

X-Operating-System: GNU/Linux 2.2.16
User-Agent: Gnus/5.0807 (Gnus v5.8.7) XEmacs/21.1 (Bryce Canyon)

X-Newsreader: Microsoft Outlook Express 5.50.4133.2400
X-Newsreader: Forte Free Agent 1.21/32.243

X-Newsreader: WinVN 0.99.9 (Released Version) (x86 32bit)

Either directly or indirectly, we can fingerprint the operating system
over the source host. Other programs are not so forthcoming, but still
leak information about a host that can be used to determine vulnerability
analysis.

X-Newsreader: KNode 0.1.13

11

User-Agent: Pan/0.9.1 (Unix)

User-Agent: Xnews/03.02.04

X-Newsreader: trn 4.0-test74 (May 26, 2000)
X-Newsreader: knews 1.0b.0 (mrsam/980423)
User-Agent: slrn/0.9.5.7 (UNIX)

X-Newsreader: InterChange (Hydra) News v3.61.08

None of these header fields are required by the specifications for NNTP,
as noted in RFC 2980. They provide only some additional information
about the host which was the source of the data. However, given that
more transactions that concern the servers are between servers, this data
is entirely extraneous. It is, it appears, absent from RFC 977, the original
specification for NNTP.

On interesting possibility to exploiting a user agent like Mozilla is to
examine the accepted languages. In the below example, we see not only
English is supported, but that the browser is linked to Acrobat. Given
potential holes, and past problems!!, with malicious PDF files, this could
be another avenue to gaining entry to a host.

X-Mailer: Mozilla 4.75 [en] (Win98; U)
X-Accept-Language: en,pdf

While this may seem that we’re limited to fingerprinting hosts, or out
of luck if they are using a proxy, this is not the case. We can also retrieve
proxy info from the headers. Recall recent problems with Squid!?:

X-Http-Proxy: 1.0 x72.deja.com:80 (Squid/1.1.22) for client 10.32.34.18

While in this case the proxy is disconnected from the client’s network,
if this were a border proxy, we could use this to gain information about a
possible entry point to the network and, over time and with enough sample
data, information about the network behind the protected border.

1G¢e BUGTRAQ vulnerabilities with ID’s 666 and 1509 at
http://www.securityfocus.com/ for more information
123ee BUGTRAQ ID’s 471 and 89 at http://www.securityfocus.com/.

12

5 Using Web Traffic

A remarkably simple and highly effective means of fingerprinting a target is
to follow the web browsing that gets done from it. Most every system in use
is a workstation, and nearly everyone uses their web browsers to spend part
of their day. And just about every browser sends too much information in
it’s "User-Agent’ field.

RFC 1945'3 notes that the "User-Agent’ field is not required in an HTTP
1.0 request, but can be used. The authors state, ”user agents should include
this field with requests.” They cite statistics as well as on the fly tailoring
of data to meet features or limitations of browsers. The draft standard
for HTTP version 1.1 requests, RFC 2616, also notes similar usage of the
"User-Agent’ field.

We can gather this information in two ways. First, we could run a
website and turn on logging of the User-Agent field from the client (if it’s
not already on). Simply generate a lot of hits and watch the data come
in. Get on Slashdot, advertise some pornographic material, or mirror some
popular software (like warez) and you’re ready to go. Secondly, we can sniff
web traffic on our visible segment. While almost any sniffer will work, one
of the easiest for this type of work is urlsnarf from the dsniff package from
Dug Song!*.

Examples of browsers that send not only their application information,
such as the browser and the version, but also the operating system which
the host runs include:

Netscape (UNIX, Mac0S, and Windows)
Internet Explorer

One shining example of a browser that doesn’t send extraneous informa-
tion is Lynx. On both 2.7 and 2.8 versions, only the browser information is
sent, no information about the host.

The User-Agent field can be important to the web server for legitimate
reasons. Due to implementations, both Netscape and Explorer are not equiv-
alent on many items, including how they handle tables, scripting and style
sheets. However, host information is not needed and is sent gratuitously.

