
ICMP Usage in Scanning
Version 2.5

1

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

ICMP Usage in Scanning

Or

Understanding some of the ICMP Protocol’s Hazards

Ofir Arkin

Founder

The Sys-Security Group

http://www.sys-security.com
ofir@sys-security.com

Version 2.5

December 2000

http://www.sys-security.com/
mailto:ofir@sys-security.com

ICMP Usage in Scanning
Version 2.5

2

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Table of Contents

Introduction... 7

1.1 Introduction to Version 1.0 .. 7
1.2 Introduction to Version 2.0 .. 7
1.3 Introduction to Version 2.5 .. 8
1.4 CHANGES.. 8

1.4.1 Version 1.0 to Version 2.0.. 8
1.4.2 Version 2.0 to Version 2.01.. 9
1.4.3 Version 2.01 to Version 2.5.. 9

2.1 ICMP ECHO (Type 8) and ECHO Reply (Type 0) ... 10
2.2 ICMP Sweep (Ping Sweep)... 11
2.3 Broadcast ICMP.. 12
2.4 Non-ECHO ICMP.. 14

2.4.1 ICMP Time Stamp Request (Type 13) and Reply (Type 14)......................... 15
2.4.2 ICMP Information Request (Type 15) and Reply (Type 16) 16
2.4.3 ICMP Address Mask Request (Type 17) and Reply (Type 18) 19

2.5 Non-ECHO ICMP Sweeps .. 22
2.6 Non-ECHO ICMP Broadcasts ... 23

3.0 Advanced Host Detection using the ICMP Protocol (using ICMP Error Messages
 generated from the probed machines) .. 25

3.1 Sending IP Datagrams with bad IP headers fields – generating ICMP Parameter
 Problem error message back from probed machines ... 25

3.1.1 ACL Detection using IP Datagrams with bad IP headers fields 27
3.2 IP Datagrams with non-valid field values... 29

3.2.1 The Protocol Field example.. 29
3.2.1.2 Using all combination of the IP protocol filed values.................................. 29
3.2.2 ACL Detection using the Protocol field ... 30

3.3 Host Detection using IP fragmentation to elicit Fragment Reassembly Time
 Exceeded ICMP error message. ... 31

3.3.1 ACL Detection using IP fragmentation ... 32
3.4 Host Detection using UDP Scans, or why we wait for the ICMP Port Unreachable
... 33

3.4.1 A Better Host Detection Using UDP Scan .. 34
3.5 Using Packets bigger than the PMTU of internal routers to elicit an ICMP
 Fragmentation Needed and Don’t Fragment Bit was Set (configuration problem)
... 35

4.0 Inverse Mapping ... 36
4.1 Inverse Mapping Using ICMP (Echo & Echo Reply).. 36
4.2 Inverse Mapping Using Other Protocols.. 37
4.3 Patterns we might see .. 37

5.0 Using traceroute to Map a Network Topology ... 40
6.0 The usage of ICMP in Active Operating System Fingerprinting Process................. 43
Using Regular ICMP Query Messages ... 43

6.1.2 Using ICMP Information Requests ... 44
6.1.3 Identifying Operating Systems according to their replies for non-ECHO ICMP
 requests aimed at the broadcast address.. 44

6.2 The DF Bit Playground (Identifying Sun Solaris, HP-UX 10.30, 11.0x, and AIX
4.3.x based machines).. 45

ICMP Usage in Scanning
Version 2.5

3

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

6.2.1 Avoidance .. 52
6.3 The IP Time-to-Live Field Value with ICMP... 53

6.3.1 IP TTL Field Value with ICMP Query Replies... 53
6.3.2 IP TTL Field Value with ICMP ECHO Requests ... 55
6.3.3 Correlating the Information... 56

6.4 Using Fragmented ICMP Address Mask Requests (Identifying Sun Solaris & HP-
 UX 11.0x machines).. 57

Using Crafted ICMP Query Messages .. 59
Playing with the TOS Field.. 59
6.5 Precedence Bits Echoing (Fingerprinting Microsoft Windows 2000, ULTRIX,
 HPUX 11.0&10.30, OpenVMS and more) .. 61

6.5.1 Changed Pattern with other ICMP Query Message Types 67
6.6 TOSing OSs out of the Window / “TOS Echoing” (Fingerprinting Microsoft
 Windows 2000) .. 69

6.6.1 The use of the Type-of-Service field with the Internet Control Message
 Protocol ... 69

6.7 Using the TOS Byte’s Unused Bit (Fingerprinting Microsoft Windows 2000,
 ULTRIX and more)... 75

6.7.1 Changed Pattern with Replies for Different ICMP Query Types 77
6.8 Using the Unused (Identifying Sun Solaris & HP-UX 10.30 & 11.0x OS based
 machines) .. 78
6.9 DF Bit Echoing.. 80

6.9.1 DF Bit Echoing with the ICMP Echo request .. 80
6.9.2 DF Bit Echoing with the ICMP Address Mask request 81
6.9.3 DF Bit Echoing with the ICMP Timestamp request 81
6.9.4 Using all of the Information in order to identify maximum of operating systems
... 82
6.9.5 Why this would work (for the skeptical) .. 82
6.9.6 Combining all together ... 83

6.10 Using Code field values different than zero within ICMP ECHO requests 85
6.11 Using Code field values different than zero within ICMP Timestamp Request... 86

6.11.1 The non-answering Operating Systems ... 86
6.11.2 Operating Systems the Zero out the Code field value on Reply 87

Using the ICMP Error Messages .. 89
6.12 Operating system, which do not generate ICMP Protocol Unreachable Error
 Messages ... 89
6.13 ICMP Error Message Quenching .. 90
6.14 ICMP Error Message Quoting Size ... 90
6.15 LINUX ICMP Error Message Quoting Size Differences / The 20 Bytes from No
 Where.. 92
6.16 Foundry Networks Networking Devices Padded Bytes with ICMP Port
 Unreachable(s) / The 12 Bytes from No Where.. 94
6.17 ICMP Error Message Echoing Integrity (Tested with ICMP Port Unreachable).. 95
6.18 Novell Netware Echoing Integrity Bug with ICMP Fragment Reassembly Time
 Exceeded... 100
6.19 The Precedence bits with ICMP Error Messages (Identifying LINUX) 101
6.20 TOS Bits (=field) Echoing with ICMP Error.. 104
6.21 DF Bit Echoing with ICMP Error Messages... 105

Not that useful fingerprinting method(s) .. 112
6.22 Unusual Big ICMP Echo Request ... 112

7.0 Filtering ICMP on your Filtering Device to Prevent Scanning Using ICMP 114

ICMP Usage in Scanning
Version 2.5

4

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

7.1 Inbound... 114
7.2 Outbound.. 114
7.3 Other Considerations.. 116
7.4 Other Problems – Why it is important to filter ICMP traffic in the Internal
 segmentation ... 117

7.5 The Firewall .. 118
8.0 Conclusion.. 120
9.0 Acknowledgment .. 121

9.1 Acknowledgment for version 1.0 ... 121
9.1 Acknowledgment for version 2.0 ... 121
9.2 Acknowledgment for version 2.5 ... 121

Appendix A: The ICMP Protocol ... 122
A.1 ICMP Messages ... 123
A.1 ICMP Error Messages .. 125

A.1.1 ICMP Error Messages ... 126
A.1.1.1 Destination Unreachable (Type 3) .. 126
A.1.1.2 Source Quench (Type 4)... 128
A.1.1.3 Redirect (Type 5).. 129
A.1.1.4 Time Exceeded (Type 11)... 130
A.1.1.5 Parameter Problem (Type 12)... 130

Appendix B: ICMP “Fragmentation Needed but the Don’t Fragment Bit was set” and the
 Path MTU Discovery Process ... 132

B.1 The PATH MTU Discovery Process.. 132
B.2 Host specification ... 132
B.3 Router Specification ... 133
B.4 The TCP MSS (Maximum Segment Size) Option and PATH MTU Discovery
 Process.. 134

Appendix C: Mapping Operating Systems for answering/discarding ICMP query
 message types... 135
Appendix D: ICMP Query Message Types with Code field !=0 137
Appendix E: ICMP Query Message Types aimed at a Broadcast Address.................. 139
Appendix F: Precedence Bits Echoing with ICMP Query Request & Reply................. 141
Appendix G: ICMP Query Message Types with TOS! = 0... 142
Appendix H: Echoing the TOS Byte Unused bit .. 143
Appendix I: Using the Unused Bit ... 144
Appendix J: DF Bit Echoing .. 145
Appendix K: ICMP Error Message Echoing Integrity with ICMP Port Unreachable Error
 Message ... 146
Appendix L: Snort Basic Rule Base for ICMP Traffic .. 148

ICMP Usage in Scanning
Version 2.5

5

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Figures List
Figure 1: ICMP ECHO Mechanism 10
Figure 2: ICMP ECHO Request & Reply message format 11
Figure 3: Broadcast ICMP 13
Figure 4: ICMP Time Stamp Request & Reply message format 15
Figure 5: ICMP Information Request and Reply 17
Figure 6: ICMP Address Mask Request & Reply message format 19
Figure 7: The IP Header 25
Figure 8: An Example: A TCP packet fragmented after only 8 bytes of TCP information 33
Figure 9: Using Packets bigger than the PMTU of internal routers to elicit an ICMP Fragmentation
 Needed and Don’t Fragment Bit was Set 35
Figure 10: ICMP Time Exceeded message format 40
Figure 11: The Type of Service Byte 59
Figure 12: ICMP ECHO Request & Reply message format 86
Figure 13: The Type of Service Byte 101
Figure 14: Firewall ICMP Filtering Rules 117
Figure 15: Internal segmentation ICMP Filtering Example 118
Figure 16: ICMP Message Format 123
Figure 17: ICMP Error Message General Format 126
Figure 18: ICMP Fragmentation Needed but the Don’t Fragment Bit was set Message Format 128
Figure 19: ICMP Redirect Message Format 129
Figure 20: ICMP Parameter Problem Message Format 131
Figure 21: ICMP Fragmentation Required with Link MTU 133

Table List
Table 1: Which Operating System would answer to an ICMP ECHO Request aimed at the
 Broadcast Address of the Network they reside on? 14
Table 2: Non-ECHO ICMP Query of different Operating Systems and Networking Devices 22
Table 3: Operating Systems, which would answer to requests, aimed at the Broadcast address 24
Table 4: Networking Devices, which would answer to requests, aimed at the Broadcast address 24
Table 5: IP TTL Field Values in replies from Various Operating Systems 53
Table 6: IP TTL Field Values in requests from Various Operating Systems 55
Table 7: Further dividing the groups of operating systems according to IP TTL field value in the
 ICMP ECHO Requests and in the ICMP ECHO Replies 56
Table 8: Precedence Field Values 60
Table 9: Type-of-Service Field Values 60
Table 10: ICMP Query Message Types with Precedence Bits ! = 0 68
Table 11: ICMP Query Message Types with TOS! = 0 75
Table 12: ICMP Query Message Types with the TOS Byte Unused Bit value ! = 0 78
Table 13: DF Bit Echoing 83
Table 14: ICMP Error Message Echoing Integrity 98
Table 15: Precedence Field Values 102
Table 16: ICMP message types 122
Table 17: ICMP Types & Codes 124
Table 18: Destination Unreachable Codes (Router) 127
Table 19: Redirect Codes 129
Table 20: Parameter Problem Codes 131

Diagram List
Diagram 1: The Inverse Mapping Idea 37
Diagram 2: A Decoy Scan Example 39
Diagram 3: Finger Printing Using ICMP Information Request Combines with ICMP

 Address Mask Request 44

ICMP Usage in Scanning
Version 2.5

6

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Diagram 4: Finger Printing Using non-ECHO ICMP Query Types aimed at the
 Broadcast Address of an Attacked Network 45

Diagram 5: Finger Printing Using ICMP Address Mask Requests 59
Diagram 6: An example for a way to fingerprint Microsoft Windows 2000, Ultrix, HPUX 11.0 &
 10.30, OpenVMS, Microsoft Windows ME, and Microsoft Windows 98/98SE based
 machines with ICMP Query messages with the Precedence Bits field !=0 68
Diagram 7: An example for a way to fingerprint Windows 2000, Ultrix, and Novell Netware based
 machines with ICMP Query messages with the TOS bits field !=0 74
Diagram 8: An example for a way to fingerprint operating systems using the unused bit in the
 TOS Byte echoing method 77
Diagram 9: An example of fingerprinting using the DF Bit Echoing technique 84
Diagram 10: Finger Printing Using ICMP Timestamp Request and Wrong Codes 87
Diagram 11: An Example of Finger Printing Using crafted ICMP Echo & Timestamp Request 89
Diagram 12: DF Bit Echoing with ICMP Error Messages 107

ICMP Usage in Scanning
Version 2.5

7

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Introduction

1.1 Introduction to Version 1.0
The ICMP Protocol may seem harmless at first glance. Its goals and features were outlined in
RFC 792 (and than later cleared in RFCs 1122, 1256, 1349, 1812), as a way to provide a means
to send error messages. In terms of security, ICMP is one of the most controversial protocols in
the TCP/IP protocol suite. The risks involved in implementing the ICMP protocol in a network,
regarding scanning, are the subject of this research paper.

Scanning will usually be the major stage of an information gathering process a malicious
computer attacker will lunch against a targeted network. With this stage the malicious computer
attacker will try to determine what are the characteristics of the targeted network. He will use
several techniques, such as host detection, service detection, network topology mapping, and
operating system fingerprinting. The data collected will be used to identify those Hosts (if any)
that are running a network service, which may have a known vulnerability. This vulnerability may
allow the malicious computer attacker to execute a remote exploit in order to gain unauthorized
access to those systems. This unauthorized access may become his focal point to the whole
targeted network.

This research paper outlines the usage of the ICMP protocol in the scanning process. Step-by-
Step we will uncover each of the malicious computer attacker techniques using the ICMP
protocol. A few new scanning techniques will be unveiled in this research paper. I have reported
some of them to several security mailing lists, including Bugtraq, in the past.

The chapters in this research paper are divided according to the various scanning techniques:

• Host Detection using the ICMP protocol is dealt in Chapter 2.
• Advanced Host Detection methods using the ICMP protocol are discussed in Chapter 3.
• Inverse Mapping using the ICMP protocol is discussed in Chapter 4.
• Network Mapping using the traceroute utility is discussed in Chapter 5.
• Chapter 6 discusses the usage of ICMP in the Active Operating System Fingerprinting

process.
• Chapter 7 suggests a filtering policy to be used on filtering devices when dealing with the

ICMP protocol.

I would like to take a stand in this controversial issue. ICMP protocol hazards are not widely
known. I hope this research paper will change this fact.

1.2 Introduction to Version 2.0
Quite a large number of new OS fingerprinting methods using the ICMP protocol, which I have
found are introduced with this revision. Among those methods two can be used in order to identify
Microsoft Windows 2000 machines; one would allow us to distinguish between Microsoft
Windows operating system machines and the rest of the world, and another would allow us to
distinguish between SUN Solaris machines and the rest of the world1. I have also tried to be
accurate as possible with data presented in this paper. Few tables have been added to the paper
mapping the behavior of the various operating systems I have used. These tables describe the
results I got from the various machines after querying them with the various tests introduced with
this paper.

See section 1.3 for a full Changes list.

1 See Section 6 for more information.

ICMP Usage in Scanning
Version 2.5

8

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

1.3 Introduction to Version 2.5
With this version of the research paper I am introducing a few new OS fingerprinting methods.
Some are targeted in producing ICMP error messages from a target OS, enabling us to fingerprint
an OS even if all ports of the OS in question are closed. I have also added a considerable amount
of information about ICMP error message. At the end of the paper you will find the Basic snort
rule base I have written.

1.4 CHANGES

1.4.1 Version 1.0 to Version 2.0

2.0 Host Detection Using the ICMP Protocol

 2.3 Broadcast ICMP

Added a table describing which operating systems would answer an ICMP ECHO
request aimed at the Broadcast address of the network they reside on.

 2.4 Non-ECHO ICMP
 Added Information Request and Reply as a valid Host Detection method.
 2.4.2 ICMP Information Request and Reply
 The actual Information (added a section).
 2.4.3 ICMP Address Mask Request and Reply
 Added SUN Solaris and networking devices examples.

 2.5 Non-Echo ICMP Sweep
 Added a table summarizing which operating systems would answer those

queries.
 2.6 Non-ECHO ICMP Broadcasts
 Added the fact that “Hosts running an operating system, which answers

requests aimed at the IP broadcast address…”
Added two tables describing which operating systems would answer to which
type of ICMP queries aimed at the broadcast address of the network they reside
on?

3.0 Host Detection Using ICMP Error messages generated from the probed machines
 3.1 IP datagrams with bad IP Header fields
 Added more information on various other fields which can be used for this

purpose.

6.0 The Usage of ICMP in the operating system Finger Printing Process

 6.1 Using Wrong Codes within ICMP Datagrams
 6.1.1 Using ICMP Timestamp Requests with Codes different than 0

6.1.2 Listing ICMP query message types sent to different operating systems
with the Code field !=0 and the answers (is any) we got.

 6.2 Using ICMP Address Mask Requests (Identifying Solaris Machines)
 6.3 TOSing OSs out of the Window / Fingerprinting Microsoft Windows 2000
 6.7 Using ICMP Address Mask Requests
 6.8 Using ICMP Information Requests
 6.9 Identifying operating systems according to their replies for non-ECHO ICMP

requests aimed at the broadcast address.
 6.10 IP TTL Field Value with ICMP

 6.10.1 IP TTL Field Value with ICMP ECHO Replies
 6.10.2 IP TTL Field Value with ICMP ECHO Requests

ICMP Usage in Scanning
Version 2.5

9

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

 6.11 DF Bit
 6.12 DF Bit Echoing
 6.12.1 DF Bit Echoing with ICMP Echo requests
 6.12.2 DF Bit Echoing with ICMP Address Mask requests
 6.12.3 DF Bit Echoing with ICMP Timestamp requests
 6.12.4 Using all of the Information in order to identify the maximum of operating
 systems.
 6.12.5 Why this would work (for the skeptical)
 6.13 What will not provide any gain compared to the effort and the detection ability?
 6.13.1 Unusual big ICMP Echo messages

7.0 Filtering ICMP on your Filtering Device to Prevent Scanning Using ICMP

7.3 Other Considerations
 More information was added.

Appendixes
 Appendix C: Table - Mapping Operating Systems for answering/discarding ICMP query

Message types.
 Appendix D: Table - ICMP Query Message Types with Code Field !=0
 Appendix E: Table - ICMP Query Message Types aimed at a Broadcast Address
 Appendix F: Table - ICMP Query Message Types with TOS !=0
 Appendix G: Table - DF Bit Echoing

1.4.2 Version 2.0 to Version 2.01
The Introduction was re-written

1.4.3 Version 2.01 to Version 2.5
To Section 4 “Inverse Mapping” more information and explanations were added.

Section 6 is now divided into four main subjects:

• Fingerprinting using regular ICMP Query requests
• Fingerprinting using crafted ICMP Query request
• Fingerprinting using ICMP Error Messages
• Not that useful fingerprinting methods

Multiple new fingerprinting methods based on ICMP Error Messages were introduced.

I have also introduced few Fingerprinting method based on ICMP Query messages: “Using the
Unused (Identifying Sun Solaris & HP-UX 10.30 & 11.0x)“, “Precedence Bits Echoing (Win2k,
ULTRIX Identification)”, “The TOS Byte Unused Bit Echoing (Identifying Win2k, ULTIX)”.

“The DF Bit Playground” fingerprinting method was better explained and explored.

Appendix A now includes explanation for the various ICMP Error Messages.

ICMP Usage in Scanning
Version 2.5

10

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

2.0 Host Detection using the ICMP Protocol2
The Host Detection stage gives a malicious computer attacker crucial information by identifying
the computers on the targeted network that are reachable from the Internet. This process belongs
to the scanning stage, which is one of the first stages in the Information Gathering process. The
information collected during this stage could later lead to an attempt to break in to one (or more)
of the targeted network computers. This, if the information gathered would be sufficient for the
malicious computer attacker.

2.1 ICMP ECHO (Type 8) and ECHO Reply (Type 0)
We can use an ICMP ECHO datagram to determine whether a target IP address is active or not,
by simply sending an ICMP ECHO3 (ICMP type 8) datagram to the targeted system and waiting
to see if an ICMP ECHO Reply (ICMP type 0) is received. If an ICMP ECHO reply is received, it
would indicate that the target is alive (few firewalls spoof ICMP ECHO replies from protected
hosts); No response means the target is down or a filtering device is preventing the incoming
ICMP ECHO datagram from getting inside the protected network or the filtering device prevents
the initiated reply from reaching the Internet.

Figure 1: ICMP ECHO Mechanism

This mechanism is used by the Ping command to determine if a destination host is reachable.

In the next example two LINUX machines demonstrate the usage of Ping:

[root@stan /root]# ping 192.168.5.5
PING 192.168.5.5 (192.168.5.5) from 192.168.5.1 : 56(84) bytes of data.
64 bytes from 192.168.5.5: icmp_seq=0 ttl=255 time=4.4 ms
64 bytes from 192.168.5.5: icmp_seq=1 ttl=255 time=5.9 ms
64 bytes from 192.168.5.5: icmp_seq=2 ttl=255 time=5.8 ms

--- 192.168.5.5 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 4.4/5.3/5.9 ms

A Snort trace4:
01/26-13:16:25.746316 192.168.5.1 -> 192.168.5.5

2 For more information about the ICMP Protocol please read “Appendix A: The ICMP Protocol”.
3 From a technical point of view: The sending side initializes the identifier (used to identify ECHO requests aimed at
different destination hosts) and sequence number (if multiple ECHO requests are sent to the same destination host), adds
some data (arbitrary) to the data field and sends the ICMP ECHO to the destination host. In the ICMP header the code
equals zero. The recipient should only change the type to ECHO Reply and return the datagram to the sender.
4 Snort, written by Martin Roesch, can be found at http://www.snort.org.

ICMP ECHO request

If alive and not filtered – ICMP ECHO
Reply

ICMP Usage in Scanning
Version 2.5

11

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

ICMP TTL:64 TOS:0x0 ID:6059
ID:5721 Seq:1 ECHO
89 D7 8E 38 27 63 0B 00 08 09 0A 0B 0C 0D 0E 0F ...8'c..........
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./
30 31 32 33 34 35 36 37 01234567

01/26-13:16:25.746638 192.168.5.5 -> 192.168.5.1
ICMP TTL:255 TOS:0x0 ID:6072
ID:5721 Seq:1 ECHO REPLY
89 D7 8E 38 27 63 0B 00 08 09 0A 0B 0C 0D 0E 0F ...8'c..........
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./
30 31 32 33 34 35 36 37 01234567

Checksum

Sequence NumberIdentifier

Code = 0Type

0 4 8 16 31

Data...

Figure 2: ICMP ECHO Request & Reply message format

Countermeasure: Block ICMP ECHO requests coming from the Internet towards your network at
your border router and/or Firewall5.

2.2 ICMP Sweep (Ping Sweep)
Querying multiple hosts using ICMP ECHO is referred to as ICMP Sweep (or Ping Sweep).

For a small to midsize network the Ping utility is an acceptable solution to this kind of host
detection, but with large networks (such as Class A, or a full Class B) this kind of scan is fairly
slow mainly because Ping waits for a reply (or a time out to be reached) from the probed host
before proceeding to the next one.

fping6 is a UNIX utility which sends parallel mass ECHO requests in a round robin fashion
enabling it to be significantly faster than the usual Ping utility. It can also be fed with IP addresses
with its accompanied tool gping. gping is used to generate a list of IP addresses which would be
later fed into fping, directly or from a file, to perform the ICMP sweep. fping is also able to resolve
hostnames of the probed machines if using the –d option.

Another UNIX tool that is able of doing an ICMP sweep in parallel, resolve the hostnames of the
probed machines, save it to a file and a lot more is NMAP7, written by Fyodor.

5 It is better to filter unwanted traffic at your border router, reducing traffic rates for your firewall.
8 ftp://ftp.tamu.edu/pub/Unix/src
7 http://www.insecure.org

ICMP Usage in Scanning
Version 2.5

12

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

For the Microsoft Windows operating system a notable ICMP sweep tool is Pinger from Rhino98,
able of doing what fping and NMAP do regarding this kind of scan.

Trying to resolve the names of the probed machines may discover the malicious computer
attacker’s IP number used for the probing, using the log of the authoritative DNS server.

The next example demonstrates the usage of NMAP to perform an ICMP sweep9 against 20 IP
addresses. Our test lab contains two LINUX machines running Redhat Linux v6.1, Kernel 2.2.12
(Stan & Kenny) and one Windows NT WRKS SP4 (Cartman). As it can be seen all of the
machines answered the probe:

[root@stan /root]# nmap -sP -PI 192.168.5.1-20

Starting nmap V. 2.3BETA13 by fyodor@insecure.org (
www.insecure.org/nmap/)
Host stan.sys-security.com (192.168.5.1) appears to be up.
Host kenny.sys-security.com (192.168.5.5) appears to be up.
Host cartman.sys-security.com (192.168.5.15) appears to be up.
Nmap run completed -- 20 IP addresses (3 hosts up) scanned in 3 seconds

If we wish to avoid the automatic resolving done by NMAP we should use the –n option to
eliminate it.

ICMP sweeps are easily detected by IDS (Intrusion Detection Systems) whether launched in the
regular way, or if used in a parallel way.

Countermeasure: Block ICMP ECHO requests coming from the Internet towards your network at
your border router and/or Firewall.

2.3 Broadcast ICMP
A simpler way to map a targeted network for alive hosts is by sending an ICMP ECHO request to
the broadcast address or to the network address of the targeted network.

The request would be broadcasted to all hosts on the targeted network. The alive hosts will send
an ICMP ECHO Reply to the prober’s source IP address (additional conditions apply here).

The malicious computer attacker has to send only one IP packet to produce this behavior.

This technique of host detection is applicable only to some of the UNIX and UNIX-like hosts of the
targeted network. Microsoft Windows based machines will not generate an answer (ICMP ECHO
Reply) to an ICMP ECHO request aimed at the broadcast address or at the network address.
They are configured not to answer those queries out-of-the box (This applies to all Microsoft
Windows operating systems accept for Microsoft Windows NT 4.0 with service pack below SP4).
This is not an abnormal behavior as RFC 112210 states that if we send an ICMP ECHO request to
an IP Broadcast or IP Multicast addresses it may be silently discarded by a host.

8 The Rhino9 group no longer exists. Their tools are available from a number of sites on the Internet.
9 The –sP –PI options enable NMAP to perform only an ICMP Sweep. The default behavior when using the –sP option is
 different and includes the usage of TCP ACK host detection technique as well.
10 RFC 1122: Requirements for Internet Hosts - Communication Layers, http://www.ietf.org/rfc/rfc1122.txt.

ICMP Usage in Scanning
Version 2.5

13

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Broadcast Address
Netowrk Address

ICMP Echo Request(s)

Figure 3: Broadcast ICMP

The next example demonstrates the behavior expected from hosts when sending an ICMP ECHO
request to the broadcast address of a network. The two LINUX machines on our test lab
answered the query while the Microsoft Windows NT 4.0 Workstation with SP6a machine silently
ignored it.

[root@stan /root]# ping -b 192.168.5.255
WARNING: pinging broadcast address
PING 192.168.5.255 (192.168.5.255) from 192.168.5.1 : 56(84) bytes of
data.
64 bytes from 192.168.5.1: icmp_seq=0 ttl=255 time=4.1 ms
64 bytes from 192.168.5.5: icmp_seq=0 ttl=255 time=5.7 ms (DUP!)

--- 192.168.5.255 ping statistics ---
1 packets transmitted, 1 packets received, +1 duplicates, 0% packet
loss
round-trip min/avg/max = 4.1/4.9/5.7 ms

In the next example I have sent an ICMP ECHO request to the network address of the targeted
network. The same behavior was produced. The LINUX machines answered the ICMP ECHO
request while the Microsoft Windows NT 4.0 with SP6a machine ignored it.

[root@stan /root]# ping -b 192.168.5.0
WARNING: pinging broadcast address
PING 192.168.5.0 (192.168.5.0) from 192.168.5.1 : 56(84) bytes of data.
64 bytes from 192.168.5.1: icmp_seq=0 ttl=255 time=7.5 ms
64 bytes from 192.168.5.5: icmp_seq=0 ttl=255 time=9.1 ms (DUP!)

--- 192.168.5.0 ping statistics ---
1 packets transmitted, 1 packets received, +1 duplicates, 0% packet
loss
round-trip min/avg/max = 7.5/8.3/9.1 ms

Note: Broadcast ICMP may result in a Denial-Of-Service condition if a lot of machines response
to the query at once.

ICMP Usage in Scanning
Version 2.5

14

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

A more accurate table that lists which operating systems would answer to an ICMP ECHO
request aimed at their Network / Broadcast address is given below:

Operating System

Echo Request

Broadcast

Debian GNU/ LINUX 2.2, Kernel 2.4 test 2 +
Redhat LINUX 6.2 Kernel 2.2.14 +

FreeBSD 4.0 -
FreeBSD 3.4 -
OpenBSD 2.7 -
OpenBSD 2.6 -
NetBSD

Solaris 2.5.1 +
Solaris 2.6 +
Solaris 2.7 +
Solaris 2.8 +

HP-UX v10.20 +

AIX

ULTRIX

Windows 95 -
Windows 98 -
Windows 98 SE -
Windows ME -
Windows NT 4 WRKS SP 3 -
Windows NT 4 WRKS SP 6a -
Windows NT 4 Server SP4 -
Windows 2000 Professional (and SP1) -
Windows 2000 Server (and SP1) -

Table 1: Which Operating Systems would answer to an ICMP ECHO Request aimed at the Broadcast

Address of the Network they reside on?

Countermeasure: Block the IP directed broadcast on the border router.

2.4 Non-ECHO ICMP
ICMP ECHO is not the only ICMP query message type available with the ICMP protocol.

Non-ECHO ICMP messages are being used for more advanced ICMP scanning techniques (not
only probing hosts, but network devices, such as a router, as well).

The group of ICMP query message types includes the following:

ECHO Request (Type 8), and Reply (Type 0)
Time Stamp Request (Type 13), and Reply (Type 14)
Information Request (Type 15), and Reply (Type 16)
Address Mask Request (Type 17), and Reply (Type 18)

 Router Solicitation (Type 10), and Router Advertisement (Type 9)

ICMP Usage in Scanning
Version 2.5

15

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

2.4.1 ICMP Time Stamp Request (Type 13) and Reply (Type 14)
The ICMP Time Stamp Request and Reply allows a node to query another for the current time.
This allows a sender to determine the amount of latency that a particular network is experiencing.
The sender initializes the identifier (used to identify Timestamp requests aimed at different
destination hosts) and sequence number (if multiple Timestamp requests are sent to the same
destination host), sets the originate time stamp and sends it to the recipient.

The receiving host fills in the receive and transmit time stamps, change the type of the message
to time stamp reply and returns it to the recipient. The time stamp is the number of milliseconds
elapsed since midnight UT (GMT).

The originate time stamp is the time the sender last touched the message before sending it, the
receive time stamp is the time the recipient first touched it on receipt, and the Transmit time
stamp is the time the receiver last touched the message on sending it.

Checksum

Sequence NumberIdentifier

CodeType

Originate timestamp

Receive timestamp

Transmit timestamp

0 4 8 16 31

Figure 4: ICMP Time Stamp Request & Reply message format

As RFC 1122 state, a host may implement Timestamp and Timestamp Reply. If they are
implemented a host must follow this rules:

o Minimum variability delay in handling the Timestamp request.
o The receiving host must answer to every Timestamp request that he receives.
o An ICMP Timestamp Request to an IP Broadcast or IP Multicast address may be silently

discarded.
o The IP source address in an ICMP Timestamp reply must be the same as the specific-

destination address of the corresponding Timestamp request message.
o If a source-route option is received in a Timestamp request, the return route must be

reserved and used as a Source Route option for the Timestamp Reply option.
o If a Record Route and/or Timestamp option is received in a Timestamp request, this

option(s) should be updated to include the current host and included in the IP header of
the Timestamp Reply message.

Receiving an ICMP Timestamp Reply would reveal an alive host (or a networking device) that has
implemented the ICMP Timestamp messages.

ICMP Usage in Scanning
Version 2.5

16

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

In the next example I have sent an ICMP Time Stamp Request, using the icmpush11 tool, to a
Redhat 6.1 LINUX, Kernel 2.2.12 machine:

[root@stan /root]# icmpush -tstamp 192.168.5.5
kenny.sys-security.com -> 13:48:07

Snort Trace:
01/26-13:51:29.342647 192.168.5.1 -> 192.168.5.5
ICMP TTL:254 TOS:0x0 ID:13170
TIMESTAMP REQUEST
88 16 D8 D9 02 8B 63 3D 00 00 00 00 00 00 00 00c=........

01/26-13:51:29.342885 192.168.5.5 -> 192.168.5.1
ICMP TTL:255 TOS:0x0 ID:6096
TIMESTAMP REPLY
88 16 D8 D9 02 8B 63 3D 02 88 50 18 02 88 50 18c=..P...P.
2A DE 1C 00 A0 F9 *.....

When I have sent an ICMP Time Stamp Request to a Windows NT WRKS 4.0 SP4 machine, I got
no reply. Again, this is not an abnormal behavior from the Microsoft Windows NT machine, just an
implementation choice as RFC 1122 states.

Countermeasure: Block ICMP Time Stamp Requests coming from the Internet on the border
Router and/or Firewall.

2.4.2 ICMP Information Request (Type 15) and Reply (Type 16)
The ICMP Information Request/Reply pair was intended to support self-configuring systems such
as diskless workstations at boot time, to allow them to discover their network address.

The sender fills in the request with the Destination IP address in the IP Header set to zero
(meaning this network). The request may be sent with both Source IP Address and Destination IP
Address set to zero. The sender initializes the identifier and the sequence number, both used to
match the replies with the requests, and sends out the request. The ICMP header code field is
zero.

If the request was issued with a non-zero Source IP Address the reply would only contain the
network address in the Source IP Address of the reply. If the request had both the Source IP
Address and the Destination IP Address set to zero, the reply will contain the network address in
both the source and destination fields of the IP header.

From the description above one can understand that the ICMP Information request and reply
mechanism was intended to be used locally.

The RARP, BOOTP & DHCP protocols provide better mechanisms for hosts to discover its own
IP address.

11 Icmpush was written by Slayer of hispahack.http://hispahack.ccc.de/ .

ICMP Usage in Scanning
Version 2.5

17

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Checksum

Sequence NumberIdentifier

Code = 0Type

0 4 8 16 31

Figure 5: ICMP Information Request & Reply message format

The Information Request & Reply mechanism is now obsolete as stated in RFC 1122, and RFC
181212. A router should not originate or respond to these messages; A host should not implement
these messages.

Demands on one hand and reality on the other.

RFC 792 specifies that the Destination IP address should be set to zero, this mean that hosts that
do not reside on the same network cannot send these ICMP query type.

But what would happen if we would send an ICMP Information Request with the Destination IP
address set to a specific IP address of a host out in the void?

The next example illustrates that some operating systems would answer these queries even if not
issued from the same network. The ICMP Information Request queries we are sending are not
really RFC compliant because of the difference in the Destination IP address.

Those operating systems that answer our queries work in contrast to the RFC guidelines as well.
We would see in the next example why.

In the next example I have sent an ICMP Information Request, using the SING13 tool, to an AIX
machine:

[root@aik icmp]# ./sing -info host_address14

SINGing to host_address (ip_address): 8 data bytes
8 bytes from ip_address: icmp_seq=0 ttl=238 Info Reply
8 bytes from ip_address: icmp_seq=1 ttl=238 Info Reply
8 bytes from ip_address: icmp_seq=2 ttl=238 Info Reply
8 bytes from ip_address: icmp_seq=3 ttl=238 Info Reply

--- host_address sing statistics ---
5 packets transmitted, 4 packets received, 20% packet loss

The tcpdump trace:

19:56:37.943679 ppp0 > x.x.x.x > y.y.y.y: icmp: information request
4500 001c 3372 0000 ff01 18a7 xxxx xxxx
yyyy yyyy 0f00 bee3 321c 0000

19:56:38.461427 ppp0 < y.y.y.y > x.x.x.x: icmp: information reply
4500 001c 661b 0000 ee01 f6fd yyyy yyyy

12 RFC 1812: Requirements for IP Version 4 Routers, http://www.ietf.org/rfc/rfc1812.txt . As the RFC states this
mechanism is now obsolete - A router should not originate or respond to these messages; A host should not implement
these messages.
13 SING written by Alfredo Andres Omella, can be found at http://sourceforge.net/projects/sing.
14 Since I have queried a production system for this test, with a permission of the owners, I do not wish to identify it.

ICMP Usage in Scanning
Version 2.5

18

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

xxxx xxxx 1000 bde3 321c 0000

Lets do a quick analysis of the trace.