A typical request from a popular browser looks like this:

13This and all other listed RFC’s are available from the IETF website at
http://www.ietf.org/ .
14This package is available at http://www.monkey.org/~dugsong/dsniff/

13

GET / HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.08 [en] (X11; I; SunOS 5.7 sundu)

Host: 10.10.32.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso0-8859-1,*,utf-8

The User-Agent field is littered with extra information that we don’t
need to know: the operating system type, version and even the hardware
being used.

Instantly we know everything there is to know about compromising this
host: the operating system, the host’s architecture, and even a route we
could use to gain entry. For example a recent problems in Netscape’s JPEG
handling'®.

Using urlsnarf to log these transactions is the easiest method to sniff this
information from the network. A typical line of output is below:

10.10.1.232 - - [25/0c¢t/2000:12:55:51 -0400] "GET http://www.latino.com/
HTTP/1.0" - - "http://www.latino.com/" "Mozilla/4.07 [en] (Win95; I ;Nawv)"

We can also use the tool ngrep!® to listen to this information on the
wire. A simple filter to listen only to packets that contain the information
"User-Agent’ can be set up and used to log information about hosts on the
network.

A simple regular expression filter can do the trick:

ngrep —qid epl ’User-Agent’ tcp port 80

This will print out all TCP packets which contain the case insensitive
string User-Agent in them. And, within this field, for too many browsers,
is too much information about the host. With the above options to ngrep,
typical output will look like this:

T 10.10.11.43:1860 -> 130.14.22.107:80 [AP]
GET /entrez/query/query.js HTTP/1.1..Accept: */*..Referer: http://wuw.
ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=PubMed. .Accept-Langua

1556e BUGTRAQ ID 1503 for more information.
pgrep can be obtained from the PacketFactory website,
http://www.packetfactory.net/Projects/Ngrep/ .

14

ge: en-us..Accept-Encoding: gzip, deflate..If-Modified-Since: Thu, 29
Jun 2000 18:38:45 GMT; length=4558..User-Agent: Mozilla/4.0 (compatibl
e; MSIE 5.5; Windows 98)..Host: www.ncbi.nlm.nih.gov..Connection: Keep
-Alive..Cookie: WebEnv=FpEB]AfeA>>Hh" ‘Ba@<]~d]bCJfdADh\j="a=T=EjIE=b<F
bg<. ...

Even more information is contained within the request than urlsnarf
showed us, information including cookies.

5.1 Web Server Fingerprinting

In much the same way as one can use the strings sent during requests by the
clients to determine what system type is in use, one can follow the replies
sent back by the server to determine what type it is. Again we will use
ngrep, this time matching the expression ’server:’ to gather the web server

type:

T 192.168.0.5:80 -> 192.168.0.1:1033 [AP]
HTTP/1.0 200 OK..Server: Netscape-FastTrack/2.01..Date: Mon, 30 Oct 20
00 00:15:31 GMT..Content-type: text/html....

While specifics about the operating system information are lost, this
works to passively gather vulnerability information about the target server.
This can be coupled to other information to decide how best to proceed with
an attack.

This information will not be covered as this paper is limited to client
applications and systems being fingerprinted.

6 Telnet Clients

While telnet is no longer in widespread use due to the fact that all of its
data is sent in plain text, including authentication data, it is still used widely
enough to be of use in fingerprinting target systems. What is interesting is
that it not only gives us a mechanism to gather operating system data, it
gives us the particular application in use, which can be of value in deter-
mining a mechanism of entry.

This method of system fingerprinting is not unique to this paper. At
Hope2k in New York City in the summer of 2000, I saw this demonstrated
by a security analyst from Bell Labs. He had a honey-pot system set up
that one would telnet to. An application would fingerprint the client and

15

hence the operating system. While I do not recall his name, his research is
acknowledged here as my introduction of this method of system fingerprint-
ing.

The specification for the telnet protocol describes a negotiation between
the client and the host for information such as line speed, terminal type and
echoing!”. What is interesting to note is that each client behaves in a unique
way, even different client applications on the same host type. Similarly, the
telnet server, running a telnet daemon, can be fingerprinted by following the
negotiations with the client. This information can be viewed from the telnet
command line application on a UNIX host by issuing the ’toggle options’
command at the telnet) prompt.

This information can be gather directly, using a wedge application, or a
honey-pot as demonstrated on the network at Hope2k, or it can be sniffed
off the network in a truly passive fashion. We discuss below gathering data
about both the client system and the server being connected to. The same
principles apply to both host identification methods.

6.1 Fingerprinting Telnet Clients

The negotiations described above, and in the references listed, can be used
to fingerprint the client based upon the options set and the order in which
they are negotiated. Table 1 describes the behavior of several telnet clients in
these respects. Their differences are immediately obvious, even for different
clients on the same operating system, such as Tera Term Pro and Windows
Telnet on a Windows 95 host.

In this table, all server commands and negotiation options are ignored
and only data originating from the client is shown.

Some operating systems, such as IRIX, use a specific and particular ter-
minal type. However, this is usually not a good metric of the operating
system, as it can be spoofed or ambiguous, with a value such as vt100 or
xterm. Instead, the value and order of various commands sent by the client
can be used to distinguish hosts and applications. For example, Windows
doesn’t set the terminal speed, Linemode options or accept new environ-
mental options. To differentiate between the normal Windows telnet client
or Tera Term Pro, one can look for the option to negotiate a window size,
for example.

"For descriptive information on these options and their negotiations, please see
RFCs 857, 858, 859, 860, 1091, 1073, 1079, 1184, 1372, and 1408. Also, see
TCP Illustrated, Volume 1: The Protocols by W. Richard Stevens

16

oYY °d 8
Oy 3, UOM L
[OIIUO) MO[] 9JOUWY 3, UOAM
snje}s J,uoq
971G MOPUIAA 91R1J080N), UOM [OIIUO.) MO[] 9JOWY 3, UOAA
Oy MM snjels juog 9
SECICIRAC (|
proyy ox) ssaxddng o(g oy 3, UOA\ oy o G
0013 0013
odAT, Teururigg, :uorydoqng odA T, reuruniag, :uorydoqng oYY 3, UOAM i
LUN-ISNV-SIdI
odA T, reurmrog, :uorydoqng
0°0-uotye)sI0M000\ AV TdSIA L0\
uoryd() juewruoaraug uorpdoqng
0£0\000\d 0°0:UoI}e}SHIOM
0z1G mopuipy :uorydoqng uoryedor] Aedsyq ¥ :uorpdoqng
uor}d() JUOWUOIIAUY MON I, UOAM 00Z6T1°00Z6T :onfeA
uoryd() JusWUOIIAUY MON },UOA uoryedsor] Aerdsyq X 1, UOM poadg reuruia], :uorydoqng e
OpOWOUI INOX PUOG
opowour :uorjdoqng
proyy oxr) ssexddng o(]
OpOWOUI INOX PUOG
opououl] :uorjdoqng
uoryeno] Aedsi X 9,U0M)000\¥
poodg [euruiIa], 3, WO poodg [euImLIaT, 3, UOA\ oz1G mopuIpp :uolpdoqng C
uotyeoor] Aedsi(q X [IM
snje)g o
opowdul M
071G MOPUIA\ 91e11080N [[IM [0UOT) MO[djouwdy [[TM
oyy og poodg [eurwiay, [[IM
peoqy o ssoxddng [T\ | 971G MOPUIA JNOQY 93eI0B0N [[TM
proyy ox) ssexddng o(g odAT, Teurunial, [IIAA
odAT, TeurunIay, 1A od AT, TeutmnIa, [[IAA proyy ox) ssaxdng o(q 1
19U[ST, G6 SMOPUIM | Old WISJ, BI9], G6 SMOPUIA 9’9 XTIdI | 19¥doed

‘uoryeordde oy
Aq popooop pue [eoIoy)y [00} oY) ulsn ponjded sem e)e("108IR) UWOTJIOUUOD I} S PAsn sem ‘o pauiny suorydo
SOIOQIOY [[® YHM ‘IAISS joupe) (qSgued() ur sosed [[@ U] “JUSID JoUe) Ul J[INq 9y} IO ¢'g 01 WLIS], RIS, 1Y)
SUISTL ‘GG SMOPUIAA Sem POSIL WO}SAS SMOPUIAA Oy], "Siuowngre [eoods ou Yim Juol[d joU[d} D01 oY} Sem Wo)SAS
G'Q XTYI oY, "SHUOI[D JoU[d} 901} WOIJ JUds oIk Ao} YOIYM UI JOpIo oy} pue suorpdo o) ore 910y umoys :T d[qe],

17

Space only permits the above three clients to be shown. However, as one
can imagine, differences both striking and subtle exist between the various
clients.