The ICMP Information Request:

Value

Field

Additional Information

4 4-Bit Version IP Version 4
5 4-Bit Header Length 4 x DWORD = 20 Bytes
00 8-Bit TOS TOS=0
00 1c 16-Bit Total Length
33 72 16-Bit Identification
00 00 3-Bit Flags + 13-bit Fragment Offset
ff 8-Bit TTL TTL=255
01 8-Bit Protocol 1=ICMP
18 a7 16-Bit Header Checksum
8b 5c d0 15 32-bit Source IP Address 139.92.208.21
xx xx xx xx 32-Bit Destination IP Address
0f 8-Bit Type Type=15
00 8-Bit Code Code=0
be e3 16-Bit Checksum
32 1c 16-Bit Identifier
00 00 16-Bit Sequence Number

The ICMP Information Reply:

Value

Field

Additional Information

4 4-Bit Version IP Version 4
5 4-Bit Header Length 4 x DWORD = 20 Bytes
00 8-Bit TOS TOS=0
00 1c 16-Bit Total Length
66 1b 16-Bit Identification
00 00 3-Bit Flags + 13-bit Fragment Offset
ee 8-Bit TTL TTL=238
01 8-Bit Protocol 1=ICMP
F6 fd 16-Bit Header Checksum
xx xx xx xx 32-bit Source IP Address
8b 5c d0 15 32-Bit Destination IP Address 139.92.208.21
10 8-Bit Type Type=16
00 8-Bit Code Code=0
bd e3 16-Bit Checksum
32 1c 16-Bit Identifier
00 00 16-Bit Sequence Number

Instead of having the network address in the Source IP Address we are getting the IP address of
the host.

Does the reply compliant with RFC 792 regarding this issue? Basically yes, because the RFC
does not specify an accurate behavior.

The RFC states: “To form a information reply message, the source and destination addresses are
simply reversed, the type code changes to 16, and the checksum recomputed”.

ICMP Usage in Scanning
Version 2.5

19

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

This means that if the ICMP Information Request is coming from outside (Destination is not zero)
of the network in question, the network address would not be revealed. But still a host could be
revealed if he answers the request.

The request is not compliant with the RFC in my opinion because it does not fulfill its job – getting
the network address.

Countermeasure: Block ICMP Information Requests coming from the Internet on the border
Router and/or Firewall.

2.4.3 ICMP Address Mask Request (Type 17) and Reply (Type 18)
The ICMP Address Mask Request (and Reply) is intended for diskless systems to obtain its
subnet mask in use on the local network at bootstrap time. Address Mask request is also used
when a node wants to know the address mask of an interface. The reply (if any) contains the
mask of that interface.

Once a host has obtained an IP address, it could than send an Address Mask request message
to the broadcast address of the network they reside on (255.255.255.255). Any host on the
network that has been configured to send address mask replies will fill in the subnet mask,
change the type of the message to address mask reply and return it to the sender.

RFC 1122 states that the Address Mask request & reply query messages are entirely optional.

Checksum

Sequence NumberIdentifier

CodeType

0 4 8 16 31

Subnet address mask

Figure 6: ICMP Address Mask Request & Reply message format

RFC 1122 also states that a system that has implemented ICMP Address Mask messages must
not send an Address Mask Reply unless it is an authoritative agent for address masks.

Usually an Address Mask request would be answered by a gateway.

Receiving an Address Mask Reply from a host would reveal an alive host that is an authoritative
agent for address masks. It will also allow a malicious computer attacker to gain knowledge about
your network’s configuration. This information can assist the malicious computer attacker in
determining your internal network structure, as well as the routing scheme.

Please note that a Router must implement ICMP Address Mask messages. This will help identify
routers along the path to the targeted network (it can also reveal internal routers if this kind of
traffic is allowed to reach them).

If the Router is following RFC 1812 closely, it should not forward on an Address Mask Request to
another network.

ICMP Usage in Scanning
Version 2.5

20

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

ICMP Address Mask Request aimed at a LINUX machine would not trigger an ICMP Address
Mask Reply, nor a request aimed at a Microsoft Windows NT 4 Workstation SP 6a box.

In the next example I have sent an ICMP Address Mask Request to the broadcast address
(192.168.5.255) of a class C network 192.168.5.0, spoofing the source IP to be 192.168.5.3:

[root@stan /root]# icmpush -vv -mask -sp 192.168.5.3 192.168.5.255
-> ICMP total size = 12 bytes
-> Outgoing interface = 192.168.5.1
-> MTU = 1500 bytes
-> Total packet size (ICMP + IP) = 32 bytes

ICMP Address Mask Request packet sent to 192.168.5.255 (192.168.5.255)

Receiving ICMP replies ...

192.168.5.3 ...

Type = Address Mask Request (0x11)
Code = 0x0 Checksum = 0xBF87

Id = 0x3B7 Seq# = 0x3CB0

icmpush: Program finished OK

The snort trace:

-*> Snort! <*-
Version 1.5
By Martin Roesch (roesch@clark.net, www.clark.net/~roesch)
Kernel filter, protocol ALL, raw packet socket
Decoding Ethernet on interface eth0
02/15-13:47:37.179276 192.168.5.3 -> 192.168.5.255
ICMP TTL:254 TOS:0x0 ID:13170
ADDRESS REQUEST
B9 03 8E 49 00 00 00 00 ...I....

No answer was received from the LINUX machines or from the Microsoft Windows NT
Workstation 4 SP 6a machine on our test lab.

When I have tried to map which operating systems would answer (if at all) the ICMP Address
Mask Requests, I have discovered that SUN Solaris is very cooperative with this kind of query15:

[root@aik icmp]# ./sing -mask -c 1 IP_Address16

SINGing to IP_Address (IP_Address): 12 data bytes
12 bytes from IP_Address: icmp_seq=0 ttl=241 mask=255.255.255.0

--- IP_Address sing statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
[root@aik icmp]#

The Tcpdump trace:

15 The –c 1 option enable SING to send only one ICMP datagram. The parameter can be changed to any desired value.
16 The real IP Address and the Host address were replaced.

ICMP Usage in Scanning
Version 2.5

21

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

20:02:07.402229 ppp0 > x.x.x.x > y.y.y.y: icmp: address mask request
4500 0020 3372 0000 ff01 70a7 xxxx xxxx
yyyy yyyy 1100 afe3 3f1c 0000 0000 0000

20:02:07.831426 ppp0 < y.y.y.y > x.x.x.x: icmp: address mask is
0xffffff00 (DF)

4500 0020 3617 4000 f101 3c02 yyyy yyyy
xxxx xxxx 1200 afe2 3f1c 0000 ffff ff00

Our two last examples would be an ICMP Address Mask request aimed at a router (which must
implement ICMP Address Mask Messages) and at a switch.

The following is an Address Mask Request sent to a Cisco Catalyst 5505 with OSS v4.5:

inferno:/tmp# sing -mask -c 1 10.13.58.240
SINGing to 10.13.58.240 (10.13.58.240): 12 data bytes
12 bytes from 10.13.58.240: icmp_seq=0 ttl=60 mask=255.255.255.0

--- 10.13.58.240 sing statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
inferno:/tmp#

inferno:~# tcpdump -tnxv -s 1600 icmp
tcpdump: listening on xl0
10.13.58.199 > 10.13.58.240: icmp: address mask request (ttl 255, id
13170)
0000 : 4500 0020 3372 0000 FF01 FE99 0A0D 3AC7 E.. 3r........:.
0010 : 0A0D 3AF0 1100 6BF7 8308 0000 0000 0000 ..:...k.........

10.13.58.240 > 10.13.58.199: icmp: address mask is 0xffffff00 (ttl 60,
id 20187)
0000 : 4500 0020 4EDB 0000 3C01 A631 0A0D 3AF0 E.. N...<..1..:.
0010 : 0A0D 3AC7 1200 6BF6 8308 0000 FFFF FF00 ..:...k.........
0020 : 0000 0000 0000 0000 0000 0000 0000
^C
79 packets received by filter
0 packets dropped by kernel
inferno:~#

The last example is an ICMP Address Mask request sent to an Intel 8100 ISDN Router on our
network:

[root@aik icmp]# ./sing -mask 10.0.0.254
SINGing to 10.0.0.254 (10.0.0.254): 12 data bytes
12 bytes from 10.0.0.254: icmp_seq=0 ttl=64 mask=255.255.255.0
12 bytes from 10.0.0.254: icmp_seq=1 ttl=64 mask=255.255.255.0
12 bytes from 10.0.0.254: icmp_seq=2 ttl=64 mask=255.255.255.0

--- 10.0.0.254 sing statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
[root@aik icmp]#

The tcpdump trace:

ICMP Usage in Scanning
Version 2.5

22

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

[root@aik /root]# tcpdump -x icmp
Kernel filter, protocol ALL, datagram packet socket
tcpdump: listening on all devices
16:34:30.666687 eth0 > 10.0.0.105 > 10.0.0.254: icmp: address mask
request

4500 0020 3372 0000 ff01 7304 0a00 0069
0a00 00fe 1100 0afd e402 0000 0000 0000

16:34:30.667961 eth0 < 10.0.0.254 > 10.0.0.105: icmp: address mask is
0xffffff00

4500 0020 2cb7 0000 4001 38c0 0a00 00fe
0a00 0069 1200 0afc e402 0000 ffff ff00
0000 0000 0000 0000 0000 0000 0000

Countermeasure: Block ICMP Address Mask Requests coming from the Internet on the border
Router and/or Firewall.

2.5 Non-ECHO ICMP Sweeps
We can query multiple hosts using a Non-ECHO ICMP query message type. This is referred as a
Non-ECHO ICMP sweep.

Who would answer our query?

Hosts that answer to the following:

o Hosts that are in a listening state.
o Hosts running an operating system that implemented the Non-ECHO ICMP query

message type that was sent.
o Hosts that are configured to reply to the Non-ECHO ICMP query message type (few

conditions here as well, for example: RFC 1122 states that a system that implemented
ICMP Address Mask messages must not send an Address Mask Reply unless it is an
authoritative agent for address masks).

Given the conditions above, which host(s) would answer our queries?

Operating System

Info. Request

Time Stamp Request

Address Mask Request

Debian GNU/ LINUX 2.2, Kernel 2.4 test 2 - + -
Redhat LINUX 6.2 Kernel 2.2.14 - + -

FreeBSD 4.0 - + -
FreeBSD 3.4 - + -
OpenBSD - + -
NetBSD

Solaris 2.5.1 - + +
Solaris 2.6 - + +
Solaris 2.7 - + +
Solaris 2.8 - + +

HP-UX v10.20 + + -

AIX v4.x + + -

ICMP Usage in Scanning
Version 2.5

23

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Operating System

Info. Request

Time Stamp Request

Address Mask Request

ULTRIX 4.2 – 4.5 + + +

Windows 95 - - +
Windows 98 - + +
Windows 98 SE - + +
Windows ME - + -
Windows NT 4 WRKS SP 3 - - +
Windows NT 4 WRKS SP 6a -
Windows NT 4 Server SP 4 - - -
Windows 2000 Professional - + -
Windows 2000 Server - + -

Networking Devices

Info. Request

Time Stamp Request

Address Mask Request

Cisco Catalyst 5505 with OSS v4.5 + + +
Cisco Catalyst 2900XL with IOS 11.2 + + -

Cisco 3600 with IOS 11.2 + + -
Cisco 7200 with IOS 11.3 + + -

Intel Express 8100 ISDN Router - - +

Table 2: non-ECHO ICMP Query of different Operating Systems and Networking Devices

Countermeasure: Block ICMP Information Requests, ICMP Address Mask Requests & ICMP
Time Stamp Requests coming from the Internet on the border Router and/or Firewall.

2.6 Non-ECHO ICMP Broadcasts
We can send a Non-ECHO ICMP query message type to the broadcast address or to the network
address of the targeted network.

The request would be broadcasted to all listening hosts on the targeted network.

Who would answer our query?

o Hosts that are in a listening state
o Hosts running an operating system that implemented the Non-ECHO ICMP query

message type that was sent.
o Hosts that are configured to reply to the Non-ECHO ICMP query message type (few

conditions here as well, for example: a host may discard Non-ECHO ICMP query
message type requests targeted at the broadcast address. For example an ICMP
Timestamp Request to an IP Broadcast or IP Multicast address may be silently
discarded).

Given the conditions above, the answering hosts would almost always be UNIX and UNIX-like
machines. SUN Solaris, HP-UX, and LINUX are the only operating systems, from the group of
operating systems I have tested, that would answer to an ICMP Timestamp Request aimed at the
broadcast address of a network. HP-UX would answer Information Requests aimed at the
broadcast address of a network. Non-would answer to an ICMP Address Mask Request aimed at
the broadcast address of a network.

ICMP Usage in Scanning
Version 2.5

24

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Operating System

Info. Request

Broadcast

Time Stamp Request

Broadcast

Address Mask Request

Broadcast

Debian GNU/ LINUX 2.2, Kernel 2.4 test 2 - + -
Redhat LINUX 6.2 Kernel 2.2.14 - + -

FreeBSD 4.0 - - -
FreeBSD 3.4
OpenBSD 2.7 - - -
OpenBSD 2.6 - - -
NetBSD

Solaris 2.5.1 * + -
Solaris 2.6 * + -
Solaris 2.7 * + -
Solaris 2.8 * + -

HP-UX v10.20 + + -

AIX 4.x

ULTRIX 4.2 – 4.5

Windows 95
Windows 98 - - -
Windows 98 SE - - -
Windows ME - - -
Windows NT 4 WRKS SP 3 - - -
Windows NT 4 WRKS SP 6a
Windows NT 4 Server SP 4 - - -
Windows 2000 Professional (& SP1) - - -
Windows 2000 Server (& SP1) - - -

Table 3: Operating Systems, which would answer to requests, aimed at the Broadcast address

Networking Devices

Info. Request

Broadcast

Time Stamp Request

Broadcast

Address Mask Request

Broadcast

Cisco Catalyst 5505 with OSS v4.5 + + +
Cisco Catalyst 2900XL with IOS 11.2 + - -

Cisco 3600 with IOS 11.2 + - -
Cisco 7200 with IOS 11.3 + - -

Intel Express 8100 ISDN Router - - -

Table 4: Networking Devices, which would answer to requests, aimed at the Broadcast address

Countermeasure: Block the IP directed broadcast on the border router. Block ICMP Information
Requests, ICMP Address Mask Requests & ICMP Time Stamp Requests coming from the
Internet on the border Router and/or Firewall.

ICMP Usage in Scanning
Version 2.5

25

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

3.0 Advanced Host Detection using the ICMP Protocol (using ICMP Error
Messages generated from the probed machines)
The advanced host detection methods rely on the idea that we can use various methods in order
to elicit an ICMP Error Message back from a probed machine and discover its existence. Some of
the methods described here are:

• Mangling IP headers
o Header Length Field
o IP Options Field

• Using non-valid field values in the IP header
o Using valid field values in the IP header

• Abusing Fragmentation
• The UDP Scan Host Detection method

With the first method we are using bad IP headers in the IP datagram that would generate an
ICMP Parameter Problem error back from the probed machine to the source IP address of the
probing datagram. The second method use non-valid field values in the IP header in order to
force the probed machine to generate ICMP Destination Unreachable error message back to the
malicious computer attacker. The third method discussed uses fragmentation to trigger an ICMP
Fragment Reassembly Time Exceeded error message from the probed machine. The last method
uses the UDP Scan method to elicit ICMP Port Unreachable error message back from a closed
UDP port(s) on the probed host(s).

When using some of those methods we can determine if a filtering device is present and some
can even discover the Access Control List a Filtering Device is forcing on the protected network.

4 bit
Version

4 bit
Header
Length

8-bit type of service
 (TOS)=0 16-bit total length (in bytes)

16-bit identification 3 bit
Flags 13-bit Fragment Offset

8-bit time to live
(TTL)

8-bit protocol=1
(ICMP) 16-bit header checksum

32-bit source IP address

Options (if any)

32-bit destination IP address

20 bytes

0 8 16 314

Figure 7: The IP Header

3.1 Sending IP Datagrams with bad IP headers fields – generating ICMP Parameter
Problem error message back from probed machines
An ICMP Parameter Problem error message is sent when a router (must generate this message)
or a host (should generate this message) process a datagram and finds a problem with the IP
header parameters, which is not specifically covered by another ICMP error message. The ICMP
Parameter Problem error message is only sent if the error caused the datagram to be discarded.

We have some variants with this type of Host Detection. We send an illegal forged datagram(s)
with bad IP header field(s), that no specific ICMP error message is sent for this field(s). It will

ICMP Usage in Scanning
Version 2.5

26

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

force a Host to send back an ICMP Parameter Problem Error message with either Code 0 or
Code 2 (When code 0 is used, the pointer field will point to the exact byte in the original IP
Header, which caused the problem. Code 2 is sent when the Header length or the total packet
length values of the IP datagram do not appear to be accurate) to the source IP address of the
bad IP datagram and reveal its existence. With this type of host detection it is not relevant what
would be the protocol (TCP/UDP/ICMP) embedded inside the IP datagram. All we care about is
the ICMP Error messages generated by the probed machine (if any).

This method is very powerful in detecting host(s) on the probed network with direct access from
the Internet, since a host should generate this error message. Routers must generate the ICMP
Parameter Problem error message as well, but not all of them check the correctness of some
fields inside the IP header like a host does (processing of some fields is done on the host only).

According to RFC 1122 a host should check for validity of the following fields when processing a
packet17:

• Version Number – if not 4 a host must silently discard the IP packet.
• Checksum – a host should verify the IP header checksum on every received datagram

and silently discard every datagram that has a bad checksum.

A router should check for the validity of the following fields when processing a packet18:

• Checksum – a router must verify the IP checksum of any packet it received, and must
discard messages containing invalid checksums.

The conditions outlined eliminate the usage of this method to a limited number of fields only.

It is possible to send an IP datagram with bad field(s) in the IP header, which will get routed
without getting dropped in the way to the probed machine. It should be noted that different routers
perform different checks regarding the IP header (different implementation and interpretation of
RFC 1812). When a router, because of a bad IP header, drops an IP packet and sends an ICMP
Parameter Problem error message, it is possible to identify the manufacture of the router, and to
adjust the wrong IP header field correctly according to a field, which is not checked by the
manufacture of that particular router.

A router may be more forgiving than a Host regarding the IP header. This may result from the fact
that a router is a vehicle for delivering the IP datagram and a Host is the Destination and the
place where more processing on the datagram is done.

The downside for this method is the detection. Intrusion Detection Systems should alert you
about abnormalities in the attacked network traffic, since not every day you receive IP packets
with bad IP Header field(s).

We can use this type of Host Detection to sweep through the entire IP range of an organization
and get back results, which will map all the alive hosts on the probed network with direct access
from the Internet.

Even if a firewall or another filtering device is protecting the probed network we can still try to
send those forged packets to an IP addresses with ports that are likely to be opened. For

17 RFC 1122 – Requirements for Internet Host, http://www.ietf.org/rfc/rfc1122.txt.
18 RFC 1812 – Requirements for IPv4 Routers, http://www.ietf.org/rfc/rfc1812.txt.

ICMP Usage in Scanning
Version 2.5

27

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

example - TCP ports 21,25,80; UDP port 53; and even try to send an ICMP message presumably
coming back from a Host/Router who generated it upon receiving data from the attacked network.

In my opinion Firewalls/Filtering Devices should check the validity of those fields used to elicit the
ICMP Parameter Problem error message and disallow this kind of traffic.

An example is given here using the ISIC tool written by Mike Frantzen19. ISIC sends randomly
generated packets to a target computer. Its primary uses are to stress test an IP stack, to find
leaks in a firewall, and to test the implementation of Intrusion Detection Systems and firewalls.
The user can specify how often the packets will be fragmented; have IP options, TCP options, an
urgent pointer, etc.

In the next example I have sent 20 IP Packets from a LINUX machine to a Microsoft Windows NT
WRKS 4 SP4 machine. The datagrams were not fragmented nor bad IP version numbers were
sent. The only weird thing sent inside the IP headers was random IP Header length, which have
produced ICMP Parameter Problem Code 2 error message as I anticipated.

[root@stan packetshaping]# ./isic -s 192.168.5.5 -d 192.168.5.15 -p 20
-F 0 -V 0 -I 100
Compiled against Libnet 1.0
Installing Signal Handlers.
Seeding with 2015
No Maximum traffic limiter
Bad IP Version = 0% Odd IP Header Length = 100%
Frag'd Pcnt = 0%

Wrote 20 packets in 0.03s @ 637.94 pkts/s

tcpdump trace:

12:11:05.843480 eth0 > kenny.sys-security.com > cartman.sys-
security.com: ip-proto-110 226 [tos 0xe6,ECT] (ttl 110, id 119,
optlen=24[|ip])

12:11:05.843961 eth0 P cartman.sys-security.com > kenny.sys-
security.com: icmp: parameter problem - octet 21 Offending pkt:
kenny.sys-security.com > cartman.sys-security.com: ip-proto-110 226
[tos 0xe6,ECT] (ttl 110, id 119, optlen=24[|ip]) (ttl 128, id 37776)

Other fields we can use inside the IP Header
In the last example we have used a bad Header Length field value to generate an ICMP
Parameter Problem code 2-error message.

An ICMP Parameter Problem would almost always result from an incorrect usage of the IP option
field as well.

3.1.1 ACL Detection using IP Datagrams with bad IP headers fields
If we probe the entire IP range of the targeted network with all combinations of protocols and
ports, it would draw us the targeted network topology map, and will allow us to determine the
access list (ACL) a Filtering Device (If present, and not blocking outgoing ICMP Parameter
Problem Error messages) is forcing.

19 http://expert.cc.purdue.edu/~frantzen/

ICMP Usage in Scanning
Version 2.5

28

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

This, if the filtering device does not check the validity of the mangled IP header fields, and allows
the specified traffic.

3.1.1.1 How we determine the ACL (ICMP Protocol embedded inside)?
When the embedded protocol is ICMP, we send various ICMP message types encapsulated
inside IP datagrams with bad IP header(s). If we receive a reply from a Destination IP address we
have a host that is alive and an ACL, which allows this type of message of ICMP to get to the
host who generated the ICMP error message (and the Parameter Problem ICMP error message
is allowed from the destination host to the Internet).

If we are not getting any reply than one of three possibilities:

• The Filtering Device disallows datagrams with the kind of bad field we are using.
• The Filtering Device is filtering the type of the ICMP message we are using.
• The Filtering Device blocks ICMP Parameter Problem error messages initiated from the

protected network destined to the Internet.

3.1.1.2 How we determine the ACL (TCP or UDP Protocol embedded inside)?
We can probe for every combination of protocol and port values inside an IP packet with bad IP
header(s). If we would receive an answer it would indicate that the protocol and port we used are
allowed to the probed host from the Internet, and the ICMP Parameter Problem error message is
allowed from the destination host in the protected network out to the Internet. It would also
indicate that the filtering device used on the targeted network is not validating the correctness of
the fields we have used in order to elicit the ICMP Parameter Problem error message.

If the embedded protocol were either TCP or UDP, a reply would not be generated if:

• The Filtering Device disallows packets with the kind of bad field we are using.
• The Filtering Device filters the Protocol used.
• The Filtering Device is filtering the specific port we are using for the probe.
• The Filtering Device blocks ICMP Parameter Problem error messages initiated from the

protected network destined to the Internet. In our case, the filtering device may be
blocking the specific host we are probing for outgoing ICMP Parameter Problem
datagrams.

Note: If we are using the IP Header Length field in order to elicit ICMP Parameter Problem error
message back from the probed host(s) than the host processing the datagram may not be able to
access the Protocol information embedded inside. The reason would be the faulty calculation that
would be made – where the header ends and the data portion begins.

Countermeasure: Block outgoing ICMP Parameter Problem from the protected network to the
Internet on the Firewall & on the border Router.

Check with the manufacture of your filtering device which fields it validates on the IP header when
processing a datagram.

ICMP Usage in Scanning
Version 2.5

29

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

3.2 IP Datagrams with non-valid field values
This Host Detection method is based on different IP header fields within the crafted IP datagram
that would have non-valid field values, which would trigger an ICMP Destination Unreachable
Error message back from the probed machines.

Note that some hosts (AIX, HP-UX, Digital UNIX) may not send ICMP Protocol Unreachable
messages.

3.2.1 The Protocol Field example
3.2.1.1 Using non-Valid (not used) IP protocol values
One such field within the IP header is the protocol field. If we will put a value, which does not
represent a valid protocol number, the probed machine would elicit an ICMP Destination
Unreachable – Protocol Unreachable error message back to the probed machine.

By sending this kind of crafted packets to all IP addresses within the IP address range of the
probed network we can map the hosts that are directly connected to the Internet (assuming that
no filtering device is present, or filtering the specific traffic).

3.2.1.1.1 Detecting if a Filtering Device is present
A packet sent with a protocol value, which does not represent a valid protocol number, should
elicit an ICMP Destination Unreachable – Protocol Unreachable from the probed machine. Since
this value is not used (and not valid) all hosts probed, unless filtered or are AIX, HP-UX, Digital
UNIX machines, should send this reply. If a reply is not received we can assume that a filtering
device prevents our packet from reaching our destination or from the reply to reach us back.

3.2.1.2 Using all combination of the IP protocol filed values
The difference with this variant is that we use all of the combinations available for the IP protocol
field – since the IP protocol field has only 8 bits in length, there could be 256 combinations
available.

NMAP 2.54 Beta 1 has integrated this variant and Fyodor have named it - IP Protocol scan.
NMAP sends raw IP packets without any further protocol header (no payload) to each specified
protocol on the target machine. If an ICMP Protocol Unreachable error message is received, the
protocol is not in use. Otherwise it is assumed it is opened (or a filtering device is dropping our
packets).

If our goal was Host Detection only, than using the NMAP implementation would be just fine. But
if we wish to use this scan type for other purposes, such as ACL detection, than we would need
the payload data as well (the embedded protocol’s data).

We can determine if a filtering device is present quite easily using this scan method. If a large
number of protocols (non valid values could be among those) seems to be “opened”/used (not
receiving any reply – ICMP Protocol Unreachable) than we can assume a filtering device is
blocking our probes (if using a packet with the protocol headers as well). If the filtering device is
blocking the ICMP Protocol Unreachable error messages initiated from the protected network
towards the Internet than nearly all of the 256 possible protocol values would be seemed
“opened”/used.

With the current implementation with NMAP the 256 possible protocol values should be “opened”
when a scan is performed against a machine inside a protected network, because a packet filter
firewall (or other kind of firewall) should block the probe since it lacks information to validate the
traffic against its rule base (information in the protocol headers such as ports for example).

ICMP Usage in Scanning
Version 2.5

30

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

In the next example I have used NMAP 2.54 Beta 1 in order to scan a Microsoft Windows 2000
Professional machine:

[root@catman /root]# nmap -vv -sO 192.168.1.1

Starting nmap V. 2.54BETA1 by fyodor@insecure.org (
www.insecure.org/nmap/)
Host (192.168.1.1) appears to be up ... good.
Initiating FIN,NULL, UDP, or Xmas stealth scan against (192.168.1.1)
The UDP or stealth FIN/NULL/XMAS scan took 4 seconds to scan 254 ports.
Interesting protocols on (192.168.1.1):
(The 250 protocols scanned but not shown below are in state: closed)
Protocol State Name
1 open icmp
2 open igmp
6 open tcp
17 open udp

Nmap run completed -- 1 IP address (1 host up) scanned in 4 seconds

A tcpdump trace of some of the communication exchanged:

17:44:45.651855 eth0 > localhost.localdomain > 192.168.1.1: ip-proto-50
0 (ttl 38, id 29363)
17:44:45.652169 eth0 < 192.168.1.1 > localhost.localdomain: icmp:
192.168.1.1 protocol 50 unreachable Offending pkt:
localhost.localdomain > 192.168.1.1: ip-proto-50 0 (ttl 38, id 29363)
(ttl 128, id 578)
17:44:45.652431 eth0 > localhost.localdomain > 192.168.1.1: ip-proto-
133 0 (ttl 38, id 18)
17:44:45.652538 eth0 > localhost.localdomain > 192.168.1.1: ip-proto-
253 0 (ttl 38, id 36169)
17:44:45.652626 eth0 > localhost.localdomain > 192.168.1.1: ip-proto-92
0 (ttl 38, id 26465)
17:44:45.652727 eth0 < 192.168.1.1 > localhost.localdomain: icmp:
192.168.1.1 protocol 133 unreachable Offending pkt:
localhost.localdomain > 192.168.1.1: ip-proto-133 0 (ttl 38, id 18)
(ttl 128, id 579)
17:44:45.652760 eth0 > localhost.localdomain > 192.168.1.1: ip-proto-
143 0 (ttl 38, id 14467)
17:44:45.652899 eth0 > localhost.localdomain > 192.168.1.1: ip-proto-30
0 (ttl 38, id 30441)
17:44:45.652932 eth0 < 192.168.1.1 > localhost.localdomain: icmp:
192.168.1.1 protocol 253 unreachable Offending pkt:
localhost.localdomain > 192.168.1.1: ip-proto-253 0 (ttl 38, id 36169)
(ttl 128, id 580)

3.2.2 ACL Detection using the Protocol field
First we need to determine if a filtering device is present using a non-valid (not used) protocol
number probe. If a filtering device exists then no answer (ICMP Protocol Unreachable) will be
received from the probed machine, assuming it is not AIX, HP-UX or Digital UNIX20.

20 You can determine this using OS finger printing methods.

ICMP Usage in Scanning
Version 2.5

31

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

If a certain protocol were not allowed through the filtering device we would not receive any ICMP
error message from the probed machine. Probing for all combinations of protocols and ports
against an IP range of a targeted network using non-valid and valid protocol values can
determine the ACL a filtering device is forcing on the protected network, along with the topology
map of a targeted network (hosts reachable from the Internet).

A reply would not be generated if:

• The Filtering Device filters the Protocol we are using
• The Filtering Device is filtering the specific port we are using for the probe.
• The Filtering Device blocks ICMP Destination Unreachable - Protocol Unreachable error

messages initiated from the protected network destined to the Internet. In our case, the
filtering device may be blocking the specific host we are probing for outgoing ICMP
Destination Unreachable - Protocol Unreachable error messages.

Note: We can use this method for ACL detection but if the protocol we are using is not used on
the target machine it should be blocked on the filtering device. Than, only opened TCP/UDP ports
and allowed ICMP traffic could traverse the filtering device. If this kind of traffic is allowed we can
have better ACL detection solutions then we outlined here.

Countermeasure: Block outgoing ICMP Protocol Unreachable error messages coming from the
protected network to the Internet on your Firewall and/or Border Router. If you are using a firewall
check that your firewall block protocols which are not supported (deny all stance).

3.3 Host Detection using IP fragmentation to elicit Fragment Reassembly Time
Exceeded ICMP error message.
When a host receives a fragmented datagram with some of its pieces missing, and does not get
the missing part(s) within a certain amount of time the host will discard the packet and generate
an ICMP Fragment Reassembly Time Exceeded error message back to the sending host.

We can use this behavior as a Host Detection method, by sending fragmented datagrams with
missing fragments to a probed host, and wait for an ICMP Fragment Reassembly Time Exceeded
error message to be received from a live host(s), if any.

When we are using this method against all of the IP range of a probed network, we will discover
the network topology of that targeted network.

In the next example I have sent a TCP fragment (with the MF bit set, using the –x option with
hping2) to a Microsoft Windows ME machine:

[root@godfather bin]# hping2 -c 1 -x -y y.y.y.y
ppp0 default routing interface selected (according to /proc)
HPING y.y.y.y (ppp0 y.y.y.y): NO FLAGS are set, 40 headers + 0 data
bytes

--- y.y.y.y hping statistic ---
1 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms
[root@godfather bin]#

The tcpdump trace:

ICMP Usage in Scanning
Version 2.5

32

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

20:20:00.226064 ppp0 > x.x.x.x.1749 > y.y.y.y.0: .
1133572879:1133572879(0) win 512 (frag 31927:20@0+) (DF) (ttl 64)

4500 0028 7cb7 6000 4006 c8fd xxxx xxxx
d496 6607 06d5 0000 4390 f30f 0c13 6799
5000 0200 27a8 0000

20:21:00.033209 ppp0 < y.y.y.y > x.x.x.x: icmp: ip reassembly time
exceeded Offending pkt: [|tcp] (frag 31927:20@0+) (DF) (ttl 55) (ttl
119, id 12)

4500 0038 000c 0000 7701 6e9e yyyy yyyy
xxxx xxxx 0b01 b789 0000 0000 4500 0028
7cb7 6000 3706 d1fd xxxx xxxx yyyy yyyy
06d5 0000 4390 f30f

3.3.1 ACL Detection using IP fragmentation
This method can be used not only to map the entire topology map of the targeted network, but
also to determine the ACL a firewall or a filtering device is forcing on the protected network.

Simply using all combinations of TCP and UDP with different ports, with the IP addresses from
the IP range of the probed network will do it. When we receive a reply it means a host we queried
is alive, the port we have used is opened on that host, and the ACL allows the protocol type and
the port that was used to get to the probed machine (and the ICMP Fragment Reassembly Time
Exceeded error message back from the probed machine to the Internet).

If we were not getting any reply back from the probed machine it can mean:

• The Filtering Device filters the Protocol used.
• The Filtering Device is filtering the specific port we are using for the probe.
• The Filtering Device blocks ICMP Fragment Reassembly Time Exceeded error messages

initiated from the protected network destined to the Internet. In our case, the filtering
device may be blocking the specific host we are probing for outgoing ICMP Parameter
Problem datagrams.

3.3.1.1 An Example with UDP (Filtering Device Detection)
Since UDP is a stateless protocol it may be better suited for our needs here. The first datagram
would be fragmented including enough UDP information in the first fragmented datagram that
would be enough to verify the packet against a Firewall’s Rule base. The second part of the
datagram would not be sent. It would force any host that gets such a packet to send us back an
ICMP Fragment Reassembly Time Exceeded error message when the time for reassembly
exceeds.

If the port we were using were an open port, than the ICMP Fragment Reassembly Time
Exceeded error message would be generated. If the port were closed then an ICMP Port
Unreachable error message would be produced.

If a firewall is blocking our probed than no reply would be generated.

No reply would be an indication that traffic to the Host we probed is filtered.

3.3.1.2 An example with TCP
We can divide the first packet of the TCP handshake into two fragments. We would put enough
TCP information in the first packet that would be enough to verify the packet against the Firewall’s
Rule base (this means the port numbers we are using are included in the packet). We will not

ICMP Usage in Scanning
Version 2.5

33

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

send the second part of the packet, forcing any host that gets such a packet to send us back an
ICMP Fragment Reassembly Time Exceeded error message when the time for reassembly
exceeds. This would indicate the host is accessible by this kind of traffic, which is allowed using
the port we have specified as the destination port21.

4 bit
Version

4 bit
Header
Length

8-bit type of service 16-bit total length (in bytes)

16-bit identification 3 bit
Flags 13-bit Fragment Offset

8-bit time to live
(TTL)

8-bit protocol
(TCP) 16-bit header checksum

32-bit source IP address

Options (if any)

32-bit destination IP address

16-bit Destination Port

20 bytes

12 bytes32-bit Sequence NumberIP Data
Field

0 8 16 314

16-bit Source Port

16-bit Window6-bit Reserved4-bit Data
Offser

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Figure 8: An Example: A TCP packet fragmented after only 12 bytes of TCP information

If the port we are using is open, than the ICMP error message would be generated. If the port is
closed than a TCP RST packet should be sent back. If a filtering device were to block our probes
than no reply would be generated. No reply would be an indication that traffic to the host we
probed is filtered or the filtering device requires that the first TCP packet would not be fragmented
(which is a legitimate requirement).

3.3.1.3 An Example with ICMP
We can do the same with encapsulating the ICMP protocol. When doing so the ICMP fragmented
packets should sound the sirens when an Intrusion Detection system (if deployed) sees them.
There is no reason to fragment an ICMP datagram.

If we think of sending fragmented ICMP through a bad filtering device product than we should at
least include the first 4 bytes of the ICMP header with the IP datagram.

Countermeasure: Block outgoing ICMP Fragment Reassembly Time Exceeded Error messages.

3.4 Host Detection using UDP Scans, or why we wait for the ICMP Port
Unreachable
How can we determine if a host is alive using a UDP probe? – We use the UDP scan method that
uses ICMP Port Unreachable error message that may be generated from probed hosts as
indicator of alive hosts. With this method we are sending a UDP datagram with 0 bytes of data to
a UDP port on the attacked machine. If we have sent the datagram to a closed UDP port we will

21 In a case were a firewall is validating that the first packet is not fragmented, we can fragment another one instead. But
than this scanning method would not be any different from any other scanning method using TCP flags combinations.

ICMP Usage in Scanning
Version 2.5

34

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

receive an ICMP Port Unreachable error message. If the port is opened, we would not receive
any reply.

When a filtering device is blocking UDP traffic aimed at the attacked machine, it would copycat
the behavior pattern as with opened UDP ports.

If we probe a large number of UDP ports on the same host and we do not receive a reply from a
large number of ports, it would look like that a large number of probed UDP ports are opened.
While a filtering device is probably blocking the traffic and nearly all of the ports are closed.

How can we remedy this?
We can set a threshold number of non-answering UDP ports, when reached we will assume a
filtering device is blocking our probes.

Fyodor has implemented a threshold with NMAP 2.3 BETA 13, so when doing a UDP scan and
not receiving an answer from a certain number of ports, it would assume a filtering device is
monitoring the traffic, rather than reporting those ports as opened.

3.4.1 A Better Host Detection Using UDP Scan
We will take the UDP scan method and tweak it a bit for our needs. We know that a closed UDP
port will generate an ICMP Port Unreachable error message indicating the state of the port -
closed UDP port. We will choose a UDP port that should be definitely closed (according to the
IANA list of assigned ports ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers). For example
we can use port 0 (but it would reveal our probe pretty easily).

Based on the fact that sending a UDP datagram to a closed port should elicit an ICMP Port
Unreachable, we would send one datagram to the port we have chosen, than:

• If no filtering device is present we will receive an ICMP Port Unreachable error
message, which will indicate that the Host is alive (or if this traffic is allowed by
the filtering device).

• If no answer is given – a filtering device is covering that port.

In the next example I have used the HPING222 tool to send one UDP datagram to host
192.168.5.5 port 50, which was closed:

[root@stan /root]# hping2 -2 192.168.5.5 -p 50 -c 1
default routing not present
HPING 192.168.5.5 (eth0 192.168.5.5): udp mode set, 28 headers + 0 data
bytes
ICMP Port Unreachable from 192.168.5.5 (kenny.sys-security.com)

--- 192.168.5.5 hping statistic ---
1 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

-*> Snort! <*-
Version 1.5
By Martin Roesch (roesch@clark.net, www.clark.net/~roesch)
Kernel filter, protocol ALL, raw packet socket

22 HPING2 written by antirez, http://www.kyuzz.org/antirez/hping/ .

ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers

ICMP Usage in Scanning
Version 2.5

35

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Decoding Ethernet on interface eth0
03/12-12:54:47.274096 192.168.5.1:2420 -> 192.168.5.5:50
UDP TTL:64 TOS:0x0 ID:57254
Len: 8

03/12-12:54:47.274360 192.168.5.5 -> 192.168.5.1
ICMP TTL:255 TOS:0xC0 ID:0
DESTINATION UNREACHABLE: PORT UNREACHABLE
00 00 00 00 45 00 00 1C DF A6 00 00 40 11 0F D4E.......@...
C0 A8 05 01 C0 A8 05 05 09 74 00 32 00 08 6A E1t.2..j.

We can use the port number we have chosen, or a list of UDP ports that are likely not being used,
and query all the IP range of an attacked network. Getting a reply back would reveal a live host.
No reply would mean a filtering device is covering those hosts UDP traffic, and probably other
protocols and hosts as well.

3.5 Using Packets bigger than the PMTU of internal routers to elicit an ICMP
Fragmentation Needed and Don’t Fragment Bit was Set (configuration problem)
If internal routers have a PMTU that is smaller than the PMTU for a path going through the border
router, those routers would elicit an ICMP “Fragmentation Needed and Don’t Fragment Bit was
Set” error message back to the initiating host if receiving a packet too big to process that has the
Don’t Fragment Bit set on the IP Header, discovering internal architecture of the router
deployment of the attacked network.

This is in my opinion a configuration problem causing a security hazard.

Internal Network

DMZ

The Internet

A configuration Error example. If Internal
Routers are configured with max. MTU
smaller than the max. MTU the border

router is using, sending packets with the
Don't Fragment bit set that are small

enough to pass the border router but are
bigger than the MTU on an Internal Router

would reveal those Router's existence.

Border Router

Figure 9: Using Packets bigger than the PMTU of internal routers to elicit an ICMP
Fragmentation Needed and Don’t Fragment Bit was Set

ICMP Usage in Scanning
Version 2.5

36

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

4.0 Inverse Mapping
Inverse Mapping is a technique used to map internal networks or hosts that are protected by a
filtering devices/firewall. Usually some of those systems are not reachable from the Internet. We
use routers, which will give away internal architecture information of a network, even if the
question they were asked does not make any sense, for this scanning type. We compile a list of
IP’s that list what is not there, and use it to conclude were things probably are.

We send a number of packets to different IP’s we suspect are in the IP range of the network we
are probing. When a router, either an exterior or interior, gets those packets for further
processing, it looks at the IP address and makes decisions of routing based on it solely. When a
router gets a packets with an IP which is not used in the IP space / network segment of the part of
the probed network he serves, the router will elicit an ICMP Host Unreachable (Generated by a
router if a route to the destination host on a directly connected network is not available – the
destination host does not respond to ARP) or ICMP Time Exceeded error message(s) back to the
originator of the datagram. If we do not get an answer about a certain IP we can assume this IP
exist inside the probed network23.

4.1 Inverse Mapping Using ICMP (Echo & Echo Reply)
Theoretically speaking, using any ICMP Query Message type or any ICMP Query Reply Message
type in order to inverse map a network using a Router is possible.

With the next example I have sent an ICMP Echo Request to an IP that should be routed through
a certain router (last hop before the host):

[root@cartman]# ./icmpush -vv -echo Target_IP24

-> Outgoing interface = 192.168.1.5
-> ICMP total size = 12 bytes
-> Outgoing interface = 192.168.1.5
-> MTU = 1500 bytes
-> Total packet size (ICMP + IP) = 32 bytes

ICMP Echo Request packet sent to Target_IP (Target_IP)

Receiving ICMP replies ...

Routers_IP ...

Type = Time Exceeded (0xB)
Code = 0x0 Checksum = 0xF98F

Id = 0x0 Seq# = 0x0

./icmpush: Program finished OK

ICMP TTL:254 TOS:0x0 ID:13170
ID:12291 Seq:317 ECHO

02/13-09:16:31.724400 Routers_IP -> 192.168.1.5
ICMP TTL:57 TOS:0x0 ID:7410

23 There is also a possibility that a filtering device is blocking our probes, or the replies.
24 The real IP’s of the targeted host and the Router were replaced because of legal problems that might arise when the
ISP’s personal that was used would understand it was one of their Routers used for this experiment.

ICMP Usage in Scanning
Version 2.5

37

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

TTL EXCEEDED

00:13:12 prober> 192.168.2.5: icmp: echo reply
00:13:13 router> prober: icmp: host unreachable

Why Using ICMP Query Replies sometimes will be more beneficial than using ICMP Query
Message types?

We have more chance of getting through filtering devices, that will allow replies of certain ICMP
Query message types to get back to the issuing hosts. This might allow us to “penetrate” to
deeper networks with our crafted reply.

4.2 Inverse Mapping Using Other Protocols
The technique of inverse mapping will work with other protocols as the stimulus. It will produce
the same results since the destination Host (IP) will still be unreachable. The router one hop
before the targeted host could not arp the host, and will issue an ICMP Host Unreachable
regardless of the underlying protocol used.

Internal Network

192.168.1.1

192.168.1.1 192.168.1.20

192.168.1.5 192.168.1.8

192.168.1.1 is the destination

192.168.1.10 is the destination

192.168.1.20 is the destination

192.168.1.10 is Unreachable

Conclusion: If using 192.168.1.10 as the destination
gave us an ICMP Host Unreachable and using
192.168.1.1 and 192.168.1.20 did not, than
192.168.1.1 and 192.168.1.20 are reachable and valid
IPs within the targeted network address space

Diagram 1: The Inverse Mapping Idea

4.3 Patterns we might see
This type of scan will produce a numner of patterns. Not always, when we will see a router
issuing a host unreachable it will be because some one ment to use the inverse mapping
technique.

Lets look at our first example:

Router_IP > The_Same_IP : icmp: host Host_A unreachable
Router_IP > The_Same_IP : icmp: host Host_D unreachable
Router_IP > The_Same_IP : icmp: host Host_G unreachable
...
Router_IP > The_Same_IP : icmp: host Host_N unreachable
...

The same host is being used to scan an entire IP range of a targeted network. Some of the Hosts
the malicious computer attacker tries to reach are not reachable. Still, the malicious computer

ICMP Usage in Scanning
Version 2.5

38

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

attacker gets an idea about what is not reachable. Sometimes these results are the only
indication that the malicious computer attacker will have about the presence of Hosts.

Lets look at the next example:

18:12:21.901256 Router_IP > 192.168.46.45: icmp: host x.x.x.12
unreachable
18:12:33.676136 Router_IP > 192.168.59.63: icmp: host x.x.x.12
unreachable
18:12:33.676218 Router_IP > 192.168.59.63: icmp: host x.x.x.12
unreachable
18:13:27.084221 Router_IP > 192.168.114.37: icmp: host x.x.x.12
unreachable
18:13:45.559706 Router_IP > 192.168.22.91: icmp: host x.x.x.12
unreachable
18:13:45.559856 Router_IP > 192.168.22.91: icmp: host x.x.x.12
unreachable
18:13:48.413514 Router_IP > 192.168.250.254: icmp: host x.x.x.12
unreachable
18:13:48.413681 Router_IP > 192.168.250.254: icmp: host x.x.x.12
unreachable
18:14:31.313495 Router_IP > 192.168.247.186: icmp: host x.x.x.12
unreachable
18:14:31.313624 Router_IP > 192.168.247.186: icmp: host x.x.x.12
unreachable
18:15:32.884187 Router_IP > 192.168.12.213: icmp: host x.x.x.12
unreachable
...

What we see here is different Hosts (changed to 192.168.x.x) failing to reach the x.x.x.12 IP. The
Router is sending them all an ICMP Host Unreachable error message.

How come different Hosts (IPs) are seeking this host on such a short notice?

Probably what we are seeing is a decoy scan. A decoy scan is a type of scan, which involves
multiple IPs, which are fed to the network-scanning tool as decoys. The real IP of the malicious
computer attacker (or a machine he compromised) will be among those. For the defending side a
question will be asked: What IP among all IPs, which are knocking on the door, is the IP the
attacker was using?

With our example the IP is reported, to all seeking hosts, to be unreachable. The Router is trying
to deliver the packet and fails with his ARP requests.

ICMP Usage in Scanning
Version 2.5

39

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Internal Network

192.168.1.1

192.168.1.1 192.168.1.20

192.168.1.5 192.168.1.8

A Decoy Scan

Some Hosts that were used for the decoy
scan will receive "feedback" from the

scanned network. Among that ICMP Host
Unreachables from the Routers of the

targeted network.

With this example the malicious
computer attacker has a way to get
the answers the targeted network

is producing. Attacking machine on
the Upstream from the target

network
Traffic from a

"number" of hosts
seeking the same

Diagram 2: A Decoy Scan Example

ICMP Usage in Scanning
Version 2.5

40

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

5.0 Using traceroute to Map a Network Topology
Traceroute is a Network debugging utility, which attempts to map all the hosts on a route to a
certain destination host/machine.

The program sends UDP (by default) or ICMP ECHO Request25 datagrams in sets of three, to a
certain destination host. The first three datagram’s to be sent have a Time-to-Live field value in
the IP Header equals to one. The program lies on the fact that a router should decrement the TTL
field value just before forwarding the datagram to another router/gateway.

If a router discovers that the Time-To-Live field value in an IP header of a datagram he process
equals zero (or less) he would discard the datagram and generate an ICMP Time Exceeded
Code 0 – transit TTL expired error message back to the originating host.

This is when a successful round is completed and another set of three datagrams is sent, this
time with a Time-to-Live field value greater by one than the last set.

The originating host would know at which router the datagram expired since it receives this
information with the ICMP Time Exceeded in Transit error message (Source IP address of the
ICMP error message would be the IP address of the router/gateway; inside the IP header + 64
bits of original data of the datagram field we would have additional informaiton that would bound
this ICMP error message to our issued traceroute command).

ChecksumCodeType

IP header + 64 bits of original data of the datagram

0 8 16 31

Unused (zero)

Figure 10: ICMP Time Exceeded message format

Since we increment the TTL field starting from one for each successful round (again - a round is
finished when the ICMP Time Exceeded in Transit error message is received) until we receive an
ICMP Port Unreachable error message (or ICMP ECHO Reply if we are using the ICMP ECHO
request datagrams) from the destined machine, we map every router/gateway/host along the path
to our destination.

By default, when sending UDP packets we use a destination port which is probably not used by
the destination host so the UDP datagram would not be processes and an ICMP Port
Unreachable error message would be generated from the destined machine. The destination port
would be incremented with each probe sent.

We get ICMP responses provided there is no prohibitive filtering or any packet loss.

25 Microsoft Windows NT and Microsoft Windows 2000 are using the tracert command, which use ICMP ECHO Request
datagrams as its default.

ICMP Usage in Scanning
Version 2.5

41

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

The output we see is a line showing the Time-To-Live, the address of the gateway, and the round
trip time of each probe. If we do not get a response back within 5 seconds an “*” is printed, which
represents no answer.

A regular traceroute example with ICMP would be26:

zuul:~>traceroute –I 10.0.0.10
traceroute to 10.0.0.10 (10.0.0.10), 30 hops max, 40 byte
packets
1 10.0.0.1 (10.0.0.1) 0.540 ms 0.394 ms 0.397 ms
2 10.0.0.2 (10.0.0.2) 2.455 ms 2.479 ms 2.512 ms
3 10.0.0.3 (10.0.0.3) 4.812 ms 4.780 ms 4.747 ms
4 10.0.0.4 (10.0.0.4) 5.010 ms 4.903 ms 4.980 ms
5 10.0.0.5 (10.0.0.5) 5.520 ms 5.809 ms 6.061 ms
6 10.0.0.6 (10.0.0.6) 9.584 ms 21.754 ms 20.530 ms
7 10.0.0.7 (10.0.0.7) 89.889 ms 79.719 ms 85.918 ms
8 10.0.0.8 (10.0.0.8) 92.605 ms 80.361 ms 94.336 ms
9 10.0.0.9 (10.0.0.9) 94.127 ms 81.764 ms 96.476 ms
10 10.0.0.10 (10.0.0.10) 96.012 ms 98.224 ms 99.312 ms

Lets assume that a network is protected by a firewall, which blocks all incoming traffic except for
traffic aimed at the DNS Machine’s UDP port 53. If we would perform a regular traceroute aimed
for the DNS machine’s IP address, our UDP datagrams would be sent with a destination port,
which is probably not used on the targeted machine, and probably blocked by a Firewall or
another filtering device. The traces would stop at the firewall at the entrance point to the probed
network.

zuul:~>traceroute 10.0.0.10
traceroute to 10.0.0.10 (10.0.0.10), 30 hops max, 40 byte
packets
1 10.0.0.1 (10.0.0.1) 0.540 ms 0.394 ms 0.397 ms
2 10.0.0.2 (10.0.0.2) 2.455 ms 2.479 ms 2.512 ms
3 10.0.0.3 (10.0.0.3) 4.812 ms 4.780 ms 4.747 ms
4 10.0.0.4 (10.0.0.4) 5.010 ms 4.903 ms 4.980 ms
5 10.0.0.5 (10.0.0.5) 5.520 ms 5.809 ms 6.061 ms
6 10.0.0.6 (10.0.0.6) 9.584 ms 21.754 ms 20.530 ms
7 10.0.0.7 (10.0.0.7) 89.889 ms 79.719 ms 85.918 ms
8 10.0.0.8 (10.0.0.8) 92.605 ms 80.361 ms 94.336 ms
9 * * *
10 * * *

We need to set the port number to 53 in order to reach the DNS server. Since the traceroute
program increases the port number every time it sends a UDP datagram, we need to calculate
the port number to start with, so when a datagram would be processed by the Firewall27 and
would be examined, it would have the appropriate port and other information needed to fit with
the Access Control List. If we use a simple equation we can calculate the starting port:

(Target port – (number of hops * number of probes)) -1

The number of hops (gateways) from our probing machine to the firewall is taken from our earlier
traceroute. We use three probes for every query with the same TTL value, each one of them uses
a different destination port number.

26 All examples taken from “A Traceroute-Like Analysis of IP Packet Responses to Determine Gateway Access Control
Lists” by David Goldsmith and Michael Shiffman. No real examples were provided because of legal issues.
27 A firewall should not elicit any reply for any traffic destined directly for him.

ICMP Usage in Scanning
Version 2.5

42

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

zuul:~>traceroute -p28 10.0.0.10
traceroute to 10.0.0.10 (10.0.0.10), 30 hops max, 40 byte packets
1 10.0.0.1 (10.0.0.1) 0.501 ms 0.399 ms 0.395 ms
2 10.0.0.2 (10.0.0.2) 2.433 ms 2.940 ms 2.481 ms
3 10.0.0.3 (10.0.0.3) 4.790 ms 4.830 ms 4.885 ms
4 10.0.0.4 (10.0.0.4) 5.196 ms 5.127 ms 4.733 ms
5 10.0.0.5 (10.0.0.5) 5.650 ms 5.551 ms 6.165 ms
6 10.0.0.6 (10.0.0.6) 7.820 ms 20.554 ms 19.525 ms
7 10.0.0.7 (10.0.0.7) 88.552 ms 90.006 ms 93.447 ms
8 10.0.0.8 (10.0.0.8) 92.009 ms 94.855 ms 88.122 ms
9 10.0.0.9 (10.0.0.9) 101.163 ms * *
10 * * *

But with the regular traceroute program we now face another difficulty. After the datagram have
passed the ACL of the Firewall (and we assume the firewall lets ICMP TTL Exceeded messages
out) and listed the outer leg of the Firewall itself as the next hop, the next UDP datagram sent
would be with a different port number - Than again it would be blocked by the firewall.

A modification to the traceroute program has been made by Michael Shiffman28 in order to stop
the port incrementation. One side affect from sending traceroutes with a fixed port number, which
is allowed on the firewalls ACL, is the final datagram, which normally would generate an ICMP
Port Unreachable message now would not be generated since the UDP port would be in a
listening state on the probed machine and would not provide an answer.

zuul:~>traceroute -S –p53 10.0.0.15
traceroute to 10.0.0.15 (10.0.0.15), 30 hops max, 40 byte
packets
1 10.0.0.1 (10.0.0.1) 0.516 ms 0.396 ms 0.390 ms
2 10.0.0.2 (10.0.0.2) 2.516 ms 2.476 ms 2.431 ms
3 10.0.0.3 (10.0.0.3) 5.060 ms 4.848 ms 4.721 ms
4 10.0.0.4 (10.0.0.4) 5.019 ms 4.694 ms 4.973 ms
5 10.0.0.5 (10.0.0.5) 6.097 ms 5.856 ms 6.002 ms
6 10.0.0.6 (10.0.0.6) 19.257 ms 9.002 ms 21.797 ms
7 10.0.0.7 (10.0.0.7) 84.753 ms * *
8 10.0.0.8 (10.0.0.8) 96.864 ms 98.006 ms 95.491 ms
9 10.0.0.9 (10.0.0.9) 94.300 ms * 96.549 ms
10 10.0.0.10 (10.0.0.10) 101.257 ms 107.164 ms 103.318 ms
11 10.0.0.11 (10.0.0.11) 102.847 ms 110.158 ms *
12 10.0.0.12 (10.0.0.12) 192.196 ms 185.265 ms *
13 10.0.0.13 (10.0.0.13) 168.151 ms 183.238 ms 183.458 ms
14 10.0.0.14 (10.0.0.14) 218.972 ms 209.388 ms 195.686 ms
15 10.0.0.15 (10.0.0.15) 236.102 ms 237.208 ms 230.185 ms

28 http://www.packetfactory.net

ICMP Usage in Scanning
Version 2.5

43

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

6.0 The usage of ICMP in Active Operating System Fingerprinting Process
Finger Printing is the art of Operating System Detection.

A malicious computer attacker needs few pieces of information before lunching an attack. First, a
target, a host detected using a host detection method. The next piece of information would be the
services that are running on that host. This would be done with one of the Port Scanning
methods. The last piece of information would be the operating system used by the host.

The information would allow the malicious computer attacker to identify if the targeted host is
vulnerable to a certain exploit aimed at a certain service version running on a certain operating
system.

In this section I have outlined the ICMP methods for this type of scan. Few methods are new and
were discovered during this research.

Using Regular ICMP Query Messages

6.1 The “Who answer what?” approach
The question “Which operating system answer for what kind of ICMP Query messages?“ help us
identify certain groups of operating systems.

For example, LINUX and *BSD based operating systems with default configuration answer for
ICMP Echo requests and for ICMP Timestamp Requests. Until Microsoft Windows 2000 family of
operating systems has been released it was a unique combination for these two groups of
operating systems. Since the Microsoft Windows 2000 operating system family mimics the same
behavior (yes mimic), it is no longer feasible to make this particular distinction.

Microsoft might have been thinking that this way of behavior might hide Microsoft windows 2000
machines in the haze. As we will see with the examples given in this research paper they have
much more to learn.

The thing is there is no clear distinction between one operating system to another based on this
data. We can only group them together and try other methodologies in order to divide those
groups a bit more29.

Other data we might use is “Which operating system answer for queries aimed at the broadcast /
network address of the network they reside on?”

For the complete mapping of the operating systems I have queried for this research please see
“Appendix C: Mapping Operating Systems for answering/ discarding ICMP query message
types”, and “Appendix E: ICMP Query Message Types aimed at a Broadcast Address”.

Two examples are given in this text for the usage of Operating System fingerprinting with the
“Who answer what?” approach.

29 Note: If the PMTU Discovery process using ICMP Echo requests is enables with HP-UX 10.30 & 11.0x operating
systems than our simple query will trigger a “retaliation” from those machines, enabling us to identify them very easily. For
more information on this issue see section 6.2

ICMP Usage in Scanning
Version 2.5

44

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

6.1.2 Using ICMP Information Requests
Because of the fact, that only few operating systems would reply to ICMP Information requests,
we can group them together.

From the information given in table 2 in Section 2.5, we can conclude that HP-UX 10.20, AIX,
ULTRIX & Open-VMS would be the only operating systems (among those I have tested) that
would produce an ICMP Information reply for these queries.

We can further distinguish between those operating systems if we would send an ICMP Address
Mask Request and wait for the reply from the systems in question. AIX and HP-UX operating
systems would not answer the query, while the ULTRIX & Open-VMS would.

ICMP Information Request

Reply No Reply

HP-UX
ULTRIX OpenVMS

AIX

ICMP Address Mask Request

Reply No Reply

1

2

ULTRIX Open-VMS HP-UX
AIX

Other OS's

Diagram 3: Finger Printing Using ICMP Information Request Combined with ICMP Address Mask Request

6.1.3 Identifying Operating Systems according to their replies for non-ECHO ICMP
requests aimed at the broadcast address
If IP directed broadcasts are not blocked, than we can identify the answering machines quite
easily.

The first step is sending an ICMP Timestamp request aimed at the broadcast address of a
targeted network. The operating systems who would answer would include SUN Solaris, HP-UX
10.20, and LINUX (Kernel version 2.2.x). We can further identify those operating systems by
sending an ICMP Information request aimed at the broadcast address of the targeted network.
HP-UX 10.20 would answer the query while SUN Solaris and LINUX would not. To distinguish
between those two we would send an ICMP Address Mask request to the IPs that did not answer
in the previous step. SUN Solaris would reply to the query while LINUX machines based on
Kernel 2.2.x would not.

ICMP Usage in Scanning
Version 2.5

45

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

For complete information see Section 2.6.

ICMP Timestamp Request aimed at the Broadcast
Address of a Network

Reply No Reply

Solaris
HP-UX

LINUX Kernel 2.2.14

ICMP Information Request aimed at the Broadcast
Address of a Network

Reply No Reply

1

2

HP-UX Solaris
LINUX Kernel 2.2.14

Other OS's

ICMP Address Mask Request Aimed at Specific IPs

No ReplyReply

3

LINUX Kernel 2.2.14Solaris

Diagram 4: Finger Printing Using non-ECHO ICMP Query Types aimed at the Broadcast Address of an

Attacked Network

6.2 The DF Bit Playground (Identifying Sun Solaris, HP-UX 10.30, 11.0x, and AIX
4.3.x based machines)
RFC 791 defines a three bits field used for various control flags in the IP Header.

Bit 0 is the reserved flag, and must be zero.

Bit 1, is called the Don’t Fragment flag, and can have two values. A value of zero (not set) is
equivalent to May Fragment, and a value of one is equivalent to Don't Fragment. If this flag is set
than the fragmentation of this packet at the IP level is not permitted, otherwise it is.

ICMP Usage in Scanning
Version 2.5

46

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Bit 2, is called the More Fragments bit. It can have two values. A value of zero is equivalent to
(this is the) Last Fragment, and a value of 1 is equivalent to More Fragments (are coming).

The next field in the IP header is the Fragment Offset field, which identifies the fragment location
relative to the beginning of the original un-fragmented datagram (RFC 791, bottom of page 23).

A close examination of the ICMP Query replies would reveal that some operating systems would
set the DF bit with their replies.

The tcpdump trace below illustrates the reply a Sun Solaris 2.7 box produced for an ICMP Echo
Request:

17:10:19.538020 if 4 > y.y.y.y > x.x.x.x : icmp: echo request (ttl
255, id 13170)

4500 0024 3372 0000 ff01 9602 yyyy yyyy
xxxx xxxx 0800 54a4 8d04 0000 cbe7 bc39
8635 0800

17:10:19.905254 if 4 < x.x.x.x > y.y.y.y : icmp: echo reply (DF) (ttl
233, id 24941)

4500 0024 616d 4000 e901 3e07 xxxx xxxx
yyyy yyyy 0000 5ca4 8d04 0000 cbe7 bc39
8635 0800

In the recent SING CVS (12 September 2000), written by Alfredo Andres Omella, which is
available from http://sourceforge.net/projects/sing, the option for detecting if the DF bit is set with
an ICMP Query reply was added, after being request by me. The following is the same ICMP
Echo request & reply, this time it is presented by SING:

[root@godfather bin]# ./sing -echo Host_Address
SINGing to www.openbsd.org (IP_Address): 16 data bytes
16 bytes from IP_Address: icmp_seq=0 DF! ttl=233 TOS=0 time=367.314 ms
16 bytes from IP_Address: icmp_seq=1 DF! ttl=233 TOS=0 time=320.020 ms
16 bytes from IP_Address: icmp_seq=2 DF! ttl=233 TOS=0 time=370.037 ms
16 bytes from IP_Address: icmp_seq=3 DF! ttl=233 TOS=0 time=330.025 ms

--- Host_Address sing statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 320.020/346.849/370.037 ms

Since www.openbsd.org uses a Sun Solaris operating system, this matches our findings.

ICMP Query replies for an operating system maintains the same behavioral patterns. Either they
set the DF bit on all ICMP query reply types or they do not.

The DF bit would be set by default with ICMP Query replies with Sun Solaris. With HP-UX 10.30,
& 11.0x, and with AIX 4.3.x setting the DF Bit will vary from one queried host to another
(explanation coming). It may be set with the first ICMP Query reply onwards, or after a number of
ICMP Query replies. This detail will help us to distinguish between Sun Solaris, HP-UX 10.30 &
11.0x, and AIX 4.3.x operating systems.

http://sourceforge.net/projects/sing
http://www.openbsd.org/

ICMP Usage in Scanning
Version 2.5

47

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Why HP-UX 10.30 / 11.0 & AIX 4.3.x operating systems act this way?
HP claims to have a proprietary method in order to determine the PMTU with HP-UX v10.30, and
HP-UX v11.0x using ICMP Echo requests. AIX 4.3.x do exactly the same.

The next trace will help understanding the process taken by HPUX 10.30 & 11.0x and AIX 4.3.x.

Here I have sent an ICMP Echo request to an HP-UX 11.0 machine:

00:27:56.884147 ppp0 > y.y.y.y > x.x.x.x: icmp: echo request (ttl 255,
id 13170)

4500 0024 3372 0000 ff01 7c51 yyyy yyyy
xxxx xxxx 0800 5238 6d04 0000 dce5 c339
8b7d 0d00

00:27:57.165620 ppp0 < x.x.x.x > y.y.y.y : icmp: echo reply (ttl 236,
id 41986)

4500 0024 a402 0000 ec01 1ec1 xxxx xxxx
yyyy yyyy 0000 5a38 6d04 0000 dce5 c339
8b7d 0d00

The first pair of ICMP Echo request and ICMP Echo reply was pretty usual. My LINUX machine
sent an ICMP Echo request and received an ICMP Echo reply from the probed machine. One
notable detail – the DF bit is not set in the ICMP Echo reply.

Than something that was not expectable has happened:

00:27:57.435620 ppp0 < x.x.x.x > y.y.y.y : icmp: echo request (DF) (ttl
236, id 41985)

4500 05dc a401 4000 ec01 d909 xxxx xxxx
yyyy yyyy 0800 7e52 9abc def0 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ICMP Usage in Scanning
Version 2.5

48

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ICMP Usage in Scanning
Version 2.5

49

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

00:27:57.435672 ppp0 > y.y.y.y > x.x.x.x: icmp: echo reply (ttl 255, id
53)

4500 05dc 0035 0000 ff01 a9d6 yyyy yyyy
xxxx xxxx 0000 8652 9abc def0 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ICMP Usage in Scanning
Version 2.5

50

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

The HPUX 11.x machine I have queried pinged me back! The ICMP Echo request size was 1500
bytes. It was the maximum transfer unit my Internet Connection was allowed to process. The
request was sent with the DF bit set. Any router along the way, trying to fragment the request
because the MTU of the destined network was smaller than the datagram’s size would fail and
send an ICMP Error message back stating a fragmentation was required but the don’t fragment

ICMP Usage in Scanning
Version 2.5

51

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

bit was set. It would allow the sending machine to send a smaller sized datagram according to its
PMTU discovery process/algorithm with ICMP. If for this ICMP Echo request an ICMP Echo reply
would be received, than the PMTU is discovered.

00:27:57.885662 ppp0 > y.y.y.y > x.x.x.x : icmp: echo request (ttl 255,
id 13170)

4500 0024 3372 0000 ff01 7c51 yyyy yyyy
xxxx xxxx 0800 5832 6d04 0100 dde5 c339
8383 0d00

00:27:58.155627 ppp0 < x.x.x.x > y.y.y.y : icmp: echo reply (DF) (ttl
236, id 41987)

4500 0024 a403 4000 ec01 debf xxxx xxxx
yyyy yyyy 0000 6032 6d04 0100 dde5 c339
8383 0d00

The following ICMP Echo Request sent from my machine to the queried HP-UX 11.x just
milliseconds after my reply to the HP-UX’s query was sent. It has resulted in an ICMP Echo reply
coming back from the queried machine. This time the DF bit was set with the ICMP Echo reply.
Rather than sending an ICMP datagram that will be fragmented somewhere along the way to the
destination machine, it is more beneficial from performance perspective, to fragment the ICMP
datagram on sending. Setting the DF bit on the following replies would help to maintain the PMTU
between the two systems, if for any reason, the PMTU would be decreased. For example,
because the datagram have used another route to the destined system.

Sending immediately another ICMP Query message type to this particular HP-UX 11.x operating
system based machine, will not result in the PMTU discovery process to be repeated. The DF Bit
would be set within the ICMP Query reply. Expect a threshold to be maintained by the HP-UX
11.x. When reached the next time we query this host with any type of communication, the
process of determining the PMTU using ICMP Echo request will begin again.

Why this method is bound to failure?

• Some ISPs would configure their routers not to allow fragmented ICMP datagrams
through. I have encountered this behavior with different ISPs I have used.

• Some machines would be configured not to reply for an ICMP Echo requests coming
from the Internet (if you read all of this research paper you’ll do that).

• This ability can be used for a denial-of-service attack with the HP-UX 10.30, and/or 11.0x
machines used as an amplifier for these attacks. Infect, HP has released a security
bulletin dated February 13, 2000 about some issues regarding this PMTU discovery
capability with ICMP. The bulletin states that “Depending upon the amount and nature of
the inbound traffic, an HP-UX 10.30/11.00/11.04 system can be used to flood a target
system with IP packets which could result in a denial of service”30.

• Easy identification of HP-UX 10.30, 11.0x machines that had the default behavior not
changed.

This gives us the ability to distinguish between Sun Solaris machines, HP-UX 11.0x/10.30
machines, and AIX 4.3.x based machines.

Sun Solaris sets the DF bit with the ICMP Query replies the operating system answers for, in
order to support its global PMTU discovery process. If the networking link will not let the ICMP
Query reply to get back to the querying host, because the MTU used is higher than the allowed

30 HP Security Bulletin - “Security Vulnerability with PMTU strategy (revised)”, February 13. 2000.

ICMP Usage in Scanning
Version 2.5

52

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

and fragmentation is not allowed (the DF Bit is set), than the size of the MTU used should be
lowered. There is no active measures with Sun Solaris as far as I know.

This is a simple operating system fingerprinting method, which does not require additional or
unusual patterns to be set.

The following operating systems where queries and checked for this kind of behavior:
Linux Kernel 2.4 test 2,4,5,6; Linux Kernel 2.2.x; FreeBSD 4.0, 3.4; OpenBSD 2.7,2.6;
NetBSD 1.4.1,1.4.2; BSDI BSD/OS 4.0,3.1; Solaris 2.6,2.7,2.8; HP-UX 10.20, 11.0x;
Compaq Tru64 5.0; Aix 4.1,3.2; Irix 6.5.3, 6.5.8; Ultrix 4.2 – 4.5; OpenVMS v7.1-2;
Novel Netware 5.1 SP1, 5.0, 3.12; Microsoft Windows 98/98SE/ME, Microsoft Windows NT
WRKS SP6a, Microsoft Windows NT Server SP4, Microsoft Windows 2000 Family.

6.2.1 Avoidance
With Sun Solaris and HPUX operating systems we can use a configuration option in order not to
use the DF bit with the ICMP Query replies31. With HP-UX 10.30 and 11.x it would not allow the
Path MTU Discovery process with ICMP Query replies to be done. This would avoid the
fingerprinting method I have introduced, which is based on the fact the DF bit is set on ICMP
Query replies from Sun Solaris, and HP-UX 10.30, and 11.x.

With HP-UX 10.30, & 11.032, one of the ndd command option is the ip_pmtu_strategy. The
variable settings for this option are either 1 or 2. If this bit value is 2, than the Path MTU
Discovery Process is used with ICMP Echo Requests. This is the default value. If this bit value
equals 1, than the HP-UX machines will not use the ICMP echo-request PMTU discovery
strategy, and will not set the DF bit after determining the accurate PMTU.

To turn off ip_path_mtu_discovery on a Sun Solaris machine use the following command as root:

ndd -set /dev/ip ip_path_mtu_discovery 0

Than when the ICMP Echo Reply is sent (this example) the DF bit is not set:

SING v1.0beta7 initiated on Host_Address at Thu Sep 14 10:01:02 2000
Command line:
-> sing -c 1 -L Host_Address
SINGing to Host_Address (IP_Address): 16 data bytes
16 bytes from 10.13.57.20: icmp_seq=0 ttl=254 TOS=0 time=1.578 ms

--- Host_Address sing statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 1.578/1.578/1.578 ms
SING finished at Thu Sep 14 10:01:02 2000

This was tested against Solaris 2.5.1, Solaris 2.6 and Solaris 2.7, all SPARC boxes.

Beware - With Sun Solaris turning this option off, will turn off the PMTU discovery process with
TCP as well. This is not recommended because of performance issues.

31 I do not have any information regarding AIX.
32 Building a Bastion Host Using HP UX 11, Kevin Stevens, http://people.hp.se/stevesk/bastion11.html.

ICMP Usage in Scanning
Version 2.5

53

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

6.3 The IP Time-to-Live Field Value with ICMP
The sender sets the time to live field to a value that represents the maximum time the datagram is
allowed to travel on the Internet.

The field value is decreased at each point that the Internet header is being processed. RFC 791
states that this field decreasement reflects the time spent processing the datagram. The field
value is measured in units of seconds. The RFC also states that the maximum time to live value
can be set to 255 seconds, which equals 4.25 minutes. The datagram must be discarded if this
field value equals zero - before reaching its destination.

Relating to this field as a measure to assess time is a bit misleading. Some routers may process
the datagram faster than a second, and some may process the datagram longer than a second.

The real intention is to have an upper bound to the datagrams lifetime, so infinite loops of
undelivered datagrams will not jam the Internet.

Having a bound to the datagram’s lifetime help us to prevent old duplicates to arrive after a
certain time elapsed. So when we retransmit a piece of information which was not previously
delivered we can be assured that the older duplicate is already discarded and will not interfere
with the process.

The IP TTL field value with ICMP has two separate values, one for ICMP query messages and
one for ICMP query replies.

The TTL field value helps us identify certain operating systems and groups of operating systems.
It also provides us with the simplest means to add another check criteria when we are querying
other host(s) or listening to traffic (sniffing).

6.3.1 IP TTL Field Value with ICMP Query Replies
We can use the IP TTL field value with the ICMP Query Reply datagrams to identify certain
groups of operating systems. The method discussed in this section is a very simple one. We send
an ICMP Query request message to a host. If we receive a reply, we would be looking at the IP
TTL field value in the ICMP query reply. The next table describes the IP TTL field values with
ICMP Echo replies for various operating systems. According to the table we can distinguish
between certain operating systems:

Operating System

IP TTL on ICMP datagrams

- In Reply -

LINUX Kernel 2.4 255
Kernel 2.2.14 255
Kernel 2.0.x33 64

FreeBSD 4.0 255
FreeBSD 3.4 255
OpenBSD 2.7 255
OpenBSD 2.6 255
NetBSD 255
BSDI BSD/OS 4.0 255
BSDI BSD/OS 3.1 255

33 Stephane Omnes provided information about LINUX Kernel 2.0.x.

ICMP Usage in Scanning
Version 2.5

54

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Operating System

IP TTL on ICMP datagrams

- In Reply -

Solaris 2.5.1 255
Solaris 2.6 255
Solaris 2.7 255
Solaris 2.8 255

HP-UX v10.20 255
HP-UX v11.0 255

Compaq Tru64 v5.0 64

Irix 6.5.3 255
Irix 6.5.8 255

AIX 4.1 255
AIX 3.2 255

ULTRIX 4.2 – 4.5 255

OpenVMS v7.1-2 255

Windows 95 32
Windows 98 128
Windows 98 SE 128
Windows ME 128
Windows NT 4 WRKS SP 3 128
Windows NT 4 WRKS SP 6a 128
Windows NT 4 Server SP4 128
Windows 2000 Family 128

 Table 5: IP TTL Field Values in replies from Various Operating Systems

If we would look at the ICMP Echo replies IP TTL field values than we can identify a few patterns:

• UNIX and UNIX-like operating systems use 255 as their IP TTL field value with ICMP
query replies.

• Compaq Tru64 5.0 and LINUX 2.0.x are the exception, using 64 as its IP TTL field value
with ICMP query replies.