6.2 Fingerprinting Telnet Servers

Obviously, the most direct method to fingerprint a server would be to con-
nect to it and examine the order of options and their values as a telnet
session was negotiated. However, as this study is concerned with passive
scanning of clients, we will leave it to the reader to map this information
and learn what to do with it.

7 Conclusions

In this paper has been illustrated the effectiveness of target system identi-
fication by using the information provided by network client applications.
This provides a very efficient and precise measure of the client operating
system, as well as identifying a vector for attack. This information is sent
gratuitously and is not essential to the normal operation of many of these
applications.

The main limitation of this information is found when a host is perform-
ing emulation of another operating system to run the client software. While
this is rare, it could lead to a false system identification. This mainly falls
in the open software world, however, and only for some operating systems.

The scope of this information should not be underestimated. There are
some who will note that all one will likely gain on a UNIX system is an
unprivilidged account. This may be, however, what we are after, the access
that a particular user may have to other valuable data. We may only want
their system privilidges, ie for packet generation in a DDoS network. For
non-UNIX systems, the impact is well illustrated by the October, 2000,
compromise of the Microsoft Corporation network, where access was gained
to the source code of Windows and the Office suite. Repeating what is said
often, your perimeter is only as strong as its weakest link.

Similarly, there are some that will note that some of these attacks, such
as using the mail or Usenet client as a vector for entry, require a bit of
social engineering. While this is true, it is by no means any less of a threat.
Numerous times we have seen that people will read almost any email message
that shows up in their inbox. Usenet engineering is even easier: simply reply
to a message posted, such as a question, and the person is almost certain to
read the reply.

18

As such, for the black hat, this represents a quick method of passively
gathering target host information as well as a likely vector of attack. For
the white hat, it suffices to map a network with respect to operating system
and vulnerable application.

7.1 Recommendations for Mitigating the Risks

Would that the world were perfect, or at least software engineers were not
prone to errors, this information would not be usable against a host. How-
ever, we exist in a world with operating systems littered with security prob-
lems and applications that are poorly programmed, ready to exploit. If we
lived in an ideal world, but we do not.

For web browsers, which are ubiquitous and used by nearly everyone
on the Internet, the host operating system should not be sent. Ideally,
information about what protocols are spoken, what standards are met and
what language are supported (ie English, German, French) should suffice.
Lynx behaves nearly ideally in this regard, and both Netscape and Explorer
should follow this lead.

With respect to Usenet and electronic mail clients, again only what fea-
tures are supported should be provided. Pine is an example of how bad it
can get, providing too much information about a host too quickly. There is
no reason why any legitimate client should know what processor and OS is
being run on the sending host.

Telnet clients are far more difficult. It is tempting to say that all telnet
applications should support the same set of features, but that is simply
impossible.

Proxy hosts should be used, if possible, to strip off information about the
originating system, including the workstation address and operating system
information. This will help obscure needed information to map a network
from outside the perimeter. Coupled with strong measures to catch viruses
and malicious code, such as in a web page script, the risks should be greatly
reduced.

The best solution is for application authors to not send gratuitous infor-
mation in their headers or requests. Furthermore, client applications should
be scrutinized to the same degree as daemons that run with administrative
privilidges. The lessons of RFC 1123 most certainly apply at this level.

In the intervening time, those with access to the source code of their
network clients may want to consider removing gratuitous host information
from their request packets or headers. This, however, doesn’t apply to most
users, and those that know about this method already practice this routinely.

19

8 Acknowledgments

This work was inspired largely by Photon’s post in 1999 to the nmap-hackers
list. It seems a great deal of other research, and proof of concept tools, has
been initiated by this message. To them I extend my thanks, they’ve helped
to provide me with hours of diversions and thought experiments. Also, I
am thankful to the authors of the tools used in this study, especially Dug
Song for his dsniff package, and Jordan Ritter for ngrep. As always, I am
indebted to the people I work with at crimelabs, as well, especially Kosher
Egyptian Rabbit and Jesus, with whom I have had numerous productive
conversations on this topic. Rick Wash and Merlin were most helpful in
their critical review of this manuscript and their helpful suggestions.

20