• Microsoft Windows operating system based machines are using the value of 128.
• Microsoft Windows 95 is the only Microsoft operating system to use 32 as its IP TTL field

value with ICMP query messages, making it unique among all other operating systems as
well.

With the ICMP query replies we have an operating system that is clearly distinguished from the
other - Windows 95. Other operating systems are grouped into the ” 64 group” (LINUX based
Kernel 2.0.x machines & Compaq Tru64 5.0), the “255 group” (UNIX and UNIX-like), and into the
“128 group” (Microsoft operating systems).

We are not limited to ICMP ECHO replies only. We can use the other ICMP Query message
types as well, and the results should be the same. In the next example an ICMP Timestamp
request is sent to a Redhat 6.1 LINUX, Kernel 2.2.12 machine:

[root@stan /root]# icmpush -tstamp 192.168.5.5
kenny.sys-security.com -> 13:48:07

ICMP Usage in Scanning
Version 2.5

55

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

The Snort Trace:

01/26-13:51:29.342647 192.168.5.1 -> 192.168.5.5
ICMP TTL:254 TOS:0x0 ID:13170
TIMESTAMP REQUEST
88 16 D8 D9 02 8B 63 3D 00 00 00 00 00 00 00 00c=........

01/26-13:51:29.342885 192.168.5.5 -> 192.168.5.1
ICMP TTL:255 TOS:0x0 ID:6096
TIMESTAMP REPLY
88 16 D8 D9 02 8B 63 3D 02 88 50 18 02 88 50 18c=..P...P.
2A DE 1C 00 A0 F9 *.....

IP TTL field value is 255 (the machine is on the same LAN).

We can use this information with other tests as, to provide us extra criteria with zero effort.

6.3.2 IP TTL Field Value with ICMP ECHO Requests
The examination of the IP TTL field value is not limited to ICMP Query replies only. We can learn
a lot from the ICMP requests as well. The following is a Table summarizing various operating
system default values for the IP TTL field embedded inside an ICMP Query request:

Operating System

IP TTL on ICMP datagrams

- In Reply -

IP TTL on ICMP datagrams

- In Req. -

Debian GNU/ LINUX 2.2, Kernel 2.4 test 2 255 64
Redhat LINUX 6.2 Kernel 2.2.14 255 64
LINUX Kernel 2.0.x 64 64

FreeBSD 4.0 255 255
FreeBSD 3.4 255 255
OpenBSD 2.7 255 255
OpenBSD 2.6 255 255
NetBSD 255
BSDI BSD/OS 4.0 255
BSDI BSD/OS 3.1 255

Solaris 2.5.1 255 255
Solaris 2.6 255 255
Solaris 2.7 255 255
Solaris 2.8 255 255

HP-UX v10.20 255 255
HP-UX v11.0 255

Compaq Tru64 v5.0 64

Irix 6.5.3 255
Irix 6.5.8 255

AIX 4.1 255
AIX 3.2 255

ULTRIX 4.2 – 4.5 255

ICMP Usage in Scanning
Version 2.5

56

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Operating System

IP TTL on ICMP datagrams

- In Reply -

IP TTL on ICMP datagrams

- In Req. -

OpenVMS v7.1-2 255

Windows 95 32 32
Windows 98 128 32
Windows 98 SE 128 32
Windows ME 128 32
Windows NT 4 WRKS SP 3 128 32
Windows NT 4 WRKS SP 6a 128 32
Windows NT 4 Server SP4 128 32
Windows 2000 Professional 128 128
Windows 2000 Server 128 128

 Table 6: IP TTL Field Values in requests from Various Operating Systems

The ICMP Query message type used was ICMP Echo request, which is common on all operating
systems tested using the ping utility.

• LINUX Kernel 2.0.x, 2.2.x & 2.4.x use 64 as their IP TTL Field Value with ICMP Echo
Requests.

• FreeBSD 4.1, 4.0, 3.4; Sun Solaris 2.5.1, 2.6, 2.7, 2.8; OpenBSD 2.6, 2.7, NetBSD and
HP UX 10.20 use 255 as their IP TTL field value with ICMP Echo requests. With the OSs
listed above the same IP TTL Field value with any ICMP message is given.

• Windows 95/98/98SE/ME/NT4 WRKS SP3,SP4,SP6a/NT4 Server SP4 - all using 32 as
their IP TTL field value with ICMP Echo requests.

• A Microsoft window 2000 is using 128 as its IP TTL Field Value with ICMP Echo
requests.

We can distinguish between LINUX, Microsoft Windows 2000, the other Microsoft operating
systems group, and the “255 group” using this method.

6.3.3 Correlating the Information
Using the IP TTL field value with ICMP messages we can distinguish between Microsoft Windows
2000, certain Microsoft Windows Operating systems, LINUX Kernel 2.2.x & 2.4.x, LINUX Kernel
2.0.x, and the *BSD and Solaris group.

Operating System

IP TTL value in the ECHO Requests

IP TTL value in the ECHO Replies

Microsoft Windows Family 32 128
*BSD and Solaris 255 255
LINUX Kernel 2.2.x & 2.4.x 64 255
LINUX Kernel 2.0.x 64 64
Microsoft Windows 2000 128 128
Microsoft Windows 95 33 32

Table 7: Further dividing the groups of operating systems according to IP TTL field value in the ICMP ECHO

Requests and in the ICMP ECHO Replies

ICMP Usage in Scanning
Version 2.5

57

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

One would expect that the IP TTL field value would be the same with both ICMP Query requests
and ICMP Query replies. Apparently this is not true and provide us with valuable information
about the operating system querying / being queried.

6.4 Using Fragmented ICMP Address Mask Requests (Identifying Sun Solaris &
HP-UX 11.0x machines)34
It appears that only some of the operating systems would answer an ICMP Address Mask
Request as it is outlined in Table 2 in section 2.5. Those operating systems include - ULTRIX
OpenVMS, Windows 95/98/98 SE/ME, NT below SP 4, HP-UX 11.0x and SUN Solaris. How can
we distinguish between those who answer the request?

This is a regular ICMP Address Mask Request sent by SING to a SUN Solaris 2.7 machine:

[root@aik icmp]# ./sing -mask IP_Address
SINGing to IP_Address (IP_Address): 12 data bytes
12 bytes from IP_Address: icmp_seq=0 ttl=236 mask=255.255.255.0
12 bytes from IP_Address: icmp_seq=1 ttl=236 mask=255.255.255.0
12 bytes from IP_Address: icmp_seq=2 ttl=236 mask=255.255.255.0
12 bytes from IP_Address: icmp_seq=3 ttl=236 mask=255.255.255.0
12 bytes from IP_Address: icmp_seq=4 ttl=236 mask=255.255.255.0

--- IP_Address sing statistics ---
5 packets transmitted, 5 packets received, 0% packet loss

All operating systems that would answer with ICMP Address Mask Reply would reply with the
Address Mask of the network they reside on.

What would happen if we would introduce a little twist? Lets say we would send those queries
fragmented?

In the next example, I have sent ICMP Address Mask Request to the same SUN Solaris 2.7 box,
this time fragmented to pieces of 8 bytes of IP data. As we can see the answer I got was unusual:

[root@aik icmp]# ./sing -mask -c 2 -F 8 IP_Address
SINGing to IP_Address (IP_Address): 12 data bytes
12 bytes from IP_Address: icmp_seq=0 ttl=241 mask=0.0.0.0
12 bytes from IP_Address: icmp_seq=1 ttl=241 mask=0.0.0.0

--- IP_Address sing statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
[root@aik icmp]#

The tcpdump trace:

20:02:48.441174 ppp0 > y.y.y.y > Host_Address: icmp: address mask
request (frag 13170:8@0+)

4500 001c 3372 2000 ff01 50ab yyyy yyyy
xxxx xxxx 1100 aee3 401c 0000

20:02:48.442858 ppp0 > y.y.y.y > Host_Address: (frag 13170:4@8)
4500 0018 3372 0001 ff01 70ae yyyy yyyy
xxxx xxxx 0000 0000

34 The Solaris portion was also discovered by Alfredo Andres Omella.

ICMP Usage in Scanning
Version 2.5

58

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

20:02:49.111427 ppp0 < Host_Address > y.y.y.y: icmp: address mask is
0x00000000 (DF)

4500 0020 3618 4000 f101 3c01 xxxx xxxx
yyyy yyyy 1200 ade3 401c 0000 0000 0000

20:02:49.441492 ppp0 > y.y.y.y > Host_Address: icmp: address mask
request (frag 13170:8@0+)

4500 001c 3372 2000 ff01 50ab yyyy yyyy
xxxx xxxx 1100 ade3 401c 0100

20:02:49.442951 ppp0 > y.y.y.y > Host_Address: (frag 13170:4@8)
4500 0018 3372 0001 ff01 70ae yyyy yyyy
xxxx xxxx 0000 0000

20:02:50.011433 ppp0 < Host_Address > y.y.y.y: icmp: address mask is
0x00000000 (DF)

4500 0020 3619 4000 f101 3c00 xxxx xxxx
yyyy yyyy 1200 ace3 401c 0100 0000 0000

The same SUN Solaris box now replies with a 0.0.0.0 as the Address Mask for the Network it
resides on. The same behavioral patterns were produced against an HP-UX 11.0x operating
system based machine35.

What would happen with the other operating systems?

They all would respond with the real Address Mask in their replies.

Here we got a distinction between SUN Solaris & HP-UX 11.0x based machines to the other
operating systems that would answer those queries.

In Section 6.2 we were discussing the various issues regarding the DF Bit usage within the ICMP
Query replies. Both SUN Solaris and HP-UX 11.0x set the DF Bit by default in their ICMP Query
replies. HP-UX 11.0x based machines starts setting the DF Bit after they finishes the ICMP based
PMTU Discovery process (Querying the Host that has queried them with ICMP Echo request) – if
it is enabled by default. This gives us another means to distinguish between those two operating
systems on top of another method.

We can further try to distinguish between the remaining operating systems. This, if we would use
the !=0 code method I am going to introduced in section 6.8:

 Important notice: When I have tested this method I have encountered some problems replicating
the results with different ISPs. As it seems from analyzing the information I got, certain ISPs
would block fragmented ICMP datagrams. This behavior would not enable this method to
succeed. One way of testing this is to send a regular ICMP Echo request. We should watch for a
response from the probed machine. If received, than we should send ICMP Echo request, this
time fragmented. If no reply is received than your ISP is blocking ICMP fragments probably.

35 When I have published this information in Bugtraq (August 5, 2000) Peter J. Holzer notified me that HP-UX 11.00
produce the same behavior as the SUN Solaris boxes. Darren Reed also noted that because SUN Solaris and HP-UX
11.0 share the same third party (Mentat) implementation for some of their TCP/IP stacks this behavior is produced by
both.

ICMP Usage in Scanning
Version 2.5

59

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

ICMP Address Mask Request

Reply No Reply

Sun Solaris
HP-UX 11.0x

Ultrix OpenVMS
Windows 95/98/98 SE/NT Below SP 4

ICMP Address Mask Request Fragmented

Reply with 0.0.0.0
Reply with the

same Address
Mask as in Step 1

1

2

Other OS's

Ultrix OpenVMS
Windows 95/98/98 SE/NT Below SP 4

Sun Solaris
HP-UX 11.0x

ICMP Address Mask Request
with Code field !=0

3

Reply with code=0 Reply with code!=0

Windows 95/98/98 SE/NT Below SP 4 Ultrix OpenVMS

Diagram 5: Finger Printing Using ICMP Address Mask Requests

Using Crafted ICMP Query Messages

Playing with the TOS Field
Each IP Datagram has an 8-bit field called the “TOS Byte”, which represents the IP support for
prioritization and Type-of-Service handling.

MBZTOSPrecedence

0 3 4 51 2 6 7

Figure 11: The Type of Service Byte

ICMP Usage in Scanning
Version 2.5

60

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

The “TOS Byte” consists of three fields.

The “Precedence field”, which is 3-bit long, is intended to prioritize the IP Datagram. It has eight
levels of prioritization36:

Precedence

Definition

0 Routine (Normal)
1 Priority
2 Immediate
3 Flash
4 Flash Override
5 Critical
6 Internetwork Control
7 Network control

Table 8: Precedence Field Values

Higher priority traffic should be sent before lower priority traffic.

The second field, 4 bits long, is the “Type-of-Service” field. It is intended to describe how the
network should make tradeoffs between throughput, delay, reliability, and cost in routing an IP
Datagram.

RFC 134937 has defined the “Type-of-Service” field as a single enumerated value, thus
interpreted as a numeric value rather than independent flags (with RFC 791 the 4 bits were
distinct options, allowing combinations as well). The 4 bits represents a maximum of 16 possible
values.

Value (Hex)

Value (Dec)

Value (Binary)

Service

0 0 0000 Normal
1 1 1000 Minimize Delay
2 2 0100 Maximize Throughput
4 4 0010 Maximize Reliability
8 8 0001 Minimize Cost
F 15 1111 Maximize Security38

Table 9: Type-of-Service Field Values

What about the other 10 value possibilities?

RFC 1349 refer to this issue and states that “although the semantics of values other than the five
listed above are not defined by this memo, they are perfectly legal TOS values, and hosts and
routers must not preclude their use in any way”…”A host or a router need not make any
distinction between TOS values who’s semantics are defined by this memo and those that are
not”.

36 RFC 791 – Internet Protocol, http://www.ietf.org/rfc/rfc791.txt.
37 RFC 1349 - Type of Service in the Internet Protocol Suite, http://www.ietf.org/rfc/rfc1349.txt.
38 RFC 1455 - Physical Link Security Type of Service, http://www.ietf.org/rfc/rfc1455.txt.

ICMP Usage in Scanning
Version 2.5

61

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

The last field, the “MBZ” (must be zero), is unused and must be zero. Routers and hosts ignore
this last field. This field is 1 bit long.

Combining Type-of-Service flags with the different prioritization values, dictates very explicit types
of behavior with certain types of data.

Please note the not all TCP/IP implementations would use this values (nor offer a mechanism for
setting those values) and some will not handle datagrams which have Type-of-Service and/or
Precedence values other than the defaults, differently.

6.5 Precedence Bits Echoing (Fingerprinting Microsoft Windows 2000, ULTRIX,
HPUX 11.0&10.30, OpenVMS and more)
The precedence bits behavior is a problem. RFC 1122, which defines the requirements for
Internet Hosts, does not outline the way to handle the Precedence Bits with ICMP. The RFC only
statement about the Precedence Bits is:

“The Precedence field is intended for Department of Defense applications of the Internet
protocols. The use of non-zero values in this field is outside the scope of this document
and the IP standard specification. Vendors should consult the Defense Communication
Agency (DCA) for guidance on the IP Precedence field and its implications for other
protocol layers. However, vendors should note that the use of precedence will most likely
require that its value be passed between protocol layers in just the same way as the TOS
field is passed“.

This does not give us something to work with.

RFC 1812, Requirements for IP version 4 routers state that:

“An ICMP reply message MUST have its IP Precedence field set to the value as the IP
Precedence field in the ICMP request that provoked the reply”.

Echoing back the Precedence field value has its logic, because the TOS field should be echoed
back with an ICMP Query replies, and both the Precedence field and the TOS field were to
dictate very explicit types of behavior with certain types of data.

As you can see we do not have a clear ruling about this issue. I was thinking it might be a ground
for an operating system fingerprinting method.

Most operating systems I have checked will behave as the next behavioral example with AIX 4.3.
With this example an ICMP Echo request is sent which carries a value for the TOS field.

[root@godfather precedence_echo]# /usr/local/bin/sing -c 5 -TOS 128
y.y.y.y
SINGing to y.y.y.y (y.y.y.y): 16 data bytes
16 bytes from y.y.y.y: seq=0 ttl=239 TOS=128 time=5896.472 ms
16 bytes from y.y.y.y: seq=1 ttl=239 TOS=128 time=5952.071 ms
16 bytes from y.y.y.y: seq=2 ttl=239 TOS=128 time=6102.020 ms
16 bytes from y.y.y.y: seq=3 ttl=239 TOS=128 time=6261.997 ms
16 bytes from y.y.y.y: seq=4 ttl=239 TOS=128 time=5842.726 ms

--- y.y.y.y sing statistics ---
5 packets transmitted, 5 packets received, 0% packet loss

ICMP Usage in Scanning
Version 2.5

62

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

round-trip min/avg/max = 5842.726/6011.057/6261.997 ms
[root@godfather precedence_echo]#

The tcpdump trace:

21:02:53.241666 ppp0 > x.x.x.x > y.y.y.y: icmp: echo request [tos 0x80]
(ttl 255, id 13170)

4580 0024 3372 0000 ff01 619c xxxx xxxx
yyyy yyyy 0800 c278 6f05 0000 dd97 0d3a
d8af 0300

21:02:59.134297 ppp0 < y.y.y.y > x.x.x.x: icmp: echo reply [tos 0x80]
(ttl 239, id 40656)

4580 0024 9ed0 0000 ef01 063e yyyy yyyy
xxxx xxxx 0000 ca78 6f05 0000 dd97 0d3a
d8af 0300

The Host queried is using the value used for the ICMP Echo Request with its ICMP Echo Reply.

Some operating systems are the exception.

The next example is with Microsoft Windows 2000. The same ICMP Echo Request was sent.

[root@godfather precedence_echo]# /usr/local/bin/sing -c 5 -TOS 128
y.y.y.y
SINGing to y.y.y.y (y.y.y.y): 16 data bytes
16 bytes from y.y.y.y: seq=0 ttl=111 TOS=0 time=6261.043 ms
16 bytes from y.y.y.y: seq=1 ttl=111 TOS=0 time=6422.019 ms
16 bytes from y.y.y.y: seq=2 ttl=111 TOS=0 time=6572.675 ms
16 bytes from y.y.y.y: seq=4 ttl=111 TOS=0 time=6282.022 ms

--- y.y.y.y sing statistics ---
5 packets transmitted, 4 packets received, 20% packet loss
round-trip min/avg/max = 6261.043/6384.440/6572.675 ms
[root@godfather precedence_echo]#

The tcpdump trace:

20:13:36.717070 ppp0 > x.x.x.x > y.y.y.y: icmp: echo request [tos 0x80]
(ttl 255, id 13170)

4580 0024 3372 0000 ff01 d95d xxxx xxxx
yyyy yyyy 0800 df43 c304 0000 508c 0d3a
edf0 0a00

20:13:42.974295 ppp0 < y.y.y.y > x.x.x.x: icmp: echo reply (ttl 111, id
26133)

4500 0024 6615 0000 6f01 373b yyyy yyyy
xxxx xxxx 0000 e743 c304 0000 508c 0d3a
edf0 0a00

The ICMP Echo Reply will not use the value assigned to the Precedence Bits with the ICMP Echo
Request.

Which operating systems share this behavioral pattern? Microsoft Windows 2000 Family, and
ULTRIX.

ICMP Usage in Scanning
Version 2.5

63

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Differentiating between Microsoft Windows 2000 and Ultrix is easily achieved if we examine the
IP TTL field value. With ULTRIX the value assigned to the ICMP Echo reply will be 255, with
Microsoft Windows 2000 it will be 128.

Another interesting case is with HPUX 11.0. Lets examine the trace and logs:

[root@godfather precedence_echo]# /usr/local/bin/sing -c 2 -TOS 128
y.y.y.y
SINGing to y.y.y.y (y.y.y.y): 16 data bytes
16 bytes from y.y.y.y: seq=0 ttl=242 TOS=128 time=639.274 ms
16 bytes from y.y.y.y: seq=1 DF! ttl=242 TOS=0 time=310.427 ms

--- y.y.y.y sing statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 310.427/474.850/639.274 ms

The first reply from the HPUX machine echoed back the TOS field value we were using with the
ICMP Echo Request. But what have happened between the first and the second reply?

00:35:09.315260 ppp0 > x.x.x.x > y.y.y.y: icmp: echo request [tos 0x80]
(ttl 255, id 13170)

4580 0024 3372 0000 ff01 4bd1 xxxx xxxx
yyyy yyyy 0800 16f0 db3c 0000 9dc9 0d3a
56cf 0400

00:35:09.944274 ppp0 < y.y.y.y > x.x.x.x: icmp: echo request (DF) (ttl
242, id 22417)

4500 05dc 5791 4000 f201 ef79 yyyy yyyy
xxxx xxxx 0800 7e52 9abc def0 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ICMP Usage in Scanning
Version 2.5

64

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ICMP Usage in Scanning
Version 2.5

65

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

The first request was sent, as an instant reply the HPUX 11.0 machine started its PMTU
discovery process with ICMP Echo Requests and sent an ICMP Echo Request 1500 bytes long39.

00:35:09.944355 ppp0 > x.x.x.x > y.y.y.y: icmp: echo reply (ttl 255, id
14194)

4500 05dc 3772 0000 ff01 4299 xxxx xxxx
yyyy yyyy 0000 8652 9abc def0 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

39 For an explanation about the HPUX 11.0 PMTU process using ICMP Echo Requests please see section 6.2.

ICMP Usage in Scanning
Version 2.5

66

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ICMP Usage in Scanning
Version 2.5

67

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

0000 0000 0000 0000 0000 0000

00:35:09.954282 ppp0 < y.y.y.y > x.x.x.x: icmp: echo reply [tos 0x80]
(ttl 242, id 22418)

4580 0024 5792 0000 f201 34b1 yyyy yyyy
xxxx xxxx 0000 1ef0 db3c 0000 9dc9 0d3a
56cf 0400

The ICMP Echo Reply received from the HPUX 11.0 machine for the ICMP Echo Request
echoed back the TOS field value.

Another ICMP Echo Request was sent with TOS field value of 0x80 hex:

00:35:10.314321 ppp0 > x.x.x.x > y.y.y.y: icmp: echo request [tos 0x80]
(ttl 255, id 13170)

4580 0024 3372 0000 ff01 4bd1 xxxx xxxx
yyyy yyyy 0800 b7f3 db3c 0100 9ec9 0d3a
b3cb 0400

00:35:10.624275 ppp0 < y.y.y.y > x.x.x.x: icmp: echo reply (DF) (ttl
242, id 22419)

4500 0024 5793 4000 f201 f52f yyyy yyyy
xxxx xxxx 0000 bff3 db3c 0100 9ec9 0d3a
b3cb 0400

The ICMP Echo Reply received did not echo back the TOS field value, and set the DF bit. The
PMTU discovery process finished its initial stages and went to regular operation. From now on
the ICMP Echo Replies did not echo the TOS field value.

This gives us the ability to track down HPUX 11.0 (and 10.30) machines when they are using the
PMTU Discovery process.

6.5.1 Changed Pattern with other ICMP Query Message Types
We can identify change of pattern with OpenVMS, Windows 98, 98SE, and ME. With ICMP Echo
replies they all would echo back the TOS field value, but with ICMP Timestamp replies they will
change the behavior and send back 0x000. Since OpenVMS use 255 as its IP TTL field value,
and the Microsoft Windows based machines use 128, we can differentiate between them and
isolate OpenVMS, and the Microsoft based OSs.

Further distinction between the Microsoft operating systems can be achieved if we will query
them with ICMP Address Mask request, which only Microsoft Windows 98/98SE will answer for.
The Microsoft Windows ME will not reply, enabling us to identify it.

ICMP Usage in Scanning
Version 2.5

68

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

ICMP Echo Request
Precedence Bits !=0

Reply with
Precedence

Bits =0

Other OS's

1

Windows 2000 Family
Ultrix

TTL=128TTL=255

Ultrix Windows 2000 Family

ICMP Timestamp Request
Precedence Bits !=0

2

Windows 98/98SE/ME
OpenVMS

ULTRIX (identified already)
Microsoft Windows 2000 Family

(Identified Already)

Other OS's

Reply with
Precedence

Bits !=0

Reply with
Precedence

Bits =0

Reply with
Precedence

Bits !=0

TTL=128

Windows 98/98SE/ME

TTL=255

OpenVMS

ICMP Address Mask Request

ReplyNo Reply

Windows ME Windows 98/98SE

3

Diagram 6: An example for a way to fingerprint Microsoft Windows 2000, Ultrix, HPUX 11.0 & 10.30,
OpenVMS, Microsoft Windows ME, and Microsoft Windows 98/98SE based machines with ICMP Query

messages with the Precedence Bits field !=0

Operating System

Information

Request
With

Precedence!=0

Time Stamp

Request
With Precedence!=0

Address Mask

Request
With Precedence!=0

Echo Request

With Precedence!=0

Debian GNU/ LINUX 2.2,
Kernel 2.4 test 2

Not Answering !=0x00 Not Answering !=0x00

Redhat LINUX 6.2 Kernel
2.2.14

Not Answering !=0x00 Not Answering !=0x00

FreeBSD 4.0 Not Answering !=0x00 Not Answering !=0x00
FreeBSD 4.1.1 Not Answering !=0x00 Not Answering
OpenBSD 2.7 Not Answering Not Answering !=0x00
OpenBSD 2.6 Not Answering Not Answering !=0x00
NetBSD Not Answering Not Answering !=0x00
BSDI BSD/OS 4.0 Not Answering Not Answering !=0x00

ICMP Usage in Scanning
Version 2.5

69

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Operating System

Information
Request

With
Precedence!=0

Time Stamp

Request
With Precedence!=0

Address Mask

Request
With Precedence!=0

Echo Request

With Precedence!=0

BSDI BSD/OS 3.1 Not Answering Not Answering !=0x00

Solaris 2.5.1 Not Implemented
Solaris 2.6 Not Implemented !=0x00 !=0x00 !=0x00
Solaris 2.7 Not Implemented !=0x00 !=0x00 !=0x00
Solaris 2.8 Not Implemented !=0x00 !=0x00 !=0x00

HP-UX v10.20 Not Answering
HP-UX v11.0 Not Answering Not Answering !=0x00 -> 0x00 !=0x00 -> 0x00

Compaq Tru64 v5.0 !=0x00 !=0x00 Not Answering !=0x00

AIX 4.3 !=0x00 !=0x00 Not Answering !=0x00
AIX 4.2.1 !=0x00 !=0x00 Not Answering !=0x00
AIX 4.1 !=0x00 !=0x00 Not Answering !=0x00
AIX 3.2 !=0x00 !=0x00 Not Answering !=0x00

ULTRIX 4.2 – 4.5 0x00 0x00 0x00 0x00

OpenVMS v7.1-2 0x00 0x00 0x00 !=0x00

Windows 95 Not Answering Not Answering
Windows 98 Not Answering 0x00 0x00 !=0x00
Windows 98 SE Not Answering 0x00 0x00 !=0x00
Windows ME Not Answering 0x00 Not Answering !=0x00
Windows NT 4 WRKS SP 3 Not Answering Not Answering !=0x00
Windows NT 4 WRKS SP
6a

Not Answering Not Answering Not Answering !=0x00

Windows NT 4 Server SP4 Not Answering Not Answering Not Answering !=0x00
Windows 2000 Professional Not Answering 0x00 Not Answering 0x00
Windows 2000 Server Not Answering 0x00 Not Answering 0x00

Table 10: ICMP Query Message Types with Precedence Bits ! = 0

6.6 TOSing OSs out of the Window / “TOS Echoing” (Fingerprinting Microsoft
Windows 2000)
6.6.1 The use of the Type-of-Service field with the Internet Control Message Protocol
RFC 1349 also define the usage of the Type-of-Service field with the ICMP messages. It
distinguishes between ICMP error messages (Destination Unreachable, Source Quench,
Redirect, Time Exceeded, and Parameter Problem), ICMP query messages (Echo, Router
Solicitation, Timestamp, Information request, Address Mask request) and ICMP reply messages
(Echo reply, Router Advertisement, Timestamp reply, Information reply, Address Mask reply).

Simple rules are defined:

� An ICMP error message is always sent with the default TOS (0x00)

� An ICMP request message may be sent with any value in the TOS field. “A mechanism to

allow the user to specify the TOS value to be used would be a useful feature in many
applications that generate ICMP request messages”40.

40 RFC 1349 - Type of Service in the Internet Protocol Suite, http://www.ietf.org/rfc/rfc1349.txt.

ICMP Usage in Scanning
Version 2.5

70

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

The RFC further specify that although ICMP request messages are normally sent with the
default TOS, there are sometimes good reasons why they would be sent with some other
TOS value.

� An ICMP reply message is sent with the same value in the TOS field as was used in the
corresponding ICMP request message.

Using this logic I have decided to check if certain operating systems react correctly to an ICMP
Query messages with a Type-of-Service field value, which is different than the default (0x00).

The check out was produced with all ICMP query message types sent with a Type-of-Service field
set to a known value, than set to an unknown value (the term known and unknown are used here
because I was not experimenting with non-legit values, and since any value may be sent inside
this field).

The following example is an ICMP Echo request sent to my FreeBSD 4.0 machine with the TOS
field equals an 8 hex value, which is a legit TOS value. The tool used here is SING41:

[root@godfather bin]# ./sing -echo -TOS 8 IP_Address
SINGing to IP_Address (IP_Address): 16 data bytes
16 bytes from IP_Address: icmp_seq=2 ttl=243 TOS=8 time=260.043 ms
16 bytes from IP_Address: icmp_seq=3 ttl=243 TOS=8 time=180.011 ms
16 bytes from IP_Address: icmp_seq=4 ttl=243 TOS=8 time=240.240 ms
16 bytes from IP_Address: icmp_seq=5 ttl=243 TOS=8 time=260.037 ms
16 bytes from IP_Address: icmp_seq=6 ttl=243 TOS=8 time=290.033 ms

--- IP_Address sing statistics ---
7 packets transmitted, 5 packets received, 28% packet loss
round-trip min/avg/max = 180.011/246.073/290.033 ms
[root@godfather bin]#

The tcpdump trace:

17:23:46.605297 if 4 > x.x.x.x > y.y.y.y: icmp: echo request [tos 0x8]
(ttl 255, id 13170)

4508 0024 3372 0000 ff01 60e4 xxxx xxxx
yyyy yyyy 0800 0e9a d604 0600 f2ea bc39
553c 0900

17:23:46.895255 if 4 < y.y.y.y > x.x.x.x: icmp: echo reply [tos 0x8]
(ttl 243, id 58832)

4508 0024 e5d0 0000 f301 ba85 yyyy yyyy
xxxx xxxx 0000 169a d604 0600 f2ea bc39
553c 0900

This is the second test I have produced, sending ICMP Echo request with the Type-of-Service
field set to a 10 Hex value, a value that is not a known Type-of-Service value:

41 SING has the ability to monitor for any replies and than print the received TOS value. I find this option very useful, and
thank the author for embedding this function, as I requested.

ICMP Usage in Scanning
Version 2.5

71

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

[root@godfather bin]# ./sing -echo -TOS 10 IP_Address
SINGing to IP_Address (IP_Address): 16 data bytes
16 bytes from IP_Address: icmp_seq=0 ttl=243 TOS=10 time=197.933 ms
16 bytes from IP_Address: icmp_seq=1 ttl=243 TOS=10 time=340.048 ms
16 bytes from IP_Address: icmp_seq=2 ttl=243 TOS=10 time=250.025 ms
16 bytes from IP_Address: icmp_seq=3 ttl=243 TOS=10 time=230.019 ms
16 bytes from IP_Address: icmp_seq=4 ttl=243 TOS=10 time=270.017 ms
16 bytes from IP_Address: icmp_seq=5 ttl=243 TOS=10 time=270.017 ms
16 bytes from IP_Address: icmp_seq=6 ttl=243 TOS=10 time=260.021 ms

--- IP_Address sing statistics ---
7 packets transmitted, 7 packets received, 0% packet loss
round-trip min/avg/max = 197.933/259.726/340.048 ms

The tcpdump trace:

17:24:36.155298 if 4 > y.y.y.y > x.x.x.x: icmp: echo request [tos
0xa,ECT] (ttl 255, id 13170)

450a 0024 3372 0000 ff01 60e2 yyyy yyyy
xxxx xxxx 0800 af77 d904 0600 24eb bc39
865e 0200

17:24:36.415254 if 4 < x.x.x.x > y.y.y.y: icmp: echo reply [tos
0xa,ECT] (ttl 243, id 65031)

450a 0024 fe07 0000 f301 a24c xxxx xxxx
yyyy yyyy 0000 b777 d904 0600 24eb bc39
865e 0200

As it can be seen from the tcpdump trace, the ICMP Echo reply messages have maintained the
Type-of-Service value as was used in the corresponding ICMP request message.

FreeBSD 4.0 does not respond to ICMP Information request, or to ICMP Address Mask requests.
I had to verify with ICMP Timestamp requests with the same Type-of-Service values as with the
previous ICMP Echo requests that this behavior is produced with ICMP Timestamp request and
replies as well.

Again the tool I have used is SING:

[root@godfather bin]# ./sing -tstamp -TOS 8 IP_Address
SINGing to IP_Address (IP_Address): 20 data bytes
20 bytes from IP_Address: icmp_seq=0 ttl=243 TOS=8 diff=6832668
20 bytes from IP_Address: icmp_seq=1 ttl=243 TOS=8 diff=6832403
20 bytes from IP_Address: icmp_seq=2 ttl=243 TOS=8 diff=6832633
20 bytes from IP_Address: icmp_seq=3 ttl=243 TOS=8 diff=6832605
20 bytes from IP_Address: icmp_seq=4 ttl=243 TOS=8 diff=6832431

--- IP_Address sing statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
[root@godfather bin]#
The tcpdump trace:

17:26:00.455295 if 4 > x.x.x.x > y.y.y.y: icmp: time stamp request
[tos 0x8] (ttl 255, id 13170)

4508 0028 3372 0000 ff01 60e0 xxxx xxxx

ICMP Usage in Scanning
Version 2.5

72

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

yyyy yyyy 0d00 345b dd04 0400 0318 da87
0000 0000 0000 0000

17:26:00.755254 if 4 < y.y.y.y > x.x.x.x: icmp: time stamp reply [tos
0x8] (ttl 243, id 5867)

4508 0028 16eb 0000 f301 8967 yyyy yyyy
xxxx xxxx 0e00 f4ec dd04 0400 0318 da87
0380 1bb7 0380 1bb7

The second test with TOS field value set to 10 Hex value:

[root@godfather bin]# ./sing -tstamp -TOS 10 IP_Address
SINGing to IP_Address (IP_Address): 20 data bytes
20 bytes from IP_Address: icmp_seq=0 ttl=243 TOS=10 diff=6766872
20 bytes from IP_Address: icmp_seq=1 ttl=243 TOS=10 diff=6767059
20 bytes from IP_Address: icmp_seq=2 ttl=243 TOS=10 diff=6767059
20 bytes from IP_Address: icmp_seq=3 ttl=243 TOS=10 diff=6767063
20 bytes from IP_Address: icmp_seq=4 ttl=243 TOS=10 diff=6766892
20 bytes from IP_Address: icmp_seq=5 ttl=243 TOS=10 diff=6766887
20 bytes from IP_Address: icmp_seq=6 ttl=243 TOS=10 diff=6766873
20 bytes from IP_Address: icmp_seq=7 ttl=243 TOS=10 diff=6767057
^C

--- 194.47.250.37 sing statistics ---
9 packets transmitted, 9 packets received, 0% packet loss
[root@godfather bin]#

The tcpdump trace:

17:25:42.548597 if 4 > x.x.x.x > y.y.y.y: icmp: time stamp request
[tos 0xa,ECT] (ttl 255, id 13170)

450a 0028 3372 0000 ff01 60de xxxx xxxx
yyyy yyyy 0d00 7f4e dc04 0000 0318 9494
0000 0000 0000 0000

17:25:42.795254 if 4 < y.y.y.y > x.x.x.x: icmp: time stamp reply [tos
0xa,ECT] (ttl 243, id 3519)

450a 0028 0dbf 0000 f301 9291 yyyy yyyy
xxxx xxxx 0e00 cbf6 dc04 0000 0318 9494
037f d5ac 037f d5ac

The same behavior was produced. The ICMP Timestamp replies were sent with the TOS field
value equals the TOS filed value of the ICMP Timestamp requests.

Ok. I was curious again. I imagined that the Microsoft Windows implementation of the things
might be a little different.

When I was examining ICMP Echo requests I noticed something is wrong with Microsoft:

[root@godfather bin]# ./sing -echo -TOS 8 Host_Address
SINGing to Host_Address (IP_Address): 16 data bytes
16 bytes from IP_Address: icmp_seq=0 ttl=113 TOS=0 time=278.813 ms
16 bytes from IP_Address: icmp_seq=1 ttl=113 TOS=0 time=239.935 ms

ICMP Usage in Scanning
Version 2.5

73

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

16 bytes from IP_Address: icmp_seq=2 ttl=113 TOS=0 time=249.937 ms
16 bytes from IP_Address: icmp_seq=3 ttl=113 TOS=0 time=229.962 ms
16 bytes from IP_Address: icmp_seq=4 ttl=113 TOS=0 time=249.951 ms

--- Host_Address sing statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 229.962/249.720/278.813 ms
[root@godfather bin]#

The tcpdump trace:

17:28:08.346537 if 4 > x.x.x.x > y.y.y.y: icmp: echo request [tos 0x8]
(ttl 255, id 13170)

4508 0024 3372 0000 ff01 083f xxxx xxxx
yyyy yyyy 0800 cd8b e704 0000 f8eb bc39
8949 0500

17:28:08.625250 if 4 < y.y.y.y > x.x.x.x: icmp: echo reply (ttl 113,
id 12951)

4500 0024 3297 0000 7101 9722 yyyy yyyy
xxxx xxxx 0000 d58b e704 0000 f8eb bc39
8949 0500

Oops! Some one zero out my Type-of-Service field!

Before I would let you know who of all Microsoft Windows operating systems did that, I am going
to list the Microsoft operating systems who behave correctly – Microsoft Windows 98/SE/ME,
Microsoft Windows NT 4 Workstation SP3, Microsoft Windows NT 4 Server SP4, Microsoft
Windows NT 4 Workstation SP6a.

The Microsoft Windows 2000 family (Professional, Server, Advanced Server) zero out this field on
the ICMP Echo reply.

Is this makes those Microsoft Windows 2000 machines identified easily and uniquely?

99.9% yes. The other 0.01 % belongs to Ultrix & Novel Netware.

From the operating systems I have checked (Linux Kernel 2.2.x, Linux Kernel 2.4 test 2/4/5,
FreeBSD 4.0 & 4.1, OpenBSD 2.6 & 2.7, NetBSD 1.4.2, SUN Solaris 2.7 & 2.8, Compaq Tru64
UNIX 5.0, AIX 4.1 & 3.2, OpenVMS v7.2, Irix 6.5.3 & 6.5.8, Ultrix 4.2-4.5, Microsoft Windows
98/SE/ME, Microsoft Windows NT 4 Workstation & Server with various service packs, Microsoft
Windows 2000 Professional, Server & Advanced Server) only Ultrix & Novell Netware behaved
like the Microsoft Windows 2000 machines.

How can we distinguish between those?
First, there are much fewer Ultrix and Novell operating systems based machines out there than
Microsoft’s Windows 2000 based machines (I see your faces – not convincing enough).

The fast track in distinguishing between Ultrix, Novell Netware and Microsoft Windows 2000 is a
simple one. - By looking at the IP TTL field value within the ICMP Echo replies. Microsoft
Windows 2000 family of operating systems use 128 as their default IP TTL field value in ICMP
ECHO replies while Ultrix uses 255. The problem is Novell uses the same value for its IP TTL

ICMP Usage in Scanning
Version 2.5

74

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Field value as Microsoft Windows 2000 based machines (For more information about the IP TTL
field value see section 6.3 – „The IP Time-to-Live Field Value with ICMP“).

As a next step we can use various types of queries in order to distinguish between the Novell
Netware based machines, to the Microsoft Windows 2000 based machines. One of those steps
can be an ICMP Timestamp request sent to the “suspicious” machines. No reply from one of the
machines will indicate it may be using Novell Netware, a reply from a machine will indicate it is
using one of Microsoft Windows 2000 operating system family product. More sophisticated ICMP
queries could replace the one I have introduced.

Other ICMP query message types help us to identify a unique group of Microsoft operating
systems. As a rule all operating systems except the named Microsoft windows operating systems
here, maintain a single behavior regarding the Type-of-Service field. All would maintain the same
values with different types of ICMP requests. But, again, Microsoft have some of the “top” people
understanding TCP/IP to the degree we humans do not understand.

ICMP Echo Request
TOS !=0

Reply with
TOS!=0

Reply with
TOS=0

Other OS's

1

Windows 2000 Family
Ultrix

Novell Netware

ICMP Timestamp Request

TTL=128TTL=255

Ultrix Windows 2000 Family
Novell Netware

2

ReplyNo Reply

Windows 2000 FamilyNovell Netware

ICMP Timestamp Request
TOS!=0

3

Reply with
TOS!=0

Reply with
TOS=0

Windows 98/98SE/ME
ULTRIX (Identified Already)

Windows 2000 Family (Identified
Already)

Other OS's

Diagram 7: An example for a way to fingerprint Windows 2000, Ultrix, and Novell Netware based machines
with ICMP Query messages with the TOS bits field !=0

We have the following Microsoft operating systems zero out (0x00) the Type-of-Service field with
the replies for ICMP Timestamp requests: Microsoft Windows 98/98SE/ME. Microsoft Windows
2000 machines would zero out the TOS field with ICMP Timestamp replies as well.

This means that Microsoft Windows 98/98SE/ME would not zero out the Type-of-Service field
value with ICMP Echo requests but will do so with ICMP Timestamp requests.
With the introduced fingerprinting methods in this section we got a way to fingerprint Microsoft
Windows 2000, Ultrix, and Novel Netware machines from the rest of the operating systems world.
We have a way to distinguish Microsoft Windows 98/98SE/ME (and to set those apart) from the
rest of the operating system world, as well.

ICMP Usage in Scanning
Version 2.5

75

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Operating System

Information

Request
With TOS!=0x00

Time Stamp Request

With TOS!=0x00

Address Mask

Request
With TOS!=0x00

Echo Request

With TOS!=0x00

Debian GNU/ LINUX 2.2,
Kernel 2.4 test 2

Not Answering !=0x00 Not Answering !=0x00

Redhat LINUX 6.2 Kernel
2.2.14

Not Answering !=0x00 Not Answering !=0x00

FreeBSD 4.0 Not Answering !=0x00 Not Answering !=0x00
FreeBSD 3.4 Not Answering Not Answering
OpenBSD 2.7 Not Answering !=0x00 Not Answering !=0x00
OpenBSD 2.6 Not Answering !=0x00 Not Answering !=0x00
NetBSD Not Answering !=0x00 Not Answering !=0x00
BSDI BSD/OS 4.0 Not Answering !=0x00 Not Answering !=0x00
BSDI BSD/OS 3.1 Not Answering !=0x00 Not Answering !=0x00

Solaris 2.5.1 Not Implemented
Solaris 2.6 Not Implemented
Solaris 2.7 Not Implemented !=0x00 !=0x00 !=0x00
Solaris 2.8 Not Implemented !=0x00 !=0x00 !=0x00

HP-UX v10.20 Not Answering
HP-UX v11.0 Not Answering Not Answering !=0x00 !=0x00

Compaq Tru64 v5.0 !=0x00 Not Answering !=0x00

Irix 6.5.3 Not Answering !=0x00 Not Answering !=0x00
Irix 6.5.8 Not Answering !=0x00 Not Answering !=0x00

AIX 4.1 !=0x00 Not Answering !=0x00
AIX 3.2 !=0x00 Not Answering !=0x00

ULTRIX 4.2 – 4.5 0x00 0x00 0x00

OpenVMS v7.1-2 !=0x00 !=0x00 !=0x00

Novell Netware 5.1 SP1 Not Answering Not Answering Not Answering 0x00
Novell Netware 5.0 Not Answering Not Answering Not Answering 0x00
Novell Netware 3.12 Not Answering Not Answering Not Answering 0x00

Windows 95 Not Answering Not Answering
Windows 98 Not Answering 0x00 0x00 !=0x00
Windows 98 SE Not Answering 0x00 !=0x00
Windows ME Not Answering 0x00 Not Answering !=0x00
Windows NT 4 WRKS SP 3 Not Answering Not Answering !=0x00
Windows NT 4 WRKS SP 6a Not Answering Not Answering Not Answering !=0x00
Windows NT 4 Server SP4 Not Answering Not Answering Not Answering !=0x00
Windows 2000 Professional Not Answering 0x00 Not Answering 0x00
Windows 2000 Server Not Answering 0x00 Not Answering 0x00

Table 11: ICMP Query Message Types with TOS! = 0

6.7 Using the TOS Byte’s Unused Bit (Fingerprinting Microsoft Windows 2000,
ULTRIX and more)
RFC 1349 states that the last field of the TOS byte, the “MBZ” (must be zero), is unused and
must be zero. The RFC also states that routers and hosts ignore the value of this bit.

This is the only statement about the unused bit in the TOS Byte in the RFCs. The RFC states:
“The originator of a datagram sets this field to Zero“.

ICMP Usage in Scanning
Version 2.5

76

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Obviously it was meant that this field would be always zero. But what will happen if we would set
this bit with our ICMP Echo Requests? Will this bit be zero out on reply or will it be echoed back?

Only with ICMP Echo requests we can have a clear identification of OSs.

The next example is an ICMP Echo Request sent with the TOS bit in the TOS Byte set, targeting
a FreeBSD 4.1.1 machine:

[root@godfather /root]# /usr/local/bin/sing -c 2 -TOS 1 y.y.y.y
SINGing to y.y.y.y (y.y.y.y): 16 data bytes
16 bytes from y.y.y.y: seq=0 ttl=233 TOS=1 time=330.461 ms
16 bytes from y.y.y.y: seq=1 ttl=233 TOS=1 time=723.300 ms

--- y.y.y.y sing statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 330.461/526.880/723.300 ms
[root@godfather /root]#

Echoing back the Unused bit in the TOS Byte represents the behavior of most of the operating
systems I have checked this method against.

Which operating systems are the exceptions?
The next example is with Microsoft Windows 2000 as the targeted machine:

[root@godfather precedence_echo]# /usr/local/bin/sing -c 2 -TOS 1
y.y.y.y
SINGing to y.y.y.y (y.y.y.y): 16 data bytes
16 bytes from y.y.y.y: seq=0 ttl=111 TOS=0 time=299.188 ms
16 bytes from y.y.y.y: seq=1 ttl=111 TOS=0 time=280.321 ms

--- y.y.y.y sing statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 280.321/289.755/299.188 ms
[root@godfather precedence_echo]#

The tcpdump trace:

00:17:01.765492 ppp0 > x.x.x.x > y.y.y.y: icmp: echo request [tos 0x1]
(ttl 255, id 13170)

4501 0024 3372 0000 ff01 d82b xxxx xxxx
yyyy yyyy 0800 f015 7a3c 0000 5dc5 0d3a
17ae 0b00

00:17:02.064284 ppp0 < y.y.y.y > x.x.x.x: icmp: echo reply (ttl 111, id
29961)

4500 0024 7509 0000 6f01 2696 yyyy yyyy
xxxx xxxx 0000 f815 7a3c 0000 5dc5 0d3a
17ae 0b00

Another OS that behaves the same is ULTRIX:
[root@godfather precedence_echo]# /usr/local/bin/sing -c 2 -TOS 1
y.y.y.y
SINGing to y.y.y.y (y.y.y.y): 16 data bytes
16 bytes from y.y.y.y: seq=0 ttl=237 TOS=0 time=371.776 ms

--- y.y.y.y sing statistics ---
2 packets transmitted, 1 packets received, 50% packet loss

ICMP Usage in Scanning
Version 2.5

77

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

round-trip min/avg/max = 371.776/371.776/371.776 ms
[root@godfather precedence_echo]#

We will use, again, the IP TTL field value to differentiate between the two operating systems.

6.7.1 Changed Pattern with Replies for Different ICMP Query Types
We have a changed pattern with Microsoft Windows 98/98SE/ME when using other ICMP Query
message types other than ICMP Echo Request. Instead of echoing this field back, they will zero
out this field with their replies.

ICMP Echo Request
Unused Bit =1

Reply with
Unused Bit =0

Other OS's

1

Windows 2000 Family
Ultrix

TTL=128TTL=255

Ultrix Windows 2000 Family

ICMP Timestamp Request
Unused Bit =1

2

Windows 98/98SE/ME
OpenVMS

ULTRIX (Identi fied Already)
Windows 2000 Family (Identified Already)

Other OS's

Reply with
Unused Bit !=0

Reply with
Unused Bit =0

Reply with
Unused Bit !=0

TTL=128

Windows 98/98SE/ME

TTL=255

OpenVMS

ICMP Address Mask Request

ReplyNo Reply

Windows ME Windows 98/98SE

3

Diagram 8: An example for a way to fingerprint operating systems using the unused bit in the TOS Byte

echoing method

Further distinction between the Microsoft operating systems can be achieved if we will query
them with ICMP Address Mask request, which only Microsoft Windows 98/98SE will answer for.
The Microsoft Windows ME will not reply, enabling us to identify it.

ICMP Usage in Scanning
Version 2.5

78

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Operating System

Information

Request
With Unused=1

Time Stamp Request

With Unused=1

Address Mask

Request
With Unused=1

Echo Request

With Unused=1

Debian GNU/ LINUX 2.2,
Kernel 2.4 test 2

Not Answering 0x1 Not Answering 0x1

Redhat LINUX 6.2 Kernel
2.2.14

Not Answering 0x1 Not Answering 0x1

FreeBSD 4.0 Not Answering 0x1 Not Answering 0x1
FreeBSD 4.1.1 Not Answering 0x1 Not Answering 0x1
OpenBSD 2.7 Not Answering Not Answering
OpenBSD 2.6 Not Answering Not Answering
NetBSD Not Answering Not Answering
BSDI BSD/OS 4.0 Not Answering Not Answering
BSDI BSD/OS 3.1 Not Answering Not Answering

Solaris 2.5.1 Not Implemented
Solaris 2.6 Not Implemented 0x1 0x1 0x1
Solaris 2.7 Not Implemented 0x1 0x1 0x1
Solaris 2.8 Not Implemented 0x1 0x1 0x1

HP-UX v10.20 Not Answering
HP-UX v11.0 Not Answering Not Answering 0x1 0x1

Compaq Tru64 v5.0 0x1 0x1 Not Answering 0x1

AIX 4.3 0x1 0x1 Not Answering 0x1
AIX 4.2.1 0x1 0x1 Not Answering 0x1
AIX 4.1 0x1 0x1 Not Answering 0x1
AIX 3.2 0x1 0x1 Not Answering 0x1

ULTRIX 4.2 – 4.5 0x0 0x0 0x0 0x0

OpenVMS v7.1-2 0x1 0x1 0x1 0x1

Windows 95 Not Answering Not Answering
Windows 98 Not Answering 0x0 0x0 0x1
Windows 98 SE Not Answering 0x0 0x0 0x1
Windows ME Not Answering 0x0 Not Answering 0x1
Windows NT 4 WRKS SP 3 Not Answering Not Answering
Windows NT 4 WRKS SP 6a Not Answering Not Answering Not Answering 0x1
Windows NT 4 Server SP4 Not Answering Not Answering Not Answering
Windows 2000 Professional Not Answering 0x0 Not Answering 0x0
Windows 2000 Server Not Answering 0x0 Not Answering 0x0

Table 12: ICMP Query Message Types with the TOS Byte Unused Bit value ! = 0

6.8 Using the Unused (Identifying Sun Solaris & HP-UX 10.30 & 11.0x OS based
machines)
RFC 791 defines a three bits field used for various control flags in the IP Header. Bit 0 of this bits
field is the reserved flag, and must be zero according to the RFC.

What will happen if we will decide to break this definition and send our ICMP Query requests with
this bit set (having the value of one)?

Sun Solaris & HPUX 11.0x (possibly 10.30 as well) will echo back the reserved bit.

This is a tcpdump trace describing an ICMP Echo request sent with the reserved Bit set, and the
ICMP Echo reply we received echoing the reserved bit. This trace was produced against an HP-
UX 11.0 machine:

ICMP Usage in Scanning
Version 2.5

79

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

21:31:21.033366 if 4 > y.y.y.y > x.x.x.x: icmp: echo request (ttl 255,
id 13170)

4500 0024 3372 8000 ff01 fc8c yyyy yyyy
xxxx xxxx 0800 8b1b 8603 0000 f924 bd39
3082 0000

21:31:21.317916 if 4 < x.x.x.x > y.y.y.y: icmp: echo reply (ttl 236,
id 25606)

4500 0024 6406 8000 ec01 def8 xxxx xxxx
yyyy yyyy 0000 931b 8603 0000 f924 bd39
3082 0000

The next trace was produced against a Sun Solaris 2.8 machine:

16:51:37.470995 if 4 > 195.72.167.220 > x.x.x.x: icmp: echo request
(ttl 255, id 13170)

4500 0024 3372 8000 ff01 e0e1 c348 a7dc
xxxx xxxx 0800 edae 3004 0000 69e3 bc39
ad2f 0700

16:51:37.745254 if 4 < x.x.x.x > 195.72.167.220: icmp: echo reply (DF)
(ttl 243, id 5485)

4500 0024 156d c000 f301 cae6 xxxx xxxx
c348 a7dc 0000 f5ae 3004 0000 69e3 bc39
ad2f 0700

If we examine these traces closely we can identify a distinction between them. The DF bit is set
with the Sun Solaris ICMP Query reply and not with the HP-UX 11.0 OS reply.

If you recall from the “DF Bit Playground” section Sun Solaris would set the DF bit by default with
all its ICMP Query replies. HP-UX 10.30, and 11.0x operating systems would initiate, by default, a
proprietary method in order to determine the PMTU using ICMP Echo requests. After the PMTU
is determined the following ICMP Query replies would have the DF bit set in the IP Header.

If we are using only one datagram than in most cases we can distinguish between Sun Solaris
and HP-UX 10.30, and 11.0x operating systems since the DF bit will not be set (and if the PMTU
is not already determine).

All ICMP Query replies on the same operating system use the same pattern (either echo the
reserved bit with all replies or not). This enable us to use another ICMP Query message type for
this fingerprinting method. If we send an ICMP Address Mask request with the reserved bit set,
the result a Sun Solaris 2.8 machine will produce will be something like the next trace:

18:39:32.262869 if 4 > y.y.y.y > x.x.x.x : icmp: address mask request
(ttl 255, id 13170)

4500 0020 3372 8000 ff01 e12e yyyy yyyy
xxxx xxxx 1100 a0fb 4e04 0000 0000 0000

18:39:32.561373 if 4 < x.x.x.x > y.y.y.y: icmp: address mask is
0xffffff00 (DF) (ttl 243, id 51792)

4500 0020 ca50 c000 f301 1650 xxxx xxxx
yyyy yyyy 1200 a0fa 4e04 0000 ffff ff00

We will have both the reserved bit and the DF bit set on the ICMP Address Mask reply, a unique
pattern Sun Solaris machines have with ICMP Query replies.

This operating system fingerprinting method enables us to identify and distinguish between Sun
Solaris, and HP-UX 10.30 &11.0x operating systems to the other operating systems.

ICMP Usage in Scanning
Version 2.5

80

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

I have asked Alfredo Andres Omella, author of SING, to incorporate the ability to set the reserved
bit with his tool. Alfredo has introduced the –U option along with the ability to identify if this bit is
set on the reply (if any) we get, with the latest version of SING:

[root@godfather bin]# ./sing -mask -U IP_Address
SINGing to IP_Address (IP_Address): 12 data bytes
12 bytes from IP_Address: icmp_seq=0 RF! DF! ttl=243 TOS=0 mask=255.255.255.0
12 bytes from IP_Address: icmp_seq=1 RF! DF! ttl=243 TOS=0 mask=255.255.255.0
12 bytes from IP_Address: icmp_seq=2 RF! DF! ttl=243 TOS=0 mask=255.255.255.0
12 bytes from IP_Address: icmp_seq=3 RF! DF! ttl=243 TOS=0 mask=255.255.255.0
12 bytes from IP_Address: icmp_seq=4 RF! DF! ttl=243 TOS=0 mask=255.255.255.0
--- IP_Address sing statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
[root@godfather bin]#

This method was tested against: Linux Kernel 2.4 test 2,4,5,6; Linux Kernel 2.2.x; FreeBSD 4.0,
3.4; OpenBSD 2.7,2.6; NetBSD 1.4.1,1.4.2; BSDI BSD/OS 4.0,3.1; Solaris 2.6,2.7,2.8; HP-UX
10.20, 11.0; Compaq Tru64 5.0; Aix 4.1,3.2; Irix 6.5.3, 6.5.8; Ultrix 4.2 – 4.5; OpenVMS v7.1-2;
Novel Netware 5.1 SP1, 5.0, 3.12; Microsoft Windows 98/98SE, Microsoft Windows NT WRKS
SP6a, Microsoft Windows NT Server SP4, Microsoft Windows 2000 Family.

6.9 DF Bit Echoing
Some operating systems, when receiving an ICMP Query message with the DF bit set, would set
the DF bit with their replies as well. Sometimes it would be in contrast with their regular behavior,
which would be not setting the DF Bit in their replies for a regular query that comes with the DF
bit not set.

6.9.1 DF Bit Echoing with the ICMP Echo request
The tcpdump trace below illustrates an ICMP Echo request sent from a Linux box, using SING42,
to a SUN Solaris 2.7 machine:

[root@godfather bin]# ./sing -echo -G IP_Address
SINGing to IP_Address (IP_Address): 16 data bytes
16 bytes from IP_Address: icmp_seq=0 DF! ttl=243 TOS=0 time=188.289 ms
16 bytes from IP_Address: icmp_seq=1 DF! ttl=243 TOS=0 time=250.026 ms
16 bytes from IP_Address: icmp_seq=2 DF! ttl=243 TOS=0 time=240.298 ms
16 bytes from IP_Address: icmp_seq=3 DF! ttl=243 TOS=0 time=260.036 ms

--- IP_Address sing statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 188.289/234.662/260.036 ms
[root@godfather bin]#

The tcpdump trace:

17:16:23.527050 if 4 > x.x.x.x > y.y.y.y: icmp: echo request (DF) (ttl
255, id 13170)

4500 0024 3372 4000 ff01 20f0 xxxx xxxx

42 The –G option with SING sets the DF Bit with the ICMP Query requests.

ICMP Usage in Scanning
Version 2.5

81

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

yyyy yyyy 0800 a5cd b304 0000 37e9 bc39
a30a 0800

17:16:23.715250 if 4 < y.y.y.y > x.x.x.x: icmp: echo reply (DF) (ttl
243, id 18227)

4500 0024 4733 4000 f301 192f yyyy yyyy
xxxx xxxx 0000 adcd b304 0000 37e9 bc39
a30a 0800

Most of the operating systems that I have checked this behavior against did the same thing. In
the reply they produced, the DF bit was set.

Which operating systems are the exceptional and do not echo back the DF bit?
Linux operating systems based on Kernel 2.2.x, and Kernel 2.4 with the various test kernels,
Ultrix v4.2 – 4.5, and Novell Netware.

How can we distinguish between those operating systems?
Frankly it is quite simple. Since LINUX and Ultrix are using an IP TTL field value of 255 in their
ICMP Query replies, and Novell Netware uses 128, it is easy to distinguish between those
groups. If we want to further distinguish between LINUX based systems and Ultrix based
systems, we can send an ICMP Information request or an ICMP Address Mask request to the
questioned machines. The machine, which would answer those, will be the one based on the
Ultrix operating system.

6.9.2 DF Bit Echoing with the ICMP Address Mask request
With ICMP Address Mask requests we have a different story. Among the operating systems that I
have checked that answer for an ICMP Address Mask request Sun Solaris & OpenVMS echo
back the DF bit. Microsoft Windows 98, Microsoft Windows 98 SE, and Ultrix do not echo back
the DF bit.

Again it is very simple to distinguish between the Microsoft Windows 98 family and between the
Ultrix machines. Since the Microsoft Windows 98 family is using 128 as their IP TTL field value in
their ICMP query replies and Ultrix uses 255, we can distinguish between those operating
systems.

We have here a simple method to distinguish between Microsoft Windows 98 / 98 SE, and Ultrix
machines to the rest of the operating systems world.

Another interesting piece of information is that the Microsoft Windows 98 family changed its
behavior from DF echoing with the ICMP Echo request to not echoing with the ICMP Address
Mask request. This inconsistency is a factor with all Microsoft operating systems (Echoing with
ICMP Echo request, not echoing with the other types of ICMP query).

6.9.3 DF Bit Echoing with the ICMP Timestamp request
Since a lot more operating systems answer for an ICMP Timestamp request than with the ICMP
Address Mask request, we have a bit more difficulty in identifying those.

Linux machines based on Kernel 2.2.x, or Kernel 2.4, Ultrix, Microsoft Windows 98/98SE/ME, and
the Microsoft Windows 2000 Family would not echo back the DF bit with ICMP Timestamp replies
they produce for ICMP Timestamp request that sets their DF bit.

Here we can only distinguish between certain groups of operating systems; again it would be
according to their IP TTL field value with their replies.

ICMP Usage in Scanning
Version 2.5

82

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Linux would use 255 as its TTL field value for the ICMP Timestamp reply; Ultrix would use the
same value. The Microsoft family of operating systems that would answer for this kind of query
would use 128 as their TTL value.

Again we have Linux and Ultrix on the one hand and the Microsoft Family on the other hand. How
can we further distinguish between those? We can correlate the information (as discussed in the
next section, or query the “suspicious” machines with another type of ICMP Query message).

6.9.4 Using all of the Information in order to identify maximum of operating systems
We can group Linux and Ultrix with the ICMP Echo requests. We can do the same with Microsoft
Windows 98 / 98 SE & Ultrix using the ICMP Address Mask requests. This would allow us to
pinpoint the Linux boxes from the first stage. So when we would go into the third stage we would
know which operating systems are Linux based, which are Microsoft Windows 98 / 98 SE based,
and which are Ultrix based. This would leave us with Microsoft Windows ME and with the
Microsoft Windows 2000 family machines.

6.9.5 Why this would work (for the skeptical)
All those skeptical would say that if they receive an ICMP Query request with the DF bit set than it
should be clear that something is wrong and someone is probably trying to scan them. Think
again. What would happen if a Sun Solaris machine will query your machine? Than the same
behavior would be produced.

This is an ICMP Echo request sent from a Solaris 2.6 box to a Linux box. We can see that the DF
bit is set with the request and not set with the reply. But again if some one would mimic this
behavior with a tool used on a Linux box to query the world, which is 100% mimicking a Sun
Solaris request than we would never know if this is a legit request or an attempt for scanning /
fingerprinting.

Initializing Network Interface...
Decoding raw data on interface ppp0

-*> Snort! <*-
Version 1.6
By Martin Roesch (roesch@clark.net, www.clark.net/~roesch)
08/10-23:32:52.201612 y.y.y.y -> 139.92.207.58
ICMP TTL:239 TOS:0x0 ID:48656 DF
ID:2080 Seq:0 ECHO
39 93 10 A3 00 03 F0 E5 08 09 0A 0B 0C 0D 0E 0F 9...............
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./
30 31 32 33 34 35 36 37 01234567

08/10-23:32:52.201649 139.92.207.58 -> y.y.y.y
ICMP TTL:255 TOS:0x0 ID:349
ID:2080 Seq:0 ECHO REPLY
39 93 10 A3 00 03 F0 E5 08 09 0A 0B 0C 0D 0E 0F 9...............
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./
30 31 32 33 34 35 36 37 01234567

ICMP Usage in Scanning
Version 2.5

83

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Operating System

Info. Request

Time Stamp

Request

Address Mask

Request

Echo Request

Debian GNU/ LINUX 2.2, Kernel
2.4 test 2

Not Answering + (- DF) Not Answering + (- DF)

Redhat LINUX 6.2 Kernel 2.2.14 Not Answering + (- DF) Not Answering + (- DF)

FreeBSD 4.0 Not Answering + (+ DF) Not Answering + (+ DF)
FreeBSD 3.4 Not Answering + (+ DF) Not Answering + (+ DF)
OpenBSD 2.7 Not Answering + (+ DF) Not Answering + (+ DF)
OpenBSD 2.6 Not Answering + (+ DF) Not Answering + (+ DF)
NetBSD Not Answering + (+ DF) Not Answering + (+ DF)
BSDI BSD/OS 4.0 Not Answering + (+ DF) Not Answering + (+ DF)
BSDI BSD/OS 3.1 Not Answering + (+ DF) Not Answering + (+ DF)

Solaris 2.5.1 Not Answering
Solaris 2.6 Not Answering + (+ DF) + (+ DF) + (+ DF)
Solaris 2.7 Not Answering + (+ DF) + (+ DF) + (+ DF)
Solaris 2.8 Not Answering + (+ DF) + (+ DF) + (+ DF)

HP-UX v10.20 Not Answering
HP-UX v11.0 Not Answering Not Answering + (+ DF) + (+ DF)

Compaq Tru64 v5.0 + (+ DF) Not Answering - + (+ DF)

Irix 6.5.3 Not Answering + (+ DF) Not Answering + (+ DF)
Irix 6.5.8 Not Answering + (+ DF) Not Answering + (+ DF)

AIX 4.1 + (+ DF) Not Answering + (+ DF)
AIX 3.2 + (+ DF) Not Answering + (+ DF)

ULTRIX 4.2 – 4.5 + (- DF) + (- DF) + (- DF)

OpenVMS v7.1-2 + (+ DF) + (+ DF) + (+ DF)

Novell Netware 5.1 SP1 Not Answering Not Answering Not Answering + (- DF)
Novell Netware 5.0 Not Answering Not Answering Not Answering + (- DF)
Novell Netware 3.12 Not Answering Not Answering Not Answering + (- DF)

Windows 95 Not Answering Not Answering
Windows 98 Not Answering + (- DF) + (- DF) + (+ DF)
Windows 98 SE Not Answering + (- DF) + (- DF) + (+ DF)
Windows ME Not Answering + (- DF) Not Answering + (+ DF)
Windows NT 4 WRKS SP 3 Not Answering Not Answering
Windows NT 4 WRKS SP 6a Not Answering Not Answering Not Answering + (+ DF)
Windows NT 4 Server SP4 Not Answering Not Answering Not Answering + (+ DF)
Windows 2000 Professional Not Answering + (- DF) Not Answering + (+ DF)
Windows 2000 Server Not Answering + (- DF) Not Answering + (+ DF)

Table 13: DF Bit Echoing

6.9.6 Combining all together
If we combine every thing together than we can start from sending ICMP Echo requests with the
DF bit set probing the targeted host(s) / network(s). The operating systems, which will not echo
the DF bit with their ICMP Query replies, will be Linux operating system machines based either
on kernel 2.2.x, or on Kernel 2.4.x, Novell Netware, and Ultrix machines. We can distinguish
between the Novell Netware machines, the Linux based machines, and the Ultrix based
machines according to the IP TTL field values with the ICMP Echo replies.

ICMP Usage in Scanning
Version 2.5

84

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

DF Bit Echoing with the ICMP Echo request

ECHO
DF Bit

Not ECHO
the DF Bit

Linux Kernel 2.2.x
Linux Kernel 2.4

Ultrix v4.2 - 4.5

Novell Netware

DF Bit Echoing w ith the ICMP Address Mask request

1

2

Sun Solaris
OpenVMS

Microsoft Windows 98
Microsoft Windows 98 SE

Ultrix

Other OS's
TTL Filed

Not ECHO
the DF Bit

ECHO
DF Bit

TTL Filed

DF Bit Echoing w ith the ICMP Timestamp request

3

ECHO
DF Bit

Not ECHO
the DF Bit

Linux with Kernel 2.2.x
Linux with Kernel 2.4

Ultrix
Microsoft Windows 98/98SE

Microsoft Windows ME
Microsoft Windows 2000 Family

Other OS's

Diagram 9: An example of fingerprinting using the DF Bit Echoing technique

The second stage would be sending ICMP Address Mask requests with the DF bit set to the
same-targeted host(s). Microsoft Windows 98/98 SE and Ultrix based machines would not echo
the DF bit with their ICMP Query reply. We than can distinguish between the Ultrix machines and
the Microsoft Windows machines, because of the different IP TTL field values in the ICMP
Address Mask replies.

We can now also identify the Ultrix machines from the first step – we know their IPs now. Than it
leaves us with only the Linux boxes. Within two steps we are able of fingerprinting Novell
Netware, Ultrix, Microsoft Windows 98/98 SE and Linux operating systems based on kernel 2.2.x
or on kernel 2.4.x.

ICMP Usage in Scanning
Version 2.5

85

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

In the last step of this example we are sending ICMP Timestamp requests with the DF bit set to
the same group of IPs we are probing. The operating systems which do not echo back the DF bit
in their ICMP Query replies are Linux operating systems based on Kernel 2.2.x, or on Kernel 2.4,
Ultrix, Microsoft Windows 98/98SE, Microsoft Windows ME, and Microsoft Windows 2000 Family.
Since we already fingerprinted most of the operating systems in this it enable us to fingerprint
Microsoft Windows ME, and Microsoft Windows 2000 family based machines.

6.10 Using Code field values different than zero within ICMP ECHO requests
An interesting detail I have discovered during the lab experiments I did when I have researched
ICMP scanning is when a wrong code is sent along with the correct type of ICMP query message,
different operating systems would send different code values back.

In the next example I have sent an ICMP Echo Request with the code field value set to 38 instead
of 0, to a LINUX machine running Redhat LINUX 6.2 Kernel 2.2.14.

We can look at the tcpdump trace, the type and code fields are in bold type:

00:21:05.238649 ppp0 > x.x.x.x > y.y.y.y: icmp: echo request (ttl 255,
id 13170)

4500 0024 3372 0000 ff01 08d3 xxxx xxxx
yyyy yyyy 0826 af13 2904 0000 41e4 c339
17a4 0300

00:21:05.485617 ppp0 < y.y.y.y > x.x.x.x: icmp: echo reply (ttl 240, id
2322)

4500 0024 0912 0000 f001 4233 yyyy yyyy
xxxx xxxx 0026 b713 2904 0000 41e4 c339
17a4 0300

In the ICMP Echo reply LINUX produced the code field value is set to 38.

If we examine what RFC 792 requires, we see that LINUX does exactly that.

The sending side initializes the identifier (used to identify ECHO requests aimed at different
destination hosts) and sequence number (if multiple ECHO requests are sent to the same
destination host), adds some data (arbitrary) to the data field and sends the ICMP ECHO
Request to the destination host. In the ICMP header the code equals zero. The recipient should
only change the type to ECHO Reply and return the datagram to the sender.

Checksum

Sequence NumberIdentifier

Code = 0Type

0 4 8 16 31

Data...

Figure 12: ICMP ECHO Request & Reply message format

ICMP Usage in Scanning
Version 2.5

86

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

This also means that we trust another machine to behave correctly, when that host produce the
ICMP Echo reply.

LINUX changes the type field value to 0 and sends the reply. The code field is unchanged.

I have checked the behavior of my Microsoft Windows 2000 Professional box. I have sent the
same ICMP ECHO Request message to the Microsoft Windows box (the code field is in bold
type):

10:03:33.860212 eth0 > localhost.localdomain > 192.168.1.1: icmp: echo
request

4500 0020 3372 0000 fe01 0614 c0a8 0105
c0a8 0101 0826 d618 6102 f658 0183 c8e2

10:03:33.860689 eth0 < 192.168.1.1 > localhost.localdomain: icmp: echo
reply

4500 0020 2010 0000 8001 9776 c0a8 0101
c0a8 0105 0000 de3e 6102 f658 0183 c8e2
0000 0000 0000 0000 0000 0000 0000

The Microsoft Windows 2000 Professional operating system changed the code field value on the
ICMP Echo Reply to the value of 0.

This method was tested with various operating systems including LINUX Kernel 2.4t1-8, IBM AIX
4.x & 3.2, SUN Solaris 2.51, 2.6, 2.7 & 2.8, OpenBSD 2.6 & 2.7, NetBSD 1.4.1, 1.4.2, BSDI
BSD/OS 4.0 & 3.1, HP-UX 10.20 & 11.0, Compaq Tru64 v5.0, Irix 6.5.3 & 6.5.8, Ultrix 4.2-4.5,
OpenVMS, FreeBSD 3.4, 4.0 & 4.1 and they produced the same results as the LINUX box
(Kernel 2.2.x) did.

Microsoft Windows 4.0 Server SP4, Microsoft Windows NT 4.0 Workstation SP 6a, Microsoft
Windows NT 4.0 Workstation SP3, Microsoft Windows 95 / 98 / 98 SE / ME have produced the
same behavior as the Microsoft Windows 2000 Professional (Server & Advanced Server).

We have a fingerprinting method to differentiate between a Microsoft Windows based machine to
the rest of the operating systems world using code values, which are different than zero, inside
ICMP Echo Requests.

6.11 Using Code field values different than zero within ICMP Timestamp Request
I have decided to map which operating systems would answer to an ICMP Timestamp Request
that would have its code field not set to zero, and how the ICMP Timestamp reply (if any) will help
us identify those operating systems.

6.11.1 The non-answering Operating Systems
Interesting results were produced. The Microsoft Windows 98/98 SE/ME, and the Microsoft
Windows 2000 Family that have answered to ICMP Timestamp requests with the code field set to
zero, now did not produce any reply back.

This enables us to group together certain versions of the Windows Operating System.

ICMP Usage in Scanning
Version 2.5

87

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

The next diagram shows how we can distinguish between the different Microsoft Windows
operating systems using two datagrams of ICMP Timestamp request. The first one is a regular
one; the Microsoft Windows machines that do not answer are Microsoft Windows 95 and
Microsoft Windows NT 4.0 Workstation with SP 6a. All other operating systems (that I have
tested) answer the ICMP Time stamp request. The second stage is sending another datagram,
this time with the Code field set to a value, which is not equal to zero. The operating systems that
would not answer will include Windows 98/98 SE/ME/2000 Family, which are the newer versions
of Microsoft Windows operating systems.

ICMP Timestamp Request

Reply No Reply

Other OS's

ICMP Timestamp Request with CODE!=0

Reply No Reply

1

2

Other OS's
Windows 98

Windows 98 SE
Windows ME

Windows 2000 Proffesional
Windows 2000 Server

Windows 95
Windows NT 4 WRKS SP6a

Diagram 10: Finger Printing Using ICMP Timestamp Request and Wrong Codes

It is quite obvious that Microsoft have tried to change some of their newer operating systems
fingerprinting in later TCP/IP implementations of their operating systems. For example, the default
for answering an ICMP Timestamp request was changed from "no answer" to "answer", like UNIX
and UNIX-like operating systems. But the Microsoft programmers / designers / architects /
security engineers did not think about every thing apparently.

6.11.2 Operating Systems the Zero out the Code field value on Reply
I was looking to see if there are any operating systems in which answered the crafted ICMP
Timestamp Query with the Code field set to a value different than zero, which might zero out this
field value in its ICMP Echo Reply.

I have found that LINUX operating systems based on Kernel 2.2.x or on the 2.4 Kernel (with the
various test Kernels) zero out the code field with the ICMP Echo replies they produce. The next
trace is a tcpdump trace describing ICMP Echo Request and reply from a LINUX 2.4 test Kernel
6, to a crafted ICMP Echo Request with a code field different than zero:

ICMP Usage in Scanning
Version 2.5

88

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

[root@godfather /root]# sing -tstamp -x 38 -c 2 IP_Address
SINGing to IP_Address (IP_Address): 20 data bytes
20 bytes from IP_Address: icmp_seq=0 ttl=243 TOS=0 diff=24315927
20 bytes from IP_Address: icmp_seq=1 ttl=243 TOS=0 diff=24316176

--- IP_Address sing statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
[root@godfather /root]#

20:10:18.138486 ppp0 > x.x.x.x > y.y.y.y: icmp: time stamp request (ttl
255, id 13170)

4500 0028 3372 0000 ff01 606c xxxx xxxx
yyyy yyyy 0d26 2e0c 7c04 0000 03af 451a
0000 0000 0000 0000

20:10:18.354222 ppp0 < y.y.y.y > x.x.x.x: icmp: time stamp reply (ttl
243, id 15717)

4500 0028 3d65 0000 f301 6279 yyyy yyyy
xxxx xxxx 0e00 888b 7c04 0000 03af 451a
0422 4e31 0422 4e31

20:10:19.134165 ppp0 > x.x.x.x > y.y.y.y: icmp: time stamp request (ttl
255, id 13170)

4500 0028 3372 0000 ff01 606c xxxx xxxx
yyyy yyyy 0d26 2928 7c04 0100 03af 48fe
0000 0000 0000 0000

20:10:19.354210 ppp0 < y.y.y.y > x.x.x.x: icmp: time stamp reply (ttl
243, id 15718)

4500 0028 3d66 0000 f301 6278 yyyy yyyy
xxxx xxxx 0e00 7bed 7c04 0100 03af 48fe
0422 520e 0422 520e

6.11.3 Changed Patterns
The LINUX operating system behavior with the crafted ICMP Timestamp requests is in contrast
with its behavior with the crafted ICMP Echo Requests sent with the Code field set to a value
different than zero.

This also gives us a unique piece of information that enables us to identify LINUX machines
better.

ICMP Usage in Scanning
Version 2.5

89

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

ICMP Echo Request w ith Code!=0

Reply
with

code!=0

Reply with
code=0

Other OS's

ICMP Timestamp Request w ith CODE!=0

Reply with code!=0
No Reply

1

2

Other OS's Windows 98
Windows 98 SE

Windows ME
Windows 2000 Family

Microsoft Windows Family

Reply with code=0

LINUX Kernel
2.2.x & 2.4

ICMP Timestamp Request
3

Reply

Windows 95
Windows NT 4 WRKS SP6a

Diagram 11: An Example of Finger Printing Using crafted ICMP Echo & Timestamp Request

The diagram above describes a process in which we can use in order to differentiate between
certain groups of operating systems.

The first step is sending an ICMP Echo request with the code field set to a value different than
zero. The ICMP Echo replies with the code field equal to zero would distinguish the Microsoft
based operating systems group, from the other UNIX and UNIX-like operating systems.

Sending ICMP Timestamp requests with the Code field value different than zero to all participants
of the group of the UNIX and UNIX-like operating systems will identify LINUX 2.2.x and 2.4 Kernel
based machines (since they zero out the code field in their replies).

Sending ICMP Timestamp request to the Microsoft Windows based group of operating systems
will separate the group to those machines rather being windows 95 or windows NT 4 SP4 and
above (not answer the query), to those that may be one of the following – Microsoft Windows 98 /
SE / ME / Windows 2000 Family (answer the query).

For a list of ICMP Query message types sent to different types of operating systems with the
code field set to a value different than zero, and the various ICMP Query replies we got back (if
any) please see “Appendix D: ICMP Query Message types with Code field !=0 (table)”.

Using the ICMP Error Messages

6.12 Operating system, which do not generate ICMP Protocol Unreachable Error
Messages
Several operating systems will not generate an ICMP Protocol Unreachable error message, when
one is expected to be produced, in response to an offending datagram trying to use a protocol,
which is not used on those operating systems.

ICMP Usage in Scanning
Version 2.5

90

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Those operating systems include:

• AIX
• DG-UX
• HP-UX

6.13 ICMP Error Message Quenching
RFC 1812 and RFC 1122 suggest limiting the rate at which various error messages are sent.
Only few operating systems are known to follow this.

An attacker can use this to send UDP packets to a random, high UDP port and count the number
of ICMP Destination unreachable messages received within a given amount of time.

6.14 ICMP Error Message Quoting Size
Each ICMP error message includes the Internet Protocol (IP) Header and at least the first 8 data
bytes of the datagram that triggered the error (the offending datagram); more than 8 bytes may
be sent according to RFC 1122.

Most of the operating systems will quote the offending packets IP Header and the first 8 data
bytes of the datagram that triggered the error. Several operating systems and networking devices
will parse the RFC guidelines a bit different and will echo more than 8 bytes.

Which operating systems will quote more?
LINUX based on Kernel 2.0.x/2.2.x/2.4.t-x, Sun Solaris, HPUX 11.x, MacOS 7.55/8.x/9.04, Nokia
boxes, Foundry Switches (and other OSs and several Networking Devices) are a good example.

The fact is not new. Fyodor outlined this in his article “Remote OS Identification by TCP/IP
Fingerprinting“43.

The idea is in trying to differentiate between the different operating systems that quote more than
the usual. How can this be done? Looking for example on the amount of information quoted. Is
there a limit to the quoted size? Will the quoted data be the entire offending packet or just part of
it? Will the quoted data be the echoed correctly? Will extra bytes will be padded to the echoed
data? and some other parameters.

The next example is with Sun Solaris 7. I have sent a UDP datagram to a closed UDP port:

00:13:35.559947 ppp0 > x.x.x.x.1084 > y.y.y.y.2000: udp 0 (ttl 64, id
44551)

4500 001c ae07 0000 4011 7aa4 xxxx xxxx
yyyy yyyy 043c 07d0 0008 a1ac

00:13:35.923691 ppp0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port 2000
unreachable Offending pkt: x.x.x.x.1084 > y.y.y.y.2000: udp 0 (ttl 45,
id 44551) (DF) (ttl 236, id 63417)

4500 0038 f7b9 4000 ec01 44e5 yyyy yyyy
xxxx xxxx 0303 4f3c 0000 0000 4500 001c
ae07 0000 2d11 8da4 xxxx xxxx yyyy yyyy

43 http://www.insecure.org/nmap/nmap-fingerprinting-article.html

ICMP Usage in Scanning
Version 2.5

91

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

043c 07d0 0008 a1ac

Please note that for having more than 8 data bytes quoted, you need to have data in the
offending datagram. If not, there is nothing to quote beyond the regular 8 bytes (usually, if the OS
is not padding other data bytes).

The next example is with Sun Solaris 8. I have sent a UDP datagram to a closed UDP port,
adding 80 bytes of data to the datagram.

[root@godfather]# hping2 -2 -d 80 -c 1 y.y.y.y
eth0 default routing interface selected (according to /proc)
HPING y.y.y.y (eth0 y.y.y.y): udp mode set, 28 headers + 80 data bytes
ICMP Port Unreachable from y.y.y.y (y.y.y.y)

--- y.y.y.y hping statistic ---
1 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

The tcpdump trace:

11:52:50.830383 eth0 > x.x.x.x.2198 > y.y.y.y.0: udp 80 (ttl 64, id
17240)

4500 006c 4358 0000 4011 99ae xxxx xxxx
yyyy yyyy 0896 0000 0058 8b5f 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858

11:52:51.367331 eth0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port 0
unreachable Offending pkt: x.x.x.x.2198 > y.y.y.y.0: udp 80 (ttl 48, id
17240) (DF) (ttl 231, id 49576)

4500 0070 c1a8 4000 e701 3469 yyyy yyyy
xxxx xxxx 0303 bf05 0000 0000 4500 006c
4358 0000 3011 a9ae xxxx xxxx yyyy yyyy
0896 0000 0058 8b5f 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858

The result is an ICMP Port Unreachable Error message that will echo only 64 bytes of the
offending datagram’s data portion.

The limit of 64 bytes quoted from the offending packet’s data portion is not limited to Sun Solaris
only. HPUX 11.x, MacOS 7.55/8.x/9.04, will do the same.

Other operating systems / networking devices will have their own barriers. For example, LINUX
based on Kernel 2.2.x/2.4.x-t will send and ICMP Error Message up to 576 bytes long. LINUX will
quote 528 bytes from the data portion of the offending packet (576 minus 20 bytes of usuall IP
Header, minus 8 bytes of the ICMP Header, minus the offending packet’s IP Header that is 20
bytes will leave you with 528 bytes of data portion. This is no IP options are presented).

I know an operating system, and a family of networking devices that will pad extra data to the
echoed offending packet. LINUX case is detailed in the next section. The next example is with

ICMP Usage in Scanning
Version 2.5

92

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Foundry Networks Serverlron running software version 07.1.02T12. I have sent a UDP datagram
to a closed UDP port on the Foundry switch:

[root@godfather]# hping2 -2 -c 1 y.y.y.y
eth0 default routing interface selected (according to /proc)
HPING y.y.y.y (eth0 y.y.y.y): udp mode set, 28 headers + 0 data bytes
ICMP Port Unreachable from y.y.y.y (y.y.y.y)

--- y.y.y.y hping statistic ---
1 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms
[root@godfather]#

12:08:47.793503 eth0 > x.x.x.x.2498 > y.y.y.y.0: udp 0 (ttl 64, id
44437)

4500 001c ad95 0000 4011 885f xxxx xxxx
yyyy yyyy 09c2 0000 0008 b13f

12:08:48.240208 eth0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port 0
unreachable Offending pkt: x.x.x.x.2498 > y.y.y.y.0: udp 0 (ttl 51, id
44437) (ttl 51, id 17453)

4500 0044 442d 0000 3301 feaf yyyy yyyy
xxxx xxxx 0303 739c 0000 0000 4500 001c
ad95 0000 3311 955f xxxx xxxx yyyy yyyy
09c2 0000 0008 b13f dd2c 2a16 38e1 7646
7aaa 9d41

As it seems Foundry switches will pad 12 bytes with ICMP Port unreachable.

Other fingerptinting facts that are outlined through this section will halp us to differentiate between
the operating systems, which carry the same behavior.

I have examined three ICMP Error Messages a Host can issue:

• ICMP Port Unreachable
• ICMP Protocol Unreachable
• ICMP IP Reassembly Time Exceeded

Other ICMP Error Messages, which a Host can issue and should be checked to see if they hold
more fingerprinting differences, are:

• Source Quench
• Parameter Problem

6.15 LINUX ICMP Error Message Quoting Size Differences / The 20 Bytes from No
Where
We must understand that there are differences between the different ICMP Error messages, not
only with their meaning, but also with their implementation. I was expecting that several
characters with the ICMP Error messages will be the same along all of the ICMP Error Messages,
but I was wrong regarding few operating systems.

ICMP Usage in Scanning
Version 2.5

93

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

The most interesting case is with the LINUX operating system based on Kernel 2.2.x and 2.4.t-x.

The next example is with LINUX based on Kernel 2.2.16 as the targeted machine, eliciting an
ICMP Port Unreachable error message:

00:21:30.199408 ppp0 > x.x.x.x.2066 > y.y.y.y.2000: udp 0 (ttl 64, id
1732)

4500 001c 06c4 0000 4011 c895 xxxx xxxx
yyyy yyyy 0812 07d0 0008 4484

00:21:30.493691 ppp0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port 2000
unreachable Offending pkt: x.x.x.x.2066 > y.y.y.y.2000: udp 0 (ttl 44,
id 1732) [tos 0xc0] (ttl 238, id 53804)

45c0 0038 d22c 0000 ee01 4e60 yyyy yyyy
xxxx xxxx 0303 a88e 0000 0000 4500 001c
06c4 0000 2c11 dc95 xxxx xxxx yyyy yyyy
0812 07d0 0008 4484

The quoted data is the entire offending datagram. LINUX ICMP Error messages will be up to 576
bytes long according to the LINUX source code.

The next example is with LINUX as the targeted operating system. With this example I have sent
a protocol scan with NMAP:

13:14:56.942897 < x.x.x.x > y.y.y.y: ip-proto-38 0 (ttl 39, id 37623)

4500 0014 92f7 0000 2726 02cb xxxx xxxx
yyyy yyyy

13:14:56.942964 > y.y.y.y > x.x.x.x: icmp: y.y.y.y protocol 38
unreachable Offending pkt: x.x.x.x > y.y.y.y: ip-proto-38 0 (ttl 39, id
37623) [tos 0xc0] (ttl 255, id 1884)

45c0 0044 075c 0000 ff01 b59a yyyy yyyy
xxxx xxxx 0302 fb1a 0000 0000 4500 0014
92f7 0000 2726 02cb xxxx xxxx yyyy yyyy
0050 dc84 ae6f 6910 0000 0000 5004 0000
bd89 0000

LINUX adds to the entire offending packet that was quoted, another 20 bytes.

Since LINUX handles the ICMP Protocol Unreachable Error Messages like the ICMP Fragment
Reassembly Time Exceeded Error Messages we will see the same pattern with ICMP Fragment
Reassembly Time Exceeded:

[root@godfather bin]# hping2 -c 1 -x -y y.y.y.y
ppp0 default routing interface selected (according to /proc)
HPING y.y.y.y ppp0 y.y.y.y): NO FLAGS are set, 40 headers + 0 data
bytes

--- y.y.y.y hping statistic ---
1 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms
[root@godfather bin]#

The tcpdump trace:

ICMP Usage in Scanning
Version 2.5

94

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

19:49:22.999108 ppp0 > x.x.x.x.cvspserver > y.y.y.y.0: .
1709055398:1709055398(0) win 512 (frag 35247:20@0+) (DF) (ttl 64)

4500 0028 89af 6000 4006 e0ff xxxx xxxx
yyyy yyyy 0961 0000 65de 1da6 6a01 476b
5000 0200 bf71 0000

19:49:53.303196 ppp0 < y.y.y.y > x.x.x.x: icmp: ip reassembly time
exceeded Offending pkt: x.x.x.x.cvspserver > y.y.y.y.0: .
1709055398:1709055398(0) win 512 (frag 35247:20@0+) (DF) (ttl 45) [tos
0xc0] (ttl 238, id 379)

45c0 0058 017b 0000 ee01 1a49 yyyy yyyy
xxxx xxxx 0b01 3caf 0000 0000 4500 0028
89af 6000 2d06 f3ff xxxx xxxx yyyy yyyy
0961 0000 65de 1da6 6a01 476b 5000 0200
bf71 0000 601d 1f0d 7a04 5045 0100 0000
4146 4345 4a45 4f46

Since LINUX’s ICMP Error messages will not be bigger than 576 bytes long, if the offending
packet will be big enough (not likely in real world situation) we will not see the added 20 bytes in
the ICMP Fragment Reassembly / ICMP Protocol Unreachable error messages.

This unique pattern will allow us to identify LINUX based machines even if the Precedence Bits
value with the LINUX ICMP Error messages will be changed to 0x000.

6.16 Foundry Networks Networking Devices Padded Bytes with ICMP Port
Unreachable(s) / The 12 Bytes from No Where
Linux is not the only operating system that will have weird data bytes padded to one of his ICMP
Error messages.

Foundry Network’s networking devices will pad extra 12 bytes of data with their ICMP Port
Unreachable Error messages. Our first example is with a ServerIron switch running software
version 7.1.02T12, eliciting an ICMP Port Unreachable error message:

[root@godfather]# hping2 -2 -c 1 y.y.y.y
eth0 default routing interface selected (according to /proc)
HPING y.y.y.y (eth0 y.y.y.y): udp mode set, 28 headers + 0 data bytes
ICMP Port Unreachable from y.y.y.y (y.y.y.y)

--- y.y.y.y hping statistic ---
1 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms
[root@godfather]#

12:08:47.793503 eth0 > x.x.x.x.2498 > y.y.y.y.0: udp 0 (ttl 64, id
44437)

4500 001c ad95 0000 4011 885f xxxx xxxx
yyyy yyyy 09c2 0000 0008 b13f

12:08:48.240208 eth0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port 0
unreachable Offending pkt: x.x.x.x.2498 > y.y.y.y.0: udp 0 (ttl 51, id
44437) (ttl 51, id 17453)

4500 0044 442d 0000 3301 feaf yyyy yyyy
xxxx xxxx 0303 739c 0000 0000 4500 001c

ICMP Usage in Scanning
Version 2.5

95

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

ad95 0000 3311 955f xxxx xxxx yyyy yyyy
09c2 0000 0008 b13f dd2c 2a16 38e1 7646
7aaa 9d41

From the tcpdump trace we can see that the offending packet’s IP header and the first 8 data
bytes were echoed correctly. Right after those, 12 bytes were padded, that came from nowhere.

The next example is with Foundry Network’s BigIron 8000 running software version 6.6.05T51.
With this test I have sent a UDP datagram with 80 bytes of data to a closed UDP port on the
BigIron 8000:

[root@godfather /root]# hping2 -2 -c 3 -d 80 y.y.y.y
ppp0 default routing interface selected (according to /proc)
HPING y.y.y.y (ppp0 y.y.y.y): udp mode set, 28 headers + 80 data
bytes
ICMP Port Unreachable from y.y.y.y (y.y.y.y)
ICMP Port Unreachable from y.y.y.y (y.y.y.y)
ICMP Port Unreachable from y.y.y.y (y.y.y.y)

--- y.y.y.y hping statistic ---
3 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms
[root@godfather /root]#

11:40:36.694235 ppp0 > x.x.x.x.2779 > y.y.y.y.0: udp 80 (ttl 64, id
25211)

4500 006c 627b 0000 4011 2e7a xxxx xxxx
yyyy yyyy 0adb 0000 0058 3d09 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858

11:40:37.913018 ppp0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port 0
unreachable Offending pkt: x.x.x.x.2779 > y.y.y.y.0: udp 80 (ttl 52, id
25211) (ttl 52, id 60504)

4500 0044 ec58 0000 3401 b0d4 yyyy yyyy
xxxx xxxx 0303 edf3 0000 0000 4500 006c
627b 0000 3411 3a7a xxxx xxxx yyyy yyyy
0adb 0000 0058 3d09 1c1d 1e1f 2021 2223
2425 2627

Again, the offending packet’s IP Header and the first 8 data bytes are quoted correctly. 12 data
bytes are padded right after.

A nice pattern that allows us to identify Foundry Network’s networking devices.

6.17 ICMP Error Message Echoing Integrity (Tested with ICMP Port Unreachable)
When sending back an ICMP error message, some stack implementations may alter the original
IP header, which is echoed back with the ICMP error message.

ICMP Usage in Scanning
Version 2.5

96

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

If an attacker examines the types of alternation that have been made to the headers, he may be
able to make certain assumptions about the target operating system.

The only two field values we expect to be changed are the IP time-to-live field value and the IP
header checksum. The TTL field value changes because the field is decremented by one, each
time the IP Header is processed. The IP header checksum is recalculated each time the IP TTL
field value decremented.

Fyodor gives the following examples in his article “Remote OS detection via TCP/IP Stack Finger
Printing”44:

“For example, AIX and BSDI send back an IP 'total length' field that is 20 bytes too high.
Some BSDI, FreeBSD, OpenBSD, ULTRIX, and VAXen change the IP ID that you sent
them. While the checksum is going to change due to the changed TTL anyway, there are
some machines (AIX, FreeBSD, etc.) which send back an inconsistent or 0 checksum.
Same thing goes with the UDP checksum."

This section deals with the ICMP Port Unreachable error message.

AIX 4.2.1, 4.3, 4.3 fix pack 2
In the next example I have sent a UDP datagram to a closed UDP port on an AIX 4.3 machine
using HPING2. This is the tcpdump trace:

12:33:17.319275 ppp0 > x.x.x.x.2160 > y.y.y.y.0: udp 0 [tos 0x10] (ttl
64, id 47349)

4510 001c b8f5 0000 4011 9bea xxxx xxxx
yyyy yyyy 0870 0000 0008 d18c

12:33:17.614823 ppp0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port 0
unreachable Offending pkt: x.x.x.x.2160 > y.y.y.y.0: udp 0 [tos 0x10]
(ttl 49, id 47349, bad cksum aaea!) [tos 0x10] (ttl 241, id 17965)

4510 0038 462d 0000 f101 5da6 yyyy yyyy
xxxx xxxx 0303 f470 0000 0000 4510 0030
b8f5 0000 3111 aaea xxxx xxxx yyyy yyyy
0870 0000 0008 0000

We can identify several changed between the original IP Headers to the echoed ICMP Header
with the ICMP port unreachable error message.

• IP Total Length Field - The total length field with the original UDP datagram equal to
28 bytes. With the echoed original IP header this value was changed to 48 bytes. 20
bytes more than the original UDP datagram’s length.

• IP TTL Field value - With the ICMP error message this value is set to the value,
which reached its final destination (with this example the targeted host). When it
reached it target the TTL was set to 49. We also learn the target is 64-49 = 15 hops
away.

• IP Header Checksum - The IP Header checksum was changed because the IP Total
Length filed value and the IP TTL field value were changed.

44 http://www.insecure.org/nmap/nmap-fingerprinting-article.html

ICMP Usage in Scanning
Version 2.5

97

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

• UDP Header Checksum – The UDP header checksum with the echoed information
equal to zero.

AIX 4.1
In the next example I have sent a UDP datagram to a closed UDP port on an AIX 4.1 machine
using HPING2. This is the tcpdump trace:

00:56:07.894612 ppp0 > x.x.x.x.1594 > y.y.y.y.0: udp 0 [tos 0x8] (ttl
64, id 2153)

4508 001c 0869 0000 4011 c54f xxxx xxxx
yyyy yyyy 063a 0000 0008 4c93

00:56:08.204551 ppp0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port 0
unreachable Offending pkt: x.x.x.x.1594 > y.y.y.y.0: udp 0 [tos 0x8]
(ttl 47, id 2153, bad cksum d64f!) [tos 0x8] (ttl 239, id 1065)

4508 0038 0429 0000 ef01 1a83 yyyy yyyy
xxxx xxxx 0303 aa13 0000 0000 4508 0030
0869 0000 2f11 d64f xxxx xxxx yyyy yyyy
063a 0000 0008 4c93

We can identify several changed between the original IP Headers to the echoed ICMP Header
with the ICMP port unreachable error message.

• IP Total Length Field - The total length field with the original UDP datagram equal to
28 bytes. With the echoed original IP header this value was changed to 48 bytes. 20
bytes more than the original UDP datagram’s length.

• IP TTL Field value - With the ICMP error message this value is set to the value,
which reached its final destination (with this example the targeted host). When it
reached it target the TTL was set to 47. We also learn the target is 64-47 = 17 hops
away.

• IP Header Checksum - The IP Header checksum was changed because the IP Total
Length filed value and the IP TTL field value were changed.

ICMP Error Message Echoing Integrity with different 4.x versions of AIX
In contrast to AIX version 4.3 and 4.2.1 AIX version 4.1 use the original UDP Checksum. This
detail helps us to differentiate between the different versions of AIX.

BSDI 4.x
In the next example I have sent, again, a UDP datagram to a close UDP port, this time on a BSDI
4.1 machine. The following is the tcpdump trace:

01:01:11.128420 ppp0 > x.x.x.x.2933 > y.y.y.y.0: udp 0 [tos 0x8] (ttl
64, id 49317)

4508 001c c0a5 0000 4011 9209 xxxx xxxx
yyyy yyyy 0b75 0000 0008 cc4e

01:01:11.484552 ppp0 < y.y.y.y.4 > x.x.x.x: icmp: y.y.y.y udp port 0
unreachable Offending pkt: x.x.x.x.2933 > y.y.y.y.0: udp 0 [tos 0x8]
(ttl 53, id 49317, bad cksum 0!) (ttl 242, id 16127)

4500 0038 3eff 0000 f201 61ab yyyy yyyy

ICMP Usage in Scanning
Version 2.5

98

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

xxxx xxxx 0303 c226 0000 0000 4508 0030
c0a5 0000 3511 0000 xxxx xxxx yyyy yyyy
0b75 0000 0008 cc4e

Again several changed were made to the original IP Header:

• IP Total length - With the echoed IP Header this field value was changed from the
original 28 bytes to 48 bytes. 20 bytes more than the original.

• IP TTL Field Value – Changed according to the hop count. Was equal to 53 when
arrived to its destination. The target is 64 – 53 = 11 hops away.

• IP Header Checksum – changed now it equal to zero!

FreeBSD 3.x up to 4.1.1 (not including)
The next example is with FreeBSD 4.1:

00:52:19.055758 ppp0 > x.x.x.x.1393 > y.y.y.y.0: udp 0 [tos 0x8] (ttl
64, id 58965)

4508 001c e655 0000 4011 3f63 xxxx xxxx
yyyy yyyy 0571 0000 0008 a55c

00:52:19.464548 ppp0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port 0
unreachable Offending pkt: x.x.x.x.1393 > y.y.y.y.0: udp 0 [tos 0x8]
(ttl 47, id 21990, bad cksum 5063!) (ttl 238, id 27639)

4500 0038 6bf7 0000 ee01 0bbd yyyy yyyy
xxxx xxxx 0303 87f3 0000 0000 4508 001c
55e6 0000 2f11 5063 xxxx xxxx yyyy yyyy
0571 0000 0008 0000

• The IP Identification field value is changed. This field is constructed with 16bit. The
first 8 bits changed places with the second pair of 8 bits constructing this field. With
the original datagram this field value was e655, with the echoed IP header it is
55e645.

• The IP TTL field value has changed. The target is 64 – 47 = 17 hops away.
• The IP Header Checksum have changed because of the parameters were changed

as well.
• The UDP checksum is changed and now it equal to zero!

Operating
System

DF Bit set
with the
Reply?

IP Total
Length

IP

Identificatio
n

IP TTL

field value

IP Header
Checksum

UDP

Checksum

LINUX Kernel
2.2.x

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

LINUX Kernel
2.4

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

45 http://www.freebsd.org/cgi/query-pr.cgi?pr=16240 ; Patches were issued. This is fixed with FreeBSD 4.1.1.

ICMP Usage in Scanning
Version 2.5

99

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

FreeBSD 4.0 No Same Changed.

The first
two bits
are flipped
with the
second
pair. Gives
a new
value.

Changed
according
to hop
count.

Changed
because of new
parameters.

Changed.
Now equal to
ZERO!

FreeBSD 4.11 No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Changed.
Now equal to
ZERO!

BSDI 4.1 No Changed
(20 bytes
more)

Same Changed
according
to hop
count

Changed. Now
equals to ZERO!

Same

Sun Solaris
2.6

Yes Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

Sun Solaris
2.7

Yes Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

Sun Solaris
2.846

Yes Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

HPUX 11.0 No -> Yes Same Same Changed

according
to hop
count.

Changed
because of new
parameters.

Same

Compaq
Tru64

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Changed.
Now equal to
ZERO!

DG-UX 5.6

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Changed.
Now equal to
ZERO!

AIX 4.3 fp2,
4.3, 4.2.1

No Changed
(20 bytes
more)

Same Changed
according
to hop
count

Changed
because of new
parameters.

Changed.
Now equal to
ZERO!

AIX 4.1

No Changed
(20 bytes
more)

Same Changed
according
to hop
count

Changed
because of new
parameters.

Same

46 The DF Bit is set.

ICMP Usage in Scanning
Version 2.5

100

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Operating
System

DF Bit set
with the
Reply?

IP Total
Length

IP

Identificatio
n

IP TTL

field value

IP Header
Checksum

UDP

Checksum

ULTRIX No Same Changed.
The first
two bits
are flipped
with the
second
pair. Gives
a new
value.

Changed
according
to hop
count

Changed. Now
equals to ZERO!

Changed.
Now equal to
ZERO!

OpenVMS No Same Changed.

The first
two bits
are flipped
with the
second
pair. Gives
a new
value.

Changed
according
to hop
count

Changed. Now
equals to ZERO!

Changed.
Now equal to
ZERO!

Microsoft
windows 98

Mirosoft
Windows
98SE

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

Microsoft
Windows ME

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

Microsoft
Windows NT
4

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

Microsoft
Windows
2000 Family

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

Table 14: ICMP Error Message Echoing Integrity

6.18 Novell Netware Echoing Integrity Bug with ICMP Fragment Reassembly Time
Exceeded
Novell Netware operating systems have a unique pattern with ICMP Fragment Reassembly Time
Exceeded error messages they produce.

In general, when an ICMP error message is produced, the offending packet's IP Header + at least
8 bytes of data are echoed with the error message.

If we examine closely the next example, we can see that the Offending packet's IP TTL field
value echoed back is zero.

ICMP Usage in Scanning
Version 2.5

101

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

We expect this value to decrement from the value initially assigned, but not to be zero. Since this
value should change from one hop to another, the Checksum need to be recalculated each time.
With the Novell Netware error message we can see that the Checksum echoed is miscalculated.

...And again this is a Fragment Reassembly Time Exceeded ICMP error message and not an
ICMP Time Exceeded in Transit error message.

The next example is with Novell Netware 5.1:

[root@godfather bin]# hping2 -c 1 -x -y y.y.y.y
ppp0 default routing interface selected (according to /proc)
HPING y.y.y.y (ppp0 y.y.y.y): NO FLAGS are set, 40 headers + 0 data
bytes

--- y.y.y.y hping statistic ---
1 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms
[root@godfather bin]#

The Trace:

20:12:28.008893 ppp0 > x.x.x.x.1865 > y.y.y.y.0: .
687160929:687160929(0) win 512 (frag 58586:20@0+) (DF) (ttl 64)

4500 0028 e4da 6000 4006 c236 xxxx xxxx
yyyy yyyy 0749 0000 28f5 3e61 669e 9f15
5000 0200 c5d2 0000

20:12:41.313202 ppp0 < y.y.y.y > x.x.x.x: icmp: ip reassembly time
exceeded Offending pkt: [|tcp] (frag 58586:20@0+) (DF) [ttl 0] (bad
cksum d336!) (ttl 111, id 9591)

4500 0038 2577 0000 6f01 b28f yyyy yyyy
xxxx xxxx 0b01 b55f 0000 0000 4500 0028
e4da 6000 0006 d336 xxxx xxxx yyyy yyyy
0749 0000 28f5 3e61

This unique pattern enables us to determine if the operating system in question is a Novell
Netware or other with one datagram only.

6.19 The Precedence bits with ICMP Error Messages (Identifying LINUX)
Each IP Datagram has an 8-bit field called the “TOS Byte”, which represents the IP support for
prioritization and Type-of-Service handling.

MBZTOSPrecedence

0 3 4 51 2 6 7

Figure 13: The Type of Service Byte

The “TOS Byte” consists of three fields.

ICMP Usage in Scanning
Version 2.5

102

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

The “Precedence field”, which is 3-bit long, is intended to prioritize the IP Datagram. It has eight
levels of prioritization47:

Precedence

Definition

0 Routine (Normal)
1 Priority
2 Immediate
3 Flash
4 Flash Override
5 Critical
6 Internetwork Control
7 Network control

Table 15: Precedence Field Values

Higher priority traffic should be sent before lower priority traffic.

The second field, 4 bits long, is the “Type-of-Service” field. It is intended to describe how the
network should make tradeoffs between throughput, delay, reliability, and cost in routing an IP
Datagram.

The last field, the “MBZ” (most be zero), is unused and most be zero. Routers and hosts ignore
this last field. This field is 1 bit long.

RFC 1122 Requirements for Internet Hosts -- Communication Layers, states:
“The Precedence field is intended for Department of Defense applications of the Internet
protocols. The use of non-zero values in this field is outside the scope of this document and the
IP standard specification. Vendors should consult the Defense Communication Agency (DCA) for
guidance on the IP Precedence field and its implications for other protocol layers. However,
vendors should note that the use of precedence will most likely require that its value be passed
between protocol layers in just the same way as the TOS field is passed”.

Other precedence information is available with RFC 1812 Requirements for IP Version 4 Routers:
“4.3.2.5 TOS and Precedence
…

ICMP Source Quench error messages, if sent at all, MUST have their IP Precedence field set to
the same value as the IP Precedence field in the packet that provoked the sending of the
ICMP Source Quench message. All other ICMP error messages (Destination Unreachable,
Redirect, Time Exceeded, and Parameter Problem) SHOULD have their precedence value set to
6 (INTERNETWORK CONTROL) or 7 (NETWORK CONTROL). The IP Precedence value for
these error messages MAY be settable”.

With the operating systems I have checked, nearly all of them used the value of 0x00 for the
Precedence field (bits).

All but LINUX

47 RFC 791 – Internet Protocol, http://www.ietf.org/rfc/rfc791.txt.

ICMP Usage in Scanning
Version 2.5

103

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Fyodor had outlined in his paper “Remote OS Identification by TCP/IP Fingerprinting” 48 the fact
that LINUX is using the value of 0xc0 (an unused precedence value) as its TOS byte value with
ICMP Port Unreachable error messages.

In the next example we have sent one UDP packet destined to port 50 (which is closed on the
destination machine) from one LINUX machine to another, both running Redhat LINUX 6.1:

[root@stan /root]# hping2 -2 192.168.5.5 -p 50 -c 1
default routing not present
HPING 192.168.5.5 (eth0 192.168.5.5): udp mode set, 28 headers + 0 data
bytes
ICMP Port Unreachable from 192.168.5.5 (kenny.sys-security.com)

--- 192.168.5.5 hping statistic ---
1 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

Kernel filter, protocol ALL, raw packet socket
Decoding Ethernet on interface eth0
03/12-12:54:47.274096 192.168.5.1:2420 -> 192.168.5.5:50
UDP TTL:64 TOS:0x0 ID:57254
Len: 8

03/12-12:54:47.274360 192.168.5.5 -> 192.168.5.1
ICMP TTL:255 TOS:0xC0 ID:0
DESTINATION UNREACHABLE: PORT UNREACHABLE
00 00 00 00 45 00 00 1C DF A6 00 00 40 11 0F D4E.......@...
C0 A8 05 01 C0 A8 05 05 09 74 00 32 00 08 6A E1t.2..j.

This abnormality with LINUX is not only limited to ICMP Destination Unreachable Port
Unreachable error messages.

Lets examine the next trace:

00:30:08.339498 < x.x.x.x > y.y.y.y: ip-proto-72 0 (ttl 49, id 38624)
4500 0014 96e0 0000 3148 f4bf xxxx xxxx
yyyy yyyy

00:30:08.339559 > y.y.y.y > x.x.x.x: icmp: y.y.y.y protocol 72
unreachable Offending pkt: x.x.x.x > y.y.y.y: ip-proto-72 0 (ttl 49, id
38624) [tos 0xc0] (ttl 255, id 37)

45c0 0044 0025 0000 ff01 bcd1 yyyy yyyy
xxxx xxxx 0302 fb1a 0000 0000 4500 0014
96e0 0000 3148 f4bf xxxx xxxx yyyy yyyy
0050 d909 621b 96f7 0000 0000 5004 0000
df71 0000

The ICMP error message produced by a LINUX machine based on Kernel 2.2.14, is Destination
Unreachable Protocol Unreachable (Type 3 Code 2). As it can be seen the TOS Byte value that
was used is again 0xc0. Which is an unused Precedence bits value.

48 This fact was discovered by Fyodor. http://www.insecure.org/nmap/nmap-fingerprinting-article.html

ICMP Usage in Scanning
Version 2.5

104

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

LINUX embraced the behavior RFC 1812 suggested and sends all his ICMP error messages with
the Precedence field value sent to 0xc0 (value of 6).

Just to remind the reader – LINUX is not a router.

6.20 TOS Bits (=field) Echoing with ICMP Error
RFC 1394 specify that an ICMP error message be always sent with the default TOS field value of
0000 (TOS field=TOS bits in the TOS Byte).

When an offending packet with a TOS field value of 0000 is eliciting an ICMP error message from
an offended host, the TOS field value with all the operating systems I have checked will be set to
0000.

If we will pay attention to the TOS Byte we will see that LINUX and several routers will use the
value of 0xc0 for the precedence field (see section 6.14 The Precedence bits with ICMP Error
Messages for the explanation).

What will happen if the TOS field with the offending packet will be set to a value different than the
default (0000)?

We will have several operating systems that will echo the TOS field back with the ICMP error
message.

Our first example is with an AIX 4.3 machine, where a UDP datagram is sent with a TOS field
value of 0x10 hex:

12:33:17.319275 ppp0 > x.x.x.x.2160 > y.y.y.y.0: udp 0 [tos 0x10] (ttl
64, id 47349)

4510 001c b8f5 0000 4011 9bea xxxx xxxx
yyyy yyyy 0870 0000 0008 d18c

12:33:17.614823 ppp0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port 0
unreachable Offending pkt: x.x.x.x.2160 > y.y.y.y.0: udp 0 [tos 0x10]
(ttl 49, id 47349, bad cksum aaea!) [tos 0x10] (ttl 241, id 17965)

4510 0038 462d 0000 f101 5da6 yyyy yyyy
xxxx xxxx 0303 f470 0000 0000 4510 0030
b8f5 0000 3111 aaea xxxx xxxx yyyy yyyy
0870 0000 0008 0000

As it can be seen from the trace, the TOS field value was echoed back by the AIX machine. This
was tested against AIX 4.1, 4.2.1, 4.3, 4.3 fix pack2.

The next example is with DGUX 5.6:

12:58:57.663517 ppp0 > x.x.x.x.1074 > y.y.y.y.11: udp 0 [tos 0x8] (ttl
64, id 47314)

4508 001c b8d2 0000 4011 a037 xxxx xxxx
yyyy yyyy 0432 000b 0008 d9e1

12:58:57.984820 ppp0 < 134.210.1.200 > x.x.x.x.: icmp: y.y.y.y.200 udp
port 11 unreachable Offending pkt: x.x.x.x.1074 > y.y.y.y.11: udp 0
[tos 0x8] (ttl 52, id 47314) [tos 0x8] (ttl 52, id 16984)

ICMP Usage in Scanning
Version 2.5

105

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

4508 0038 4258 0000 3401 22a6 yyyy yyyy
d508 c41c 0303 f8b7 0000 0000 4508 001c
b8d2 0000 3411 ac37 xxxx xxxx yyyy yyyy
0432 000b 0008 0000

How can we differentiate between DGUX and AIX? If we will pay attention to the echoing
integrity. AIX 4.x sets the IP total length field value, with the echoed offending IP Header, to a
value 20 bytes higher than the original. DGUX quote this field value correctly.

The last operating system, which I have found echoing the TOS field value with its ICMP error
messages, is LINUX operating systems based on Kernel 2.2.x & 2.4 (the versions of the Kernel
that I have tested):

00:50:43.759906 ppp0 > x.x.x.x.1952 > y.y.y.y.0: udp 0 [tos 0x10] (ttl
64, id 15952)

4510 001c 3e50 0000 4011 e6b2 xxxx xxxx
yyyy yyyy 07a0 0000 0008 a27f

00:50:44.154556 ppp0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y.211 udp port 0
unreachable Offending pkt: x.x.x.x.1952 > y.y.y.y.0: udp 0 [tos 0x10]
(ttl 47, id 15952) [tos 0xd0] (ttl 238, id 54662)

45d0 0038 d586 0000 ee01 a0af yyyy yyyy
xxxx xxxx 0303 52d5 0000 0000 4510 001c
3e50 0000 2f11 f7b2 xxxx xxxx yyyy yyyy
07a0 0000 0008 a27f

Another unique pattern with LINUX is setting the Precedence field value to 0xc0 with ICMP error
messages. This helps us to differentiate LINUX from the other operating systems that echo the
TOS field value.

While LINUX embraced RFC 1812 instructions for routers regarding the TOS and Precedence
fields, the other operating systems that echo the TOS field value don’t seem to have a good
excuse for doing so.

6.21 DF Bit Echoing with ICMP Error Messages
We already have the DF Bit Echoing method with ICMP Query message types (& Replies); I was
thinking why this couldn’t happen with ICMP Error Messages as well?

What will happen if we will set the DF bit with an offending packet that will generate an ICMP
Error message? Will the DF Bit be set with the ICMP Error Message?

In the next example, a UDP datagram is sent to a closed UDP port, to elicit an ICMP Port
Unreachable error message. The DF bit is set with the offending datagram. As it can be seen the
DF bit is set with the ICMP error message the FreeBSD 4.1.1 machine, which was the target
system issued back.

[root@godfather /root]# hping2 -2 -p 2000 -c 2 -y y.y.y.y
ppp0 default routing interface selected (according to /proc)
HPING y.y.y.y (ppp0 y.y.y.y): udp mode set, 28 headers + 0 data bytes
ICMP Port Unreachable from y.y.y.y (host_address)
ICMP Port Unreachable from y.y.y.y (host_address)

--- y.y.y.y hping statistic ---

ICMP Usage in Scanning
Version 2.5

106

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

2 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms
[root@godfather /root]#

00:31:29.805075 ppp0 > x.x.x.x.1403 > y.y.y.y.2000: udp 0 (DF) (ttl 64,
id 19417)

4500 001c 4bd9 4000 4011 452b xxxx xxxx
yyyy yyyy 057b 07d0 0008 48c6

00:31:30.103692 ppp0 < 18.170.1.79 > x.x.x.x: icmp: y.y.y.y udp port
2000 unreachable Offending pkt: x.x.x.x.1403 > y.y.y.y.2000: udp 0 (DF)
(ttl 45, id 19417) (DF) (ttl 238, id 47017)

4500 0038 b7a9 4000 ee01 2b4e yyyy yyyy
xxxx xxxx 0303 efa9 0000 0000 4500 001c
4bd9 4000 2d11 582b xxxx xxxx yyyy yyyy
057b 07d0 0008 0000

We can distinguish between the group of operating systems, which will echo back the DF bit with
their replies, to the group of operating systems that will not.

The next example is with Microsoft Windows ME:

00:49:45.853751 ppp0 > x.x.x.x.1580 > y.y.y.y.10: udp 0 (DF) (ttl 64,
id 63227)

4500 001c f6fb 4000 4011 730a xxxx xxxx
yyyy yyyy 062c 000a 0008 28dd

00:49:46.173681 ppp0 < 212.150.102.96 > x.x.x.x: icmp: y.y.y.y udp port
10 unreachable Offending pkt: x.x.x.x.1580 > y.y.y.y.10: udp 0 (DF)
(ttl 55, id 63227) (ttl 119, id 430)

4500 0038 01ae 0000 7701 714c yyyy yyyy
xxxx xxxx 0303 cde1 0000 0000 4500 001c
f6fb 4000 3711 7c0a xxxx xxxx yyyy yyyy
062c 000a 0008 28dd

Among the operating systems I have checked LINUX machines based on Kernel 2.2.x / 2.4.x,
ULTRIX, Novell Netware, and Microsoft Windows 98/98SE/ME/NT4SP6A/Windows 2000 Family,
will not echo back the DF bit with their ICMP Error messages.

How can we distinguish between the operating systems in the non-DF echoing group?
Since Linux is using the value of 0xc0 hex for his Precedence Bits field value for all ICMP Error
messages we can separate it instantly.

00:25:17.203727 ppp0 > x.x.x.x.1421 > y.y.y.y.2000: udp 0 (DF) (ttl 64,
id 11969)

4500 001c 2ec1 4000 4011 b938 xxxx xxxx
yyyy yyyy 058d 07d0 0008 9fa9

00:25:17.573698 ppp0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port 2000
unreachable Offending pkt: x.x.x.x.1421 > y.y.y.y.2000: udp 0 (DF) (ttl
45, id 11969) [tos 0xc0] (ttl 236, id 38250)

45c0 0038 956a 0000 ec01 e5c2 yyyy yyyy
xxxx xxxx 0303 4fee 0000 0000 4500 001c
2ec1 4000 2d11 cc38 xxxx xxxx yyyy yyyy
058d 07d0 0008 9fa9

ICMP Usage in Scanning
Version 2.5

107

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

ULTRIX echo integrity is not that good. The offending packet echoing will set both the IP Header
Checksum and the Original UDP Checksum to zero. It will also miscalculate the IP ID field value
and will flip the first 8 bits with the second one, creating a false value for it:

00:29:05.013726 ppp0 > x.x.x.x.1188 > y.y.y.y.2000: udp 0 (DF) (ttl 64,
id 34921)

4500 001c 8869 4000 4011 5f85 xxxx xxxx
yyyy yyyy 04a4 07d0 0008 a087

00:29:05.383686 ppp0 < 194.47.250.222 > x.x.x.x: icmp: y.y.y.y udp port
2000 unreachable Offending pkt: x.x.x.x.1188 > y.y.y.y.2000: udp 0 (ttl
45, id 27016, bad cksum 0!) (ttl 236, id 9736)

4500 0038 2608 0000 ec01 55da yyyy yyyy
xxxx xxxx 0303 c1e7 0000 0000 4500 001c
6988 0000 2d11 0000 xxxx xxxx yyyy yyyy
04a4 07d0 0008 0000

This will leave us with Novell Netware and the various Microsoft Windows Operating Systems.

As discussed in section 6.17 “Novell Netware Echoing Integrity Bug with ICMP Fragment
Reassembly Time Exceeded “, when a Novell Netware operating system issue an ICMP Time
Exceeded error message it will zero out on the echoed offending packet the IP TTL field value.
We will use this information and send an offending packet to the questioned operating systems
that will elicit an ICMP Time Exceeded error message from the quesitoned OSs.

Offending Packet w ith DF Bit Set
(data portion set to 70 bytes, for example)

Reply - Error
Message Echoing

the DF Bit

LINUX based on Kernel 2.2.x, 2.4x
ULTRIX

Novell Netware
HPUX

Windows 98/98SE/ME
Microsoft Windows NT4 Server, SP6a

Microsoft Windows 2000 Family

1

Other OSs

Reply - Error
Message not

Echoing the DF Bit

LINUX Kernel based 2.2.x, 2.4x

Offending Packet that w ill elicit ICMP Time Exceeded
Error Message

Reply with Echoed
IP TTL Field =0

Reply with Echoed
IP TTL field !=0

Windows 98/98SE/ME
Microsoft Windows NT4 Server, SP6a

Microsoft Windows 2000 Family
Novel l Netware

2

Precedence
Bits value
equal 0xc0

Wrong IP ID
IP Header Checksum is zero
Original Checksum is zero

ULTRIX Novell Netware
Windows 98/98SE/ME

Microsoft Windows NT4 Server, SP6a
Microsoft Windows 2000 Family

64 bytes of the
offending packet's

data portion are
echoed back

HPUX

Diagram 12: DF Bit Echoing with ICMP Error Messages

ICMP Usage in Scanning
Version 2.5

108

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

We can take a second approach using the ICMP Fragment Reassembly Time Exceeded error
message. We will send an offending packet with the DF bit set that will elicit an ICMP Fragment
Reassembly Time Exceeded error message back from the targeted machine. Novell Netware,
LINUX based Kernel 2.2.x and 2.4x-t, and the various Microsoft Windows operating systems will
set the DF bit with their replies. LINUX and Novell have their unique fingerprinting with ICMP
Fragment Reassembly Time Exceeded error messages, enabling us to isolate the Microsoft
based operating systems machines.

HP-UX 11.x based machines will have a unique behavior when the PMTU discovery process
based on ICMP Echo Requests is enabled (by default). In the next example I have sent a UDP
datagram to port 53 (DNS) of the targeted HPUX machine.

[root@godfather /root]# hping2 -2 -p 53 -c 2 -y y.y.y.y
ppp0 default routing interface selected (according to /proc)
HPING y.y.y.y (ppp0 y.y.y.y): udp mode set, 28 headers + 0 data bytes
ICMP Port Unreachable from y.y.y.y (unknown host name)
ICMP Port Unreachable from y.y.y.y (unknown host name)

--- y.y.y.y hping statistic ---
2 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms
[root@godfather /root]#

00:45:02.490445 ppp0 > x.x.x.x.codasrv > y.y.y.y.domain: 0 [0q] (0)
(DF) (ttl 64, id 7454)

4500 001c 1d1e 4000 4011 e708 xxxx xxxx
yyyy yyyy 0980 0035 0008 bf7e

As an instant reply the PMTU discovery process which is based upon ICMP Echo request(s) is
started:

00:45:03.113686 ppp0 < y.y.y.y > x.x.x.x: icmp: echo request (DF) (ttl
242, id 25153)

4500 05dc 6241 4000 f201 ea34 yyyy yyyy
xxxx xxxx 0800 7e52 9abc def0 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ICMP Usage in Scanning
Version 2.5

109

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ICMP Usage in Scanning
Version 2.5

110

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

My LINUX machine replied with ICMP Echo Reply:

00:45:03.113787 ppp0 > x.x.x.x > y.y.y.y: icmp: echo reply (ttl 255, id
98)

4500 05dc 0062 0000 ff01 7f14 xxxx xxxx
yyyy yyyy 0000 8652 9abc def0 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ICMP Usage in Scanning
Version 2.5

111

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ICMP Usage in Scanning
Version 2.5

112

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

The first ICMP Port Unreachable error message arrives without the DF bit set:

00:45:03.123692 ppp0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port domain
unreachable Offending pkt: x.x.x.x.codasrv > y.y.y.y.domain: 0 [0q] (0)
(DF) (ttl 51, id 7454) (ttl 242, id 25154)

4500 0038 6242 0000 f201 2fd8 yyyy yyyy
xxxx xxxx 0303 33c1 0000 0000 4500 001c
1d1e 4000 3311 f408 xxxx xxxx yyyy yyyy
0980 0035 0008 bf7e

A second UDP datagram is sent:

00:45:03.493752 ppp0 > x.x.x.x.codasrv-se > y.y.y.y.domain: 56810+ (0)
(DF) (ttl 64, id 59904)

4500 001c ea00 4000 4011 1a26 xxxx xxxx
yyyy yyyy 0981 0035 0008 bf7d

The ICMP Port Unreachable error message that was sent for the second UDP datagram now sets
the DF bit as part of the PMTU discovery process maintenance:

00:45:03.813687 ppp0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port domain
unreachable Offending pkt: x.x.x.x.codasrv-se > y.y.y.y.domain: 26990
op5+ [b2&3=0x2d61] [29188a] [25700q] [24946n] [28769au] (0) (DF) (ttl
51, id 59904) (DF) (ttl 242, id 25155)

4500 0038 6243 4000 f201 efd6 yyyy yyyy
xxxx xxxx 0303 33c1 0000 0000 4500 001c
ea00 4000 3311 2726 xxxx xxxx yyyy yyyy
0981 0035 0008 bf7d

This also means that with the regular behavior with HPUX 11.x it will not echo back the DF bit.
Also, if you are sending only one offending datagram to the targeted HPUX 11.x based machine,
you will not be able to see the change.

So how can we distinguish HPUX from the other operating systems?

HPUX based operating system(s) machines will echo up to 64 bytes of the offending packet’s
data portion. By sending a bigger offending datagram (for example with 80 bytes of data portion)
we can examine which of the operating systems in question, which do not set the DF bit with the
ICMP error message, will echo 64 bytes of the data portion (or even more than 8 and will not set
the the precedence bits to 0xc0).

Not that useful fingerprinting method(s)

6.22 Unusual Big ICMP Echo Request
What would happen if we would send unusual big ICMP Echo message that would require its
fragmentation? Would the queried operating systems will process the query correctly and
produce an accurate reply?

[root@aik /root]# ping -s 1500 x.x.x.x

ICMP Usage in Scanning
Version 2.5

113

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

PING x.x.x.x (x.x.x.x) from y.y.y.y : 1500(1528) bytes of data.
1508 bytes from x.x.x.x: icmp_seq=0 ttl=241 time=1034.7 ms
1508 bytes from host_address (x.x.x.x): icmp_seq=2 ttl=241 time=1020.0
ms
1508 bytes from host_address (x.x.x.x): icmp_seq=3 ttl=241 time=1090.4
ms
1508 bytes from host_address (x.x.x.x): icmp_seq=5 ttl=241 time=1060.0
ms

--- x.x.x.x ping statistics ---
8 packets transmitted, 5 packets received, 37% packet loss
round-trip min/avg/max = 1000.2/1041.0/1090.4 ms
[root@aik /root]#

As it seems all the probed operating systems I have tested behaved correctly processing the
query and sending the reply back.

What else can assist us with this kind of query?
The DF (Don’t Fragment) bit.

Some operating systems would process the query and set the don’t fragment bit on the fragments
of the reply like we have outlined in the “DF Bit Playground” section. These operating systems
would be Sun Solaris, and HP-UX 10.30 & 11.0x49.

We can use other methods, which does not generate the kind of noise this method generates.
Basically there is no reason for this size of ICMP Echo request. This should trigger IDS systems
immediately that something suspicious is happening.

49 Please refer to section 6.2 for more information.

ICMP Usage in Scanning
Version 2.5

114

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

7.0 Filtering ICMP on your Filtering Device to Prevent Scanning Using ICMP

7.1 Inbound
An example of incoming ICMP traffic that should be blocked in order to prevent scanning
techniques that were outlined in this paper might be:

• ICMP Echo (used for Host Detection, traceroute, Inverse Mapping, and Operating
System Fingerprinting)

• ICMP Echo Reply (used for Inverse Mapping)
• ICMP Time Stamp Requests (used for Host Detection, Operating System

Fingerprinting)
• ICMP Address Mask Request (used for Host Detection, Operating System

Fingerprinting)
• All ICMP Message Types (Inverse Mapping Technique)
• ICMP Error messages (Operating System Fingerprinting)
• All ICMP Message Types should be blocked in order to prevent the fingerprinting

techniques I have outlined in this research paper.

• You should also block the IP directed broadcast on your border router.
• Deny access to your Broadcast and Network addresses from the Internet.

If you look closely at this list, it is all ICMP Message types, whether query types or error types.

7.2 Outbound
There are people who claim that any traffic type of ICMP should be allowed from a protected
network to the Internet. This is not true. Filtering the incoming traffic does not mean we are
protected from some of the security hazards I outlined in this paper.

7.2.1 ICMP ECHO Reply (Type 0)
Used to map a host using Host Detection.

7.2.2 ICMP Destination Unreachable Messages
I have demonstrated that host detection can be done with bad IP Header packets, which elicit
various ICMP Parameter Problem and ICMP Destination Unreachable error messages from the
probed machines and draw the attacked network topology.

7.2.3 ICMP “Fragmentation Needed and Don’t Fragment Bit was Set”
See section 3.5

7.2.4 ICMP ECHO (Type 8)
We have to have a Stateful filtering device that would perform Stateful inspection with ICMP in
order to let ICMP ECHO Requests out, and receive only the corresponding ICMP ECHO Replies.

The current state with filtering devices is not that bright. Most of them do not perform Stateful
inspection with the ICMP protocol. Allowing ICMP ECHO Replies inside our protected network is
very dangerous and is not worth it.

Unless you use a Stateful filtering device with the ICMP protocol don’t let ICMP ECHO Replies
into your protected network. This would make your requests useless so you better block them.

ICMP Usage in Scanning
Version 2.5

115

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

7.2.5 ICMP Time to Live Exceeded in Transit (Type 11 Code 0)
To eliminate traceroute and Reverse Mapping techniques we do not want to let a Time-to-Live
Exceeded code 0 messages go back to the malicious computer attacker.

7.2.6 ICMP Fragmentation Reassembly Time Exceeded (Type 11 Code 1)
By blocking this ICMP type we eliminate the usage of a Host Detection technique, which sends
only few fragments, form a fragmented datagram, and force the probed host to send us an ICMP
Fragmentation Reassembly Time Exceeded error message back revealing his existence.

7.2.7 ICMP Parameter Problem
We have demonstrated that host detection can be made with bad IP Header packets, which
would elicit various ICMP Parameter Problem and ICMP Destination Unreachable error
messages from the probed machines.

7.2.8 ICMP Time Stamp Request & Reply
Time Stamp requests & replies can be used for Host Detection and Inverse Mapping.

7.2.9 ICMP Address Mask Request and Reply
Address Mask request & reply can be used for host detection and Inverse Mapping.

7.2.10 The liability Question
System administrator / Network administrator don’t want to be held liable for an attack generated
from there network by an abusive user (or a malicious computer attacker using a compromised
system within the network). Therefore blocking some types of ICMP traffic from the protected
network to the outside world is recommended for liability reasons:

o Destination Unreachable Codes 2-4

o ICMP Destination Unreachable error messages 2-4 (“Port Unreachable”,
“Protocol Unreachable” and “Fragmentation Needed and DF Flag was Set”) is a
group of messages that are hard error conditions and when received should
terminate a connection.

 This allow an attacker to send fake Destination Unreachable codes 2-4 to
 terminate valid connections between the attacked target and other hosts on the
 void.

 Old TCP/IP implementations terminat TCP connections when receiving
 those error messages. Modern TCP/IP implementations no longer terminate a
 TCP connection when receiving those error messages

o Source Quench messages

o Since hosts still react to Source Quenches by slowing communication, they can
be used as a Denial-of-Service measure.

o Redirect messages

o If you can forge ICMP Redirect packets, and if your target host pays attention to

them - ICMP Redirects may be employed for denial of service attacks, where a

ICMP Usage in Scanning
Version 2.5

116

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

host is sent a route that loses it connectivity, or is sent an ICMP Network
Unreachable packet telling it that it can no longer access a particular network.

This means that all outbound ICMP traffic should be disallowed.

7.3 Other Considerations
If you want to maintain strong ICMP filtering rules with your Firewall/Filtering-Device I suggest
you block all incoming ICMP traffic except for Type 3 Code 4, which is used by the Path MTU
Discovery process50. ICMP Type 3 Code 4 should be allowed from the Internet to your DMZ at
least. Opening your Internal segmentation to this kind of traffic is questionable and depends on
the facilities / activities / usage of the site and the level of filtering you wish to maintain.

If you will block incoming ICMP “Fragmentation Needed and Don’t Fragment Bit was Set” your
network performance will suffer from degradation. You should understand the security risks
involving in opening this kind of traffic to your DMZ (& protected network) - The possibility of a
Denial-of-Service, Inverse Mapping, Host Detection, and a one-way Covert communication
channel (which was not been seen in the wild yet).

Another consideration could be the usage of network troubleshooting tools such as traceroute
and ping. In the case of traceroute if the filtering device you are using does not support Stateful
inspection with ICMP than allowing ICMP TTL Exceeded In Transit (Type 11, code 0) error
messages inside the protected network could lead to various security hazards. The same goes
with ping, where ICMP ECHO reply is even more dangerous when allowed inside the protected
network (Inverse Mapping, Covert Channel and more security risks).

You can limit the number of systems that need to use the network troubleshooting tools with ACL,
but bear in mind that those systems could be mapped from the Internet – and this is only the tip of
the iceberg.

Internal Host(s) performance considerations – When blocking incoming ICMP Destination
Unreachable Network/Host/Protocol/Port Unreachable ICMP error messages coming from the
Internet, host(s) would hang when the destination system’s network is unreachable/when a host
is unreachable/when a protocol on the destination machine is not available/a port on a destination
machine is closed. They all would hang until the timeout counter would reach zero. This little
inconveniently is better than having the dangers other types of ICMP error messages inside your
network can introduce.

Unless your filtering device is a real intelligence one, doing his work with dynamic tables and
correlating correctly the ICMP replies with the requests, do not open your Internal network
segment to no ICMP traffic type.

Some might offer to use a Proxy server with the ICMP protocol between the Internet and you
protected network(s). A Proxy Server is only a tunnel – remember that.

50 See Appendix B: “Fragmentation Needed but the Don’t Fragment Bit was set” and the Path MTU Discovery Process.

ICMP Usage in Scanning
Version 2.5

117

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

DMZ

Internal Network

Boarder Router

Direct Link

Illustrates "Data Flow"

Internet -> DMZ
Incoming ICMP Traf f ic

Ty pe 3 Code 4 - f or Path
MTU Discov ery process.

DMZ -> Internet
Outgoing ICMP Traf f ic

None

Internet -> Intranet
Incoming ICMP Traf f ic

None

Intranet -> Internet
Outgoing ICMP Traf f ic

None*

* You can hav e a dedicated Management station that would be allowed to use ICMP f or
troubleshooting purposes only . The v arious ICMP replies should be allowed only by a statf ul
inspection / Dy namic f irewall. This means that no incoming ICMP is traf f ic is allowed to the
management station, unless its correlated with a prev ious ICMP query this machine
produced.

Intranet -> DMZ
Outgoing ICMP Traf f ic

Dependent

DMZ -> Intranet
Outgoing ICMP Traf f ic

None**

** If a malicious computer attacker breaks into the DMZ y ou do not want to prov ide him the
means to scan internal machines & and the ability to query them directly .

Figure 14: Firewall ICMP Filtering Rules

7.4 Other Problems – Why it is important to filter ICMP traffic in the Internal
segmentation

Consider the following realistic scenario:

You have an Internal segment built with Microsoft based operating system machines (for the sake
of the example only). A malicious computer attacker might send you a Trojan that will have Host
detection and/or mapping capabilities. It will be hidden in an Email message (either as attachment
or some other thing) a naïve user will open. After activation it will start to map internal hosts and
internal segments and send the information back to the malicious computer attacker.

What will be the easiest method in order to map internal host(s)? Ping them.

How many of you reading this research have “management segments” that are allowed to use the
Ping utility in order to verify that some Hosts are alive?

If something like this Trojan gets its way to this segment than probably your entire internal
networking infrastructure (or the important part of it) will be revealed.

Some one might think that strong filtering or a good anti virus might help – forget it. I have seen
people separating their work environment to more than two or three computers, but they always
use the Email, and need to surf the web… (good ways to send the collected information out).

My suggestion is to configure internal host(s) not to answer for ICMP Query message types they
should not answer for. I would restrict this to the maximum and not allow internal hosts to be
queried with any ICMP Query message type.

ICMP Usage in Scanning
Version 2.5

118

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Back to our monitoring problem - If you need to maintain management/monitoring capabilities,
than I would suggest filtering the traffic in both ways from the management stations to the
monitored systems in a way it would not be possible to simply query the last (dynamic filtering /
stateful filtering with ICMP). Use a dedicated system for the querying and block the other
machines in the management segment from doing so.

Management

DMZ

Secured Services

Internal Network

Boarder Router

Internet -> DMZ
Incoming ICMP Traffic

Type 3 Code 4 - for Path
MTU Discovery process. DMZ -> Internet

Outgoing ICMP Traffic

None

Internal Network -> Other segments / Internet
Outbound ICMP Traffic

None

Management -> Secured Services
Outbound ICMP Traffic

One system should be configured
through the firewall filtering rules to
have the ability to query the machines
on the Secure Services segment with
ICMP.

The filtering device protecting the
Secure Services segment should be
a "statful Firewall" which inspects the
ICMP traffic.

Secured Services -> Internal
Network / Management / Internet
Outbound ICMP Traffic

None

"Stateful Firewall"

DMZ is not allowed to have traffic
initiation to no where.

Figure 15: Internal segmentation ICMP Filtering Example

7.5 The Firewall
It is extremely important to block traffic, which is aimed at the Firewall itself. This rule will not
block every thing. For example, ICMP error messages the firewall generates for various stimulus.

Some firewalls will hold a certain portion of a fragmented packet until the IP Header and the
underlying protocol’s header arrives. The ICMP error message for Fragment Reassembly Time
Exceeded will not be of the Host, it will be of the Firewall spoofing it. Some Firewalls has the
ability to spoof ICMP Echo Replies for Hosts they are defending. We will have the opportunity to
fingerprint the operating system, which the firewall software is installed on.

We will gain an extremely important ability. Therefore it is recommended to have two basic rules
when you configure your firewall’s rule base. The first is to deny any traffic destined to the firewall

ICMP Usage in Scanning
Version 2.5

119

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

and the second would be to deny any error messages (or other conditions such as TCP reject
etc.) that might help a malicious computer attacker in his task to fingerprint the Firewall itself.

ICMP Usage in Scanning
Version 2.5

120

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

8.0 Conclusion
The ICMP protocol is a very powerful tool in the hands of smart malicious computer attackers.
Mapping, detecting, and fingerprinting of hosts and networking devices can be done in various
ways as I have outlined in this paper.

It is extremely important to understand that ICMP traffic can be used for other malicious activities
other than scanning, such as:

• Denial of Service Attacks
• Distributed Denial of Service Attacks
• Covert Channel Communications

Therefore filtering Inbound and Outbound ICMP traffic is very important and may help you in
preventing risks to your computing environment.

ICMP Usage in Scanning
Version 2.5

121

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

9.0 Acknowledgment
9.1 Acknowledgment for version 1.0
I would like to thank the following people for their help with/during this research.

Ariel Pisetsky for going over this paper correcting my English, and for his moral support.

Christopher Tresco, Systems Administrator at the Massachusetts Institute of Technology
provided necessary test systems to verify my findings.

Special thanks to mr2940 for his patience while I introduced my new ideas.

James Cudney, Michael, Pat, for their support when the times where bad.

9.1 Acknowledgment for version 2.0
I would like to thank Alfredo Andres Omella author of SING for his help.

I would like to thank Fyodor for his help providing me with necessary test systems.

I would like to thank the people who provided feedback to the first version of this research paper,
and to the people who provided feedback to my Bugtraq posts.

9.2 Acknowledgment for version 2.5
I would like to thank Alfredo Andres Omella author of SING, for implementing some of the ideas I
had into his tool.

I would like to thank Fyodor for his help providing me with necessary test systems.

Christopher Tresco, Systems Administrator at the Massachusetts Institute of Technology
provided necessary test systems to verify my findings.

I would like to thank Simple Nomad for his support.

I would like to thank the huge amount of people who provided feedback for my work.

ICMP Usage in Scanning
Version 2.5

122

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Appendix A: The ICMP Protocol51
Internet Control Message Protocol (ICMP) is used for two types of operations: when a router or a
destination host need to inform the source host about errors in a datagram processing, and for
probing the network with request messages in order to determine general characteristics about
the network (getting the information back, hopefully, with the reply messages).

Some of ICMP’s characteristics are:

o ICMP uses IP as if it were a higher-level protocol, however, ICMP is already an internal
part of IP, and must be implemented by every IP module.

o ICMP is used to provide feedback about some errors in a datagram processing, not to
make IP reliable. Datagrams may still be undelivered without any report of their loss. If a
higher level protocol that use IP need reliability he must implement it.

o No ICMP messages are sent in response to ICMP messages to avoid infinite repetitions.
The exception is a response to ICMP query messages (ICMP Types 0,8-10,13-18. See
Table 1 ICMP Query Messages).

o For fragmented IP datagrams ICMP messages are only sent about errors on fragment
zero (first fragment).

o ICMP error messages are never sent in response to a datagram that is destined to a
broadcast or a multicast address.

o ICMP error messages are never sent in response to a datagram sent as a link layer
broadcast.

o ICMP error messages are never sent in response to a datagram whose source address
does not represents a unique host – the source IP address cannot be zero, a loopback
address, a broadcast address or a multicast address.

o ICMP Error messages are never sent in response to an IGMP massage of any kind.
o When an ICMP message of unknown type is received, it must be silently discarded.
o Routers will almost always generate ICMP messages but when it comes to a destination

host(s), the number of ICMP messages generated is implementation dependent.

ICMP Query Messages

ICMP error Messages

Echo Destination Unreachable
Router Advertisement Source Quench
Router Solicitation Redirect
Time Stamp Time Exceeded
Information Parameter Problem
Address Mask

Table 16: ICMP message types

51 ICMP is described in RFC 972 (http://www.ietf.org/rfc/rfc0972.txt) with updates in: RFC 896 (Source Quench), RFC 950
(Address Mask Extensions), RFC 1191 (Path MTU Discovery) & RFC 1256 (Router Discovery). Further clarifications
about the ICMP protocol are included in RFC 1122 and in RFC 1812. STD 2 has redefine and clarified much of ICMP’s
core functionality.

ICMP Usage in Scanning
Version 2.5

123

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

A.1 ICMP Messages
ICMP messages are sent in IP datagrams. The protocol number will be always one (ICMP), and
the Type-of-Service will be zero. The IP data field will contain the actual ICMP message:

4 bit
Version

4 bit
Header
Length

8-bit type of service
 (TOS)=0 16-bit total length (in bytes)

16-bit identification 3 bit
Flags 13-bit Fragment Offset

8-bit time to live
(TTL)

8-bit protocol=1
(ICMP) 16-bit header checksum

32-bit source IP address

Options (if any)

32-bit destination IP address

Type Code Checksum

20 bytes

4 bytes

ICMP data (depending on the type of message)IP Data
Field

0 8 16 314

Figure 16: ICMP Message Format

ICMP error message length
Every ICMP error message includes the Internet (IP) Header and at least the first 8 data octets
(bytes) of the datagram that triggered the error; more than 8 octets (bytes) may be sent; this
header and data must be unchanged from the received datagram.

The TYPE field specifies the type of the message, while the error code for the datagram reported
on by this ICMP message is contained in the CODE field. The code interpretation is dependent
upon the message type.

ICMP Usage in Scanning
Version 2.5

124

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Type

Name

Code

0 Echo Reply 0 No Code
1 Unassigned
2 Unassigned
3 Destination Unreachable52

0 Net Unreachable
1 Host Unreachable
2 Protocol Unreachable
3 Port Unreachable
4 Fragmentation Needed and Don't
 Fragment was Set
5 Source Route Failed
6 Destination Network Unknown
7 Destination Host Unknown
8 Source Host Isolated53
9 Communication with Destination
 Network is Administratively Prohibited54
10 Communication with Destination Host is
 Administratively Prohibited55
11 Destination Network Unreachable for Type of
 Service.
12 Destination Host Unreachable for
 Type of Service.
13 Communication Administratively Prohibited.
14 Host Precedence Violation
15 Precedence cutoff in effect

4 Source Quench 0 No Code
5 Redirect

 0 Redirect Datagram for the Network (or subnet)
 1 Redirect Datagram for the Host
 2 Redirect Datagram for the Type of Service and

 Network
 3 Redirect Datagram for the Type of Service and

 Host
6 Alternate Host Address 0 Alternate Address for Host
7 Unassigned
8 Echo Request 0 No Code
9 Router Advertisement 0 No Code
10 Router Selection 0 No Code
11 Time Exceeded

 0 Time to Live exceeded in Transit
 1 Fragment Reassembly Time Exceeded

12 Parameter Problem
 0 Pointer indicates the error
 1 Missing a Required Option
 2 Bad Length

13 Timestamp 0 No Code
14 Timestamp Reply 0 No Code

52 RFC 972 defines codes 1-5. RFC 1122 defines codes 6-12. RFC 1812 defines codes 13-15.
53 Reserved for use by U.S. military agencies.
54 Reserved for use by U.S. military agencies.
55 Reserved for use by U.S. military agencies.

ICMP Usage in Scanning
Version 2.5

125

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Type

Name

Code

15 Information Request 0 No Code
16 Information Reply 0 No Code
17 Address Mask Request 0 No Code
18 Address Mask Reply 0 No Code
19 Reserved (for Security) 0 No Code

20-29 reserved (for Robustness Experiment)
30 Traceroute
31 Datagram Conversion Error
32 Mobile Host Redirect
33 IPv6 Where-Are-You
34 IPv6 I-Am-Here
35 Mobile Registration Request
36 Mobile Registration Reply
39 SKIP
40 Photuris
 0 Reserved
 1 unknown security parameters index
 2 valid security parameters, but authentication

 failed
 3 valid security parameters, but decryption failed

Table 17: ICMP Types & Codes

Checksum – contains the 16bit one’s complement of the one’s complement sum of the ICMP
message starting with the ICMP Type field. For computing this checksum, the checksum field is
assumed to be zero.

Data

� With ICMP error messages it will contain a part of the original IP message for which this

ICMP message was generated. The length of the DATA field equals the IP datagram
length less the IP header length. Every ICMP error message includes the Internet (IP)
Header and at least the first 8 data octets (bytes) of the datagram that triggered the error;
more than 8 octets (bytes) may be sent; this header and data must be unchanged from
the received datagram.

� With ICMP query messages the Data field will contain dependent information upon the

query type.

A.1 ICMP Error Messages
ICMP error messages are used to report a problem that prevented delivery. The nature of the
problem should be a non-transient delivery problem.

ICMP Usage in Scanning
Version 2.5

126

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

ChecksumCodeType

0 4 8 16 31

IP header + 64 bits of original data of the datagram

4 bytes

4 bytesUnused

Figure 17: ICMP Error Message General Format

ICMP error message length
Every ICMP error message includes the IP Header (20 to 60 bytes) and at least the first 8 data
bytes of the datagram that triggered the error; more than 8 bytes may be sent; this header and
data must be unchanged from the received datagram.

AN ICMP error message length should be between 36 to 72 bytes.

The ICMP Protocol Rules for ICMP Error Messages

• ICMP Error messages are not sent for another ICMP Error message to prevent infinite
loops.

• ICMP error messages are never sent in response to a datagram that is destined to a
broadcast or a multicast address.

• ICMP error messages are never sent in response to a datagram sent as a link layer
broadcast.

• ICMP error messages are never sent in response to a datagram whose source address
does not represents a unique host – the source IP address cannot be zero, a loopback
address, a broadcast address or a multicast address.

• ICMP Error messages are never sent in response to an IGMP massage of any kind.

A.1.1 ICMP Error Messages56

• Destination Unreachable (Type 3)
• Source Quench (Type 4)
• Redirect (Type 5)
• Time Exceeded (Type 11)
• Parameter Problem (Type 12)

A.1.1.1 Destination Unreachable (Type 3)
ICMP Destination Unreachable message type issued by a Destination Host:
A destination host issues a destination unreachable message when the protocol specified in the
protocol number field of the original datagram is not active on the destination host, or the
specified port is inactive.

ICMP Destination Unreachable message type issued by a Router:

56 Some of the wording in this section are direct quotes from RFC 792 available from http://www.ietf.org/rfc/rfc0972.txt.

ICMP Usage in Scanning
Version 2.5

127

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

A router issue a destination unreachable message in response to a packet that it cannot forward
because the destination (or next hop) is unreachable or a service is unavailable.

Code

Meaning

Explanation

0 Network Unreachable Generated by a router if a route to the destination
network is not available.

1 Host Unreachable Generated by a router if a route to the destination host
on a directly connected network is not available (does
not respond to ARP).

2 Protocol Unreachable Generated if the transport protocol designated in a
datagram is not supported in the transport layer of the
final destination.

3 Port Unreachable Generated if the designated transport protocol (e.g.
UDP) is unable to demultiplex the datagram in the
transport layer of the final destination but has no
protocol mechanism to inform the sender.

4 Fragmentation needed and
DF flag Set

Generated if a router needs to fragment but cannot
since the DF flag is set.

5 Source Route Failed Generated if a router cannot forward a packet to the
next hop in a source route option.

6 Destination Network
Unknown

According to RFC 1812 this code should not be
generated since it would imply on the part of the router
that the destination network does not exist (net
unreachable code 0 should be used instead of code 6).

7 Destination Host Unknown Generated only when a router can determine (from link
layer advice) that the destination host does not exist.

8 Source Host Isolated Generated by a Router if it have been configured not to
forward packets from source.

9 Communication with
Destination Network is
Administratively Prohibited

Generated by a Router if it has been configured to
block access to the desired destination network.

10 Communication with
Destination Host is
Administratively Prohibited

Generated by a Router if it has been configured to
block access to the desired destination host.

11 Network Unreachable for
Type of Service

Generated by a router if a route to the destination
network with the requested or default TOS is not
available.

12 Host Unreachable for Type of
Service

Generated if a router cannot forward a packet because
its route(s) to the destination do not match either the
TOS requested in the datagram or the default TOS (0).

13* Communication
Administratively Prohibited

Generated if a router cannot forward a packet due to
administrative filtering (ICMP sender is not available at
this time).

14 Host Precedence Violation Sent by the first hop router to a host to indicate that a
requested precedence is not permitted for the particular
combination of source/destination host or network,
upper layer protocol, and source/destination port.

ICMP Usage in Scanning
Version 2.5

128

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Code

Meaning

Explanation

15 Precedence cutoff in effect The network operators have imposed a minimum level of
precedence required for operation, the datagram was
sent with precedence below this level.

* Routers may have a configuration option that causes code 13 messages not to be generated.
When this option is enabled, no ICMP error message is sent in response to a packet that is
dropped because it’s forwarding is administratively prohibited. Same is with type 14 & 15.

Table 18: Destination Unreachable Codes (Router)

The only type of ICMP Destination Unreachable error message, which is slightly different from the
other, is Type 3 Code 4 – Fragmentation Needed but the Don’t Fragment Bit was set.

ChecksumCodeType

0 4 8 16 31

IP header + 64 bits of original data of the datagram

4 bytes

4 bytesUnused Link MTU

Figure 18: ICMP Fragmentation Needed but the Don’t Fragment Bit was set Message Format

The Unused field will be 16 bits in length, instead of 32 bits, with this type of message. The rest of
the 16 bits will be used to carry the MTU used for the link that could not deliver the datagram to
the next hop (or destination) because the size of the datagram was too big to carry. Since this
datagram could not be fragmented (the DF Bit was set) an error message has been sent to the
sender indicating that a lower MTU should be used, hinting the size of the next hops links.

A.1.1.2 Source Quench (Type 4)
ICMP Source Quench message type issued by a Router:
If a router sends this message, it means that the router does not have the buffer space needed to
queue the datagrams for output to the next network on the route to the destination network.

RFC 1812 specify that a router should not generate Source Quench messages, but a router that
does originate Source Quench message must be able to limit the rate at which they are
generated (because it consumes bandwidth and it is an ineffective antidote to congestion).

A router receiving an ICMP Source Quench message type:
When a router receives such a message it may ignore it.

ICMP Source Quench message type issued by a Host:
If a destination host sends this message (it may be implemented), it means that the datagrams
arrive too fast to be processed. The ICMP source quench message is a request to the host to cut
back the rate, which it is sending traffic to the Internet destination.

ICMP Usage in Scanning
Version 2.5

129

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

The ICMP header code would be always zero.

Host receiving an ICMP Source Quench message type:
An ICMP Source Quench message must be reported to the transport layer, UDP or TCP, the host
should throttle itself back for a period of time, than gradually increase the transmission rate again.

A.1.1.3 Redirect (Type 5)
ICMP Redirect message type issued by a Router:
If a router generates this message, it means the host should send future datagrams for the
network to the router who’s IP is given in the ICMP message. The router should be always on the
same subnet as the host who sent the datagram and the router that generated the ICMP redirect
message.

A routing loop is generated when the router IP address matches the source IP address in the
original datagram header.

Routers must not generate a Redirect Message unless all the following conditions are met:

o The packet is being forwarded out the same physical interface that
 it was received from,

o The IP source address in the packet is on the same Logical IP
 (Sub) network as the next-hop IP address, and

o The packet does not contain an IP source route option.

ChecksumCodeType

0 4 8 16 31

IP header + 64 bits of original data of the datagram

4 bytes

4 bytesRouter IP address

Figure 19: ICMP Redirect Message Format

A router receiving an ICMP Redirect message type:
A router may ignore ICMP Redirects when choosing a path for a packet originated by the router if
the router is running a routing protocol or if forwarding is enabled on the router and on the
interface over which the packet is being sent.

Four different codes can appear in the code field:

Code

Meaning

0 Redirect Datagram for the Network (or subnet)
1 Redirect Datagram for the Host

ICMP Usage in Scanning
Version 2.5

130

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Code

Meaning

2 Redirect Datagram for the Type of Service and Network

3 Redirect Datagram for the Type of Service and Host

Table 19: Redirect Codes

ICMP Redirect message type issued by a Host:
A host should not send an ICMP Redirect message. Redirects are to be sent only by routers.

Host receiving an ICMP Redirect message type:
A host receiving a Redirect message must update its routing information accordingly. Every host
must be prepared to accept both Host and Network Redirects.

The Redirect message should be silently discarded with the following cases:

o The new gateway address it specifies is not on the same connected (sub-) net through
which the Redirect arrived.

o If the source of the Redirect is not the current first-hop gateway for the specified
destination.

A.1.1.4 Time Exceeded (Type 11)
ICMP Time Exceeded message type issued by a Router:
If a router discovers that the Time-To-Live field in an IP header of a datagram he process equals
zero he will discard the datagram and generate an ICMP Time Exceeded Code 0 – transit TTL
expired (this can also be an indicator of a routing loop problem).

When the router reassemble a packet that is destined for the router, it is acting as an Internet
host. Host rules apply also when the router receives a Time Exceeded message.

A router must generate an ICMP Time Exceeded message code 0 when it discards a packet due
to an expired TTL field. A router may have a per-interface option to disable origination of these
messages on that interface, but that option must default to allowing the messages to be
originated.

ICMP Time Exceeded message type issued by a Host:
If a host cannot reassemble a fragmented datagram due to missing fragments within its time limit
it will discard the datagram and generate an ICMP Time Exceeded Code 1 – reassembly TTL
Exceeded.

A.1.1.5 Parameter Problem (Type 12)
ICMP Parameter Problem message is sent when a router (must generate this message) or a host
(should generate this message) process a datagram and finds a problem with the IP header
parameters. It is only sent if the error caused the datagram to be discarded.

The Parameter Problem message is generated usually for any error not specifically covered by
another ICMP message.

ICMP Usage in Scanning
Version 2.5

131

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

If code 0 is used, the pointer field will point to the exact byte in the original IP Header, which
caused the problem.

Three different codes can appear in the code field:

Codes

Meaning

0 Pointer indicates the error (unspecified error)
1 Missing a Required Option
2 Bad Length

Table 20: Parameter Problem Codes

Receipt of a parameter problem message generally indicates some local or remote
implementation error.

ChecksumCodeType

0 4 8 16 31

IP header + 64 bits of original data of the datagram

4 bytes

4 bytesPointer Unused

Figure 20: ICMP Parameter Problem Message Format

ICMP Usage in Scanning
Version 2.5

132

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Appendix B: ICMP “Fragmentation Needed but the Don’t Fragment Bit was
set” and the Path MTU Discovery Process 57
When one host needs to send data to another host, the data is transmitted in a series of IP
datagrams. We wish the datagrams be the largest size possible that does not require
fragmentation58 along the path from the source host to the destination host.

Fragmentation by the IP layer raises few problems:

o If one fragment from a packet is dropped, we need to retransmit the whole
packet.

o Load on the routers, which needs to do the fragmentation.
o Some simpler firewalls would block all fragments because they do not contain the

header information for a higher layer protocol needed for filtering.

The Maximum Transfer Unit (MTU) is a link layer restriction on the maximum number of bytes of
data in a single transmission. The smallest MTU of any link on the current path between two
hosts is called the Path MTU.

B.1 The PATH MTU Discovery Process
We use the Don’t Fragment Bit Flag in the IP header to dynamically discover the Path MTU of a
given route. The source host assumes that the PMTU of a path is the known MTU of its first hop.
He will send all datagrams with that size, and set the Don’t Fragment Bit. If along the path to the
destination host, there is a router that needs to fragment the datagram in order to pass it to the
next hop, an ICMP error message (Type 3 Code 4 “Fragmentation Needed and DF set”) will be
generated, since the Don’t Fragment bit was set. When the sending host receives the ICMP error
message he should reduce his assumed PMTU for the path.

The process can end when the estimated PMTU is low enough for the datagrams not to be
fragmented. The source host itself can stop the process if he is willing to have the datagrams
fragmented in some circumstances.

Usually the DF bit would be set in all datagrams, so if a route changes to the destination host,
and the PMTU is lowered, than we would discover it.

The PMTU of a path might be increased over time, again because of a change in the routing
topology. To detect it, a host should periodically increase its assumed PMTU for that link.

The link MTU field in the ICMP “Fragmentation Needed and DF set” error message, carries the
MTU of the constricting hop, enabling the source host to know the exact value he needs to set the
PMTU for that path to allow the voyage of the datagrams beyond that point (router) without
fragmentation.

B.2 Host specification
A host must reduce his estimated PMTU for the relevant path when he receives the ICMP
“Fragmentation Needed and the DF bit was set” error message. RFC 1191 does not outline a
specific behavior that is expected from the sending host, because different applications may have
different requirements, and different implementation architectures may favor different strategies.

57 RFC 1191, http://www.ietf.org/rfc/rfc1191.txt, J. Mogul, S. Deering.
58 When we send a packet that it is too large to be sent across a link as a single unit, a router needs to slice/split the
packet into smaller parts, which contain enough information for the receiver to reassemble them. This is called
fragmentation.

ICMP Usage in Scanning
Version 2.5

133

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

The only required behavior is that a host must attempt to avoid sending more messages with the
same PMTU value in the near future. A host can either cease setting the Don’t Fragment bit in the
IP header (and allow fragmentation by the routers in the way) or reduce the datagram size. The
better strategy would be to lower the message size because fragmentation will cause more traffic
and consume more Internet resources.

A host using the PMTU Discovery process must detect decreases in Path MTU as fast as
possible. A host may detect increases in Path MTU, by sending datagrams larger than the current
estimated PMTU, which will usually be rejected by some router on the path to a destination since
the PMTU usually will not increase. Since this would generate traffic back to the host, the check
for the increases must be done at infrequent intervals. The RFC specify that an attempt for
detecting an increasment must not be done less than 10 minutes after a datagram Too Big has
been received for the given destination, or less than 2 minute after a previously successful
attempt to increase.

The sending host must know how to handle an ICMP “Fragmentation Needed and the DF bit was
set” error message that was sent by a device who does not know how to handle the PMTU
protocol and does not include the next-hop MTU in the error message. Several strategies are
available:

• The PMTU should be set to the minimum between the currently assumed PMTU and
57659. The DF bit should not be set in future datagrams for that path.

• Searching for the accurate value for the PMTU for a path. We keep sending datagrams
with the DF bit set with lowered PMTU until we do not receive errors.

A host must not reduce the estimation of a Path MTU value below 68 bytes.

A host MUST not increase its estimate of the Path MTU in response to the contents of a
Datagram Too Big message.

B.3 Router Specification
When a router cannot forward a datagram because it exceeded the MTU of the next-hop network
and the Don’t Fragment bit was set, he is required to generate an ICMP Destination Unreachable
message to the source of the datagram., with the appropriate code indicating “Fragmentation
needed and the Don’t Fragment Bit was set”. In the error message the router must include the
MTU of the next-hop in a 16bit field inside the error message.

Checksum

Link MTUUnused (zero)

Code = 4Type = 3

IP header + 64 bits of original data of the datagram

0 8 16 31

Figure 21: ICMP Fragmentation Required with Link MTU

59 The usage of the lesser between 576 and the first-hop MTU as the PMTU for a destination, which is not connected to
the same network was the old implementation. The results were the use of smaller datagrams than necessary, waste of
Internet resources, and not being optimal.

ICMP Usage in Scanning
Version 2.5

134

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

The value of the next-hop MTU field should be set to the size in bytes of the largest datagram that
could be forwarded, along the path of the original datagram, without being fragmented by this
router. The size includes IP header plus IP data and no lower level headers should be included.

Because every router should be able to forward a datagram of 68 bytes without fragmenting it,
the link MTU field should not contain a value less than 68.

B.4 The TCP MSS (Maximum Segment Size) Option and PATH MTU Discovery
Process
The RFC specify that a host that is doing Path MTU Discovery must not send datagrams larger
than 576 bytes unless the receiving host grants him permission.

When we are establishing a TCP connection both sides announce the maximum amount of data
in one packet that should be sent by the remote system – The maximum segment size, MSS (if
one of the ends does not specify an MSS, it defaults to 536 – there is no permission from the
other end to send more than this amount). The packet generated would be, normally, 40 bytes
larger than the MSS; 20 bytes for the IP header and 20 bytes for the TCP header. Most systems
announce an MSS that is determined from the MTU on the interface that the traffic to the remote
system passes out from the system through.

Each side upon receiving the MSS of the other side should not send any segments larger than
the MSS received, regardless of the PMTU. After receiving the MSS value the Path MTU
Discovery process will start to take affect. We will send our IP packets with the DF bit set allowing
us to recognize points in the path to our destination that cannot process packets larger as the
MSS of the destination host plus 40 bytes. When such an ICMP error message arrives, we should
lower the PMTU to a path (according to the link MTU field, or if not used, to use the rules
regarding the old implementation) and retransmit. The value of the link MTU cannot be higher
than the MSS of the destination host. When retransmission occurs resulting from ICMP type 3
code 4 error message, the congestion windows should not change, but slow start should be
initiated. The process continues until we adjust the correct PMTU of a path (not receiving ICMP
error messages from the intermediate routers) which will allow us to fragment at the TCP layer
which is much more efficient than at the IP layer.

ICMP Usage in Scanning
Version 2.5

135

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Appendix C: Mapping Operating Systems for answering/discarding ICMP
query message types

Operating System

Info.

Request

Time Stamp

Request

Address Mask

Request

Address Mask
Request Frag.

IP TTL on

ICMP
datagrams

- In Reply -

IP TTL on

ICMP
datagrams

- In Req. -

Debian GNU/ LINUX
2.2, Kernel 2.4 test 2 (*)

- + - - 255 64

Redhat LINUX 6.2
Kernel 2.2.14 (*)

- + - - 255 64

LINUX Kernel 2.0.x 64 64

FreeBSD 4.0 (*) - + - - 255 255
FreeBSD 3.4 - + - - 255 255
OpenBSD 2.7 - + - - 255 255
OpenBSD 2.6 - + - - 255 255
NetBSD - + - - 255
BSDI BSD/OS 4.0 - + - - 255
BSDI BSD/OS 3.1 - + - - 255

Solaris 2.5.1 - + + + (0.0.0.0) 255 255
Solaris 2.6 - + + + (0.0.0.0) 255 255
Solaris 2.7 (*) - + + + (0.0.0.0) 255 255
Solaris 2.8 - + + + (0.0.0.0) 255 255

HP-UX v10.20 + + - - 255 255
HP-UX v11.0 - - + + (0.0.0.0) 255

Compaq Tru64 v5.0 (*) + + - - 64

Irix 6.5.3 (*) - + - - 255
Irix 6.5.8 (*) - + - - 255

AIX 4.1 (*) + + - - 255
AIX 3.2 (*) + + - - 255

ULTRIX 4.2 – 4.5 (*) + + + + 255

OpenVMS v7.1-2 (*) + + + + 255

Novell Netware 5.1 SP1
(*)

- - - - 128

Novell Netware 5.0 (*) - - - - 128
Novell Netware 3.12 - - - - 128

Windows 95 - - + + 32 32
Windows 98 (*) - + + + 128 32
Windows 98 SE (*) - + + + 128 32
Windows ME (*) - + - - 128 32
Windows NT 4 WRKS
SP 3 (*)

- - + + 128 32

Windows NT 4 WRKS
SP 6a (*)

- - - - 128 32

Windows NT 4 Server
SP4

- - - - 128 32

Windows 2000
Professional (*)

- + - - 128 128

Windows 2000 Server
(*)

- + - - 128 128

ICMP Usage in Scanning
Version 2.5

136

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Networking
Devices

Info.

Request

Time Stamp

Request

Address Mask

Request

Address Mask
Request Frag.

IP TTL on

ICMP
datagrams

- In Reply -

IP TTL on

ICMP
datagrams

- In Req. -

Cisco Catalyst
5505 with OSS
v4.5

+ + + - 60 60

Cisco Catalyst
2900XL with IOS
11.2

+ + - - 255

Cisco 3600 with
IOS 11.2

+ + - - 255

Cisco 7200 with
IOS 11.3

+ + - - 255 255

Intel Express 8100
ISDN Router (*)

- - + + 64

ICMP Usage in Scanning
Version 2.5

137

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Appendix D: ICMP Query Message Types with Code field !=0

Operating System

Info. Request

Time Stamp Request

Address Mask

Request

ECHO

Request

Debian GNU/ LINUX 2.2,
Kernel 2.4 test 2 (*)

- + (0) - + (!=0)

Redhat LINUX 6.2 Kernel
2.2.14 (*)

- + (0) - + (!=0)

FreeBSD 4.0 (*) - + (!=0) - + (!=0)
FreeBSD 3.4 - + (!=0) -
OpenBSD 2.7 - + (!=0) - + (!=0)
OpenBSD 2.6 - + (!=0) - + (!=0)
NetBSD - + (!=0) - + (!=0)
BSDI BSD/OS 4.0 (*) - + (!=0) - + (!=0)
BSDI BSD/OS 3.1 (*) - + (!=0) - + (!=0)

Solaris 2.5.1 * + (!=0) + (!=0) + (!=0)
Solaris 2.6 * + (!=0) + (!=0) + (!=0)
Solaris 2.7 (*) * + (!=0) + (!=0) + (!=0)
Solaris 2.8 * + (!=0) + (!=0) + (!=0)

HP-UX v10.20 + (!=0) + (!=0) -
HP-UX v11.0 - - + (!=0) + (!=0)

Compaq Tru64 v5.0 (*) + (!=0) + (!=0) - + (!=0)

Irix 6.5.3 (*) - + (!=0) - + (!=0)
Irix 6.5.8 (*) - + (!=0) - + (!=0)

AIX 4.1 (*) + (!=0) + (!=0) - + (!=0)
Aix 3.2 (*) + (!=0) + (!=0) -

ULTRIX 4.2 - 4.5 (*) + (!=0) + (!=0) + (!=0) + (!=0)

OpenVMS v7.1-2 (*) + (!=0) + (!=0) + (!=0) + (!=0)

Novell Netware 5.1 SP1 (*) - - - + (!=0)
Novell Netware 5.0 (*) - - - + (!=0)
Novell Netware 3.12 (*) - - - + (!=0)

Windows 95 - - + + (0)
Windows 98 (*) - - (CHANGE) + + (0)
Windows 98 SE (*) - - (CHANGE) + + (0)
Windows ME (*) - - (CHANGE) - + (0)
Windows NT 4 WRKS SP 3
(*)

- - + + (0)

Windows NT 4 WRKS SP 6a
(*)

- - - + (0)

Windows NT 4 Server SP4 - - - + (0)
Windows 2000 Professional
(*)

- - (CHANGE) - + (0)

Windows 2000 Server (*) - - (CHANGE) - + (0)

ICMP Usage in Scanning
Version 2.5

138

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Networking Devices

Info. Request

Time Stamp Request

Address Mask

Request

ECHO

Request

Cisco Catalyst 5505 with
OSS v4.5

+ + + + (!0)

Cisco Catalyst 2900XL with
IOS 11.2

+ + - + (!0)

Cisco 3600 with IOS 11.2

 + (!0)

Cisco 7200 with IOS 11.3 + + - + (!0)

Intel Express 8100 ISDN
Router (*)

ICMP Usage in Scanning
Version 2.5

139

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Appendix E: ICMP Query Message Types aimed at a Broadcast Address

Operating System

Info. Request

Broadcast

Time Stamp Request

Broadcast

Address Mask

Request

Broadcast

Echo Request

Broadcast

Debian GNU/ LINUX 2.2,
Kernel 2.4 test 2

 +

Redhat LINUX 6.2 Kernel
2.2.14 (*)

- + - +

FreeBSD 4.0 (*) - - - -
FreeBSD 3.4 - - - -
OpenBSD 2.7 - - - -
OpenBSD 2.6 - - - -
NetBSD
BSDI BSD/OS 4.0 (*)
BSDI BSD/OS 3.1 (*)

Solaris 2.5.1 * + - +
Solaris 2.6 * + - +
Solaris 2.7 * + - +
Solaris 2.8 * + - +

HP-UX v10.20 + + - +

Compaq Tru64 v5.0 (*)

Irix 6.5.3 (*)
Irix 6.5.8 (*)

AIX 4.1 (*)
AIX 3.2 (*)

ULTRIX 4.2 – 4.5 (*)

OpenVMS v7.1-2 (*)

Novell Netware 5.1 SP1 (*)
Novell Netware 5.0 (*)
Novell Netware 3.12 (*)

Windows 95
Windows 98 - - - -
Windows 98 SE (*) - - - -
Windows ME (*) - - - -
Windows NT 4 WRKS SP
3 (*)

- - - -

Windows NT 4 WRKS SP
6a (*)

- - - -

Windows NT 4 Server SP4 - - - -
Windows 2000
Professional (*)

- - - -

Windows 2000 Server (*) - - - -

ICMP Usage in Scanning
Version 2.5

140

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Networking Devices

Info. Request

Broadcast

Time Stamp

Request

Broadcast

Address Mask

Request

Broadcast

Echo

Broadcast

Cisco Catalyst 5505
with OSS v4.5

+ + + +

Cisco Catalyst 2900XL
with IOS 11.2

+ - - +

Cisco 3600 with IOS
11.2

+ - -

Cisco 7200 with IOS
11.3

+ - - +

Intel Express 8100
ISDN Router (*)

- - - - Big Question
Marks

ICMP Usage in Scanning
Version 2.5

141

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Appendix F: Precedence Bits Echoing with ICMP Query Request & Reply

Operating System

Information

Request
With

Precedence!=0

Time Stamp

Request
With Precedence!=0

Address Mask

Request
With Precedence!=0

Echo Request

With Precedence!=0

Debian GNU/ LINUX 2.2,
Kernel 2.4 test 2

Not Answering !=0x00 Not Answering !=0x00

Redhat LINUX 6.2 Kernel
2.2.14

Not Answering !=0x00 Not Answering !=0x00

FreeBSD 4.0 Not Answering !=0x00 Not Answering !=0x00
FreeBSD 4.1.1 Not Answering !=0x00 Not Answering
OpenBSD 2.7 Not Answering Not Answering !=0x00
OpenBSD 2.6 Not Answering Not Answering !=0x00
NetBSD Not Answering Not Answering !=0x00
BSDI BSD/OS 4.0 Not Answering Not Answering !=0x00
BSDI BSD/OS 3.1 Not Answering Not Answering !=0x00

Solaris 2.5.1 Not Implemented
Solaris 2.6 Not Implemented !=0x00 !=0x00 !=0x00
Solaris 2.7 Not Implemented !=0x00 !=0x00 !=0x00
Solaris 2.8 Not Implemented !=0x00 !=0x00 !=0x00

HP-UX v10.20 Not Answering
HP-UX v11.0 Not Answering Not Answering !=0x00 -> 0x00 !=0x00 -> 0x00

Compaq Tru64 v5.0 !=0x00 !=0x00 Not Answering !=0x00

AIX 4.3 !=0x00 !=0x00 Not Answering !=0x00
AIX 4.2.1 !=0x00 !=0x00 Not Answering !=0x00
AIX 4.1 !=0x00 !=0x00 Not Answering !=0x00
AIX 3.2 !=0x00 !=0x00 Not Answering !=0x00

ULTRIX 4.2 – 4.5 0x00 0x00 0x00 0x00

OpenVMS v7.1-2 0x00 0x00 0x00 !=0x00

Windows 95 Not Answering Not Answering
Windows 98 Not Answering !=0x00
Windows 98 SE Not Answering 0x00 0x00 !=0x00
Windows ME Not Answering 0x00 Not Answering !=0x00
Windows NT 4 WRKS SP 3 Not Answering Not Answering !=0x00
Windows NT 4 WRKS SP
6a

Not Answering Not Answering Not Answering !=0x00

Windows NT 4 Server SP4 Not Answering Not Answering Not Answering !=0x00
Windows 2000 Professional Not Answering 0x00 Not Answering 0x00
Windows 2000 Server Not Answering 0x00 Not Answering 0x00

ICMP Usage in Scanning
Version 2.5

142

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Appendix G: ICMP Query Message Types with TOS! = 0

Operating System

Information

Request
With TOS!=0x00

Time Stamp Request

With TOS!=0x00

Address Mask

Request
With TOS!=0x00

Echo Request

With TOS!=0x00

Debian GNU/ LINUX 2.2,
Kernel 2.4 test 2 (*)

Not Answering !=0x00 Not Answering !=0x00

Redhat LINUX 6.2 Kernel
2.2.14 (*)

Not Answering !=0x00 Not Answering !=0x00

FreeBSD 4.0 (*) Not Answering !=0x00 Not Answering !=0x00
FreeBSD 3.4 Not Answering Not Answering
OpenBSD 2.7 (*) Not Answering !=0x00 Not Answering !=0x00
OpenBSD 2.6 Not Answering !=0x00 Not Answering !=0x00
NetBSD Not Answering !=0x00 Not Answering !=0x00
BSDI BSD/OS 4.0 (*) Not Answering !=0x00 Not Answering !=0x00
BSDI BSD/OS 3.1 (*) Not Answering !=0x00 Not Answering !=0x00

Solaris 2.5.1 Not Implemented
Solaris 2.6 Not Implemented
Solaris 2.7 (*) Not Implemented !=0x00 !=0x00 !=0x00
Solaris 2.8 (*) Not Implemented !=0x00 !=0x00 !=0x00

HP-UX v10.20 Not Answering
HP-UX v11.0 Not Answering Not Answering !=0x00 !=0x00

Compaq Tru64 v5.0 (*) !=0x00 Not Answering !=0x00

Irix 6.5.3 (*) Not Answering !=0x00 Not Answering !=0x00
Irix 6.5.8 (*) Not Answering !=0x00 Not Answering !=0x00

AIX 4.1 (*) !=0x00 Not Answering !=0x00
AIX 3.2 (*) !=0x00 Not Answering !=0x00

ULTRIX 4.2 – 4.5 (*) 0x00 0x00 0x00

OpenVMS v7.1-2 (*) !=0x00 !=0x00 !=0x00

Novell Netware 5.1 SP1 (*) Not Answering Not Answering Not Answering 0x00
Novell Netware 5.0 (*) Not Answering Not Answering Not Answering 0x00
Novell Netware 3.12 (*) Not Answering Not Answering Not Answering 0x00

Windows 95 Not Answering Not Answering
Windows 98 (*) Not Answering 0x00 0x00 !=0x00
Windows 98 SE (*) Not Answering 0x00 !=0x00
Windows ME (*) Not Answering 0x00 Not Answering !=0x00
Windows NT 4 WRKS SP 3
(*)

Not Answering Not Answering !=0x00

Windows NT 4 WRKS SP 6a
(*)

Not Answering Not Answering Not Answering !=0x00

Windows NT 4 Server SP4 Not Answering Not Answering Not Answering !=0x00
Windows 2000 Professional
(*)

Not Answering 0x00 Not Answering 0x00

Windows 2000 Server (*) Not Answering 0x00 Not Answering 0x00

ICMP Usage in Scanning
Version 2.5

143

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Appendix H: Echoing the TOS Byte Unused bit

Operating System

Information

Request
With Unused=1

Time Stamp Request

With Unused=1

Address Mask

Request
With Unused=1

Echo Request

With Unused=1

Debian GNU/ LINUX 2.2,
Kernel 2.4 test 2

Not Answering 0x1 Not Answering 0x1

Redhat LINUX 6.2 Kernel
2.2.14

Not Answering 0x1 Not Answering 0x1

FreeBSD 4.0 Not Answering 0x1 Not Answering 0x1
FreeBSD 4.1.1 Not Answering 0x1 Not Answering 0x1
OpenBSD 2.7 Not Answering Not Answering
OpenBSD 2.6 Not Answering Not Answering
NetBSD Not Answering Not Answering
BSDI BSD/OS 4.0 Not Answering Not Answering
BSDI BSD/OS 3.1 Not Answering Not Answering

Solaris 2.5.1 Not Implemented
Solaris 2.6 Not Implemented 0x1 0x1 0x1
Solaris 2.7 Not Implemented 0x1 0x1 0x1
Solaris 2.8 Not Implemented 0x1 0x1 0x1

HP-UX v10.20 Not Answering
HP-UX v11.0 Not Answering Not Answering 0x1 0x1

Compaq Tru64 v5.0 0x1 0x1 Not Answering 0x1

AIX 4.3 0x1 0x1 Not Answering 0x1
AIX 4.2.1 0x1 0x1 Not Answering 0x1
AIX 4.1 0x1 0x1 Not Answering 0x1
AIX 3.2 0x1 0x1 Not Answering 0x1

ULTRIX 4.2 – 4.5 0x0 0x0 0x0 0x0

OpenVMS v7.1-2 0x1 0x1 0x1 0x1

Windows 95 Not Answering Not Answering
Windows 98 Not Answering 0x0 0x0 0x1
Windows 98 SE Not Answering 0x0 0x0 0x1
Windows ME Not Answering 0x0 Not Answering 0x1
Windows NT 4 WRKS SP 3 Not Answering Not Answering
Windows NT 4 WRKS SP 6a Not Answering Not Answering Not Answering 0x1
Windows NT 4 Server SP4 Not Answering Not Answering Not Answering
Windows 2000 Professional Not Answering 0x0 Not Answering 0x0
Windows 2000 Server Not Answering 0x0 Not Answering 0x0

ICMP Usage in Scanning
Version 2.5

144

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Appendix I: Using the Unused Bit

Operating System

Info. Request

Time Stamp

Request

Address Mask

Request

Echo Request

Debian GNU/ LINUX 2.2, Kernel
2.4 test 2

Not Answering - Not Answering -

Redhat LINUX 6.2 Kernel 2.2.14 Not Answering - Not Answering -

FreeBSD 4.0 Not Answering - Not Answering -
FreeBSD 3.4 Not Answering - Not Answering -
OpenBSD 2.7 Not Answering - Not Answering -
OpenBSD 2.6 Not Answering - Not answering -
NetBSD Not Answering - Not Answering -
BSDI BSD/OS 4.0 Not Answering - Not Answering -
BSDI BSD/OS 3.1 Not Answering - Not Answering -

Solaris 2.5.1 Not Answering + + +
Solaris 2.6 Not Answering + + +
Solaris 2.7 Not Answering + + +
Solaris 2.8 Not Answering + + +

HP-UX v10.20 - - Not Answering -
HP-UX v11.0 Not Answering Not Answering + +

Compaq Tru64 v5.0 - - Not Answering -

Irix 6.5.3 Not Answering - Not Answering -
Irix 6.5.8 Not Answering - Not Answering -

AIX 4.1 - - Not Answering -
AIX 3.2 - - Not Answering -

ULTRIX 4.2 – 4.5 - - - -

OpenVMS v7.1-2 - - - -

Novell Netware 5.1 SP1 Not Answering Not Answering Not Answering -
Novell Netware 5.0 Not Answering Not Answering Not Answering -
Novell Netware 3.12 Not Answering Not Answering Not Answering -

Windows 95 Not Answering Not Answering
Windows 98 Not Answering - - -
Windows 98 SE Not Answering - - -
Windows ME Not Answering Not Answering
Windows NT 4 WRKS SP 3 Not Answering Not Answering
Windows NT 4 WRKS SP 6a Not Answering Not Answering Not Answering -
Windows NT 4 Server SP4 Not Answering Not Answering Not Answering -
Windows 2000 Professional Not Answering - Not Answering -
Windows 2000 Server Not Answering - Not Answering -

ICMP Usage in Scanning
Version 2.5

145

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Appendix J: DF Bit Echoing

Operating System

Info. Request

Time Stamp

Request

Address Mask

Request

Echo Request

Debian GNU/ LINUX 2.2, Kernel
2.4 test 2 (*)

Not Answering + (- DF) Not Answering + (- DF)

Redhat LINUX 6.2 Kernel 2.2.14 (*) Not Answering + (- DF) Not Answering + (- DF)

FreeBSD 4.0 (*) Not Answering + (+ DF) Not Answering + (+ DF)
FreeBSD 3.4 Not Answering + (+ DF) Not Answering + (+ DF)
OpenBSD 2.7 Not Answering + (+ DF) Not Answering + (+ DF)
OpenBSD 2.6 Not Answering + (+ DF) Not Answering + (+ DF)
NetBSD Not Answering + (+ DF) Not Answering + (+ DF)
BSDI BSD/OS 4.0 Not Answering + (+ DF) Not Answering + (+ DF)
BSDI BSD/OS 3.1 Not Answering + (+ DF) Not Answering + (+ DF)

Solaris 2.5.1 Not Answering
Solaris 2.6 Not Answering + (+ DF) + (+ DF) + (+ DF)
Solaris 2.7 (*) Not Answering + (+ DF) + (+ DF) + (+ DF)
Solaris 2.8 Not Answering + (+ DF) + (+ DF) + (+ DF)

HP-UX v10.20 Not Answering
HP-UX v11.0 Not Answering Not Answering + (+ DF) + (+ DF)

Compaq Tru64 v5.0 (*) + (+ DF) Not Answering - + (+ DF)

Irix 6.5.3 (*) Not Answering + (+ DF) Not Answering + (+ DF)
Irix 6.5.8 (*) Not Answering + (+ DF) Not Answering + (+ DF)

AIX 4.1 (*) + (+ DF) Not Answering + (+ DF)
AIX 3.2 (*) + (+ DF) Not Answering + (+ DF)

ULTRIX 4.2 – 4.5 (*) + (- DF) + (- DF) + (- DF)

OpenVMS v7.1-2 (*) + (+ DF) + (+ DF) + (+ DF)

Novell Netware 5.1 SP1 (*) Not Answering Not Answering Not Answering + (- DF)
Novell Netware 5.0 (*) Not Answering Not Answering Not Answering + (- DF)
Novell Netware 3.12 Not Answering Not Answering Not Answering + (- DF)

Windows 95 Not Answering Not Answering
Windows 98 (*) Not Answering + (- DF) + (- DF) + (+ DF)
Windows 98 SE (*) Not Answering + (- DF) + (- DF) + (+ DF)
Windows ME (*) Not Answering + (- DF) Not Answering + (+ DF)
Windows NT 4 WRKS SP 3 (*) Not Answering Not Answering
Windows NT 4 WRKS SP 6a (*) Not Answering Not Answering Not Answering + (+ DF)
Windows NT 4 Server SP4 Not Answering Not Answering Not Answering + (+ DF)
Windows 2000 Professional (*) Not Answering + (- DF) Not Answering + (+ DF)
Windows 2000 Server (*) Not Answering + (- DF) Not Answering + (+ DF)

ICMP Usage in Scanning
Version 2.5

146

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Appendix K: ICMP Error Message Echoing Integrity with ICMP Port
Unreachable Error Message

Operating
System

DF Bit set
with the
Reply?

IP Total
Length

IP
Identificatio
n

IP TTL
field value

IP Header
Checksum

UDP
Checksum

LINUX Kernel
2.2.x

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

LINUX Kernel
2.4

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

FreeBSD 4.0 No Same Changed.
The first
two bits
are flipped
with the
second
pair. Gives
a new
value.

Changed
according
to hop
count.

Changed
because of new
parameters.

Changed.
Now equal to
ZERO!

FreeBSD 4.11 No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Changed.
Now equal to
ZERO!

BSDI 4.1 No Changed
(20 bytes
more)

Same Changed
according
to hop
count

Changed. Now
equals to ZERO!

Same

Sun Solaris
2.6

Yes Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

Sun Solaris
2.7

Yes Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

Sun Solaris
2.860

Yes Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

HPUX 11.0 No -> Yes Same Same Changed

according
to hop
count.

Changed
because of new
parameters.

Same

Compaq
Tru64

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Changed.
Now equal to
ZERO!

DG-UX 5.6

No Same Same Changed
according
to hop

Changed
because of new
parameters.

Changed.
Now equal to
ZERO!

60 The DF Bit is set.

ICMP Usage in Scanning
Version 2.5

147

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

count.

AIX 4.3 fp2,
4.3, 4.2.1

No Changed
(20 bytes
more)

Same Changed
according
to hop
count

Changed
because of new
parameters.

Changed.
Now equal to
ZERO!

AIX 4.1

No Changed
(20 bytes
more)

Same Changed
according
to hop
count

Changed
because of new
parameters.

Same

ULTRIX No Same Changed.

The first
two bits
are flipped
with the
second
pair. Gives
a new
value.

Changed
according
to hop
count

Changed. Now
equals to ZERO!

Changed.
Now equal to
ZERO!

OpenVMS No Same Changed.

The first
two bits
are flipped
with the
second
pair. Gives
a new
value.

Changed
according
to hop
count

Changed. Now
equals to ZERO!

Changed.
Now equal to
ZERO!

Microsoft
windows 98

Mirosoft
Windows
98SE

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

Microsoft
Windows ME

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

Microsoft
Windows NT
4

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

Microsoft
Windows
2000 Family

No Same Same Changed
according
to hop
count.

Changed
because of new
parameters.

Same

ICMP Usage in Scanning
Version 2.5

148

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

Appendix L: A Snort Rule Base for (more Advanced) Basic ICMP Traffic

The following generic ICMP basic Snort rule base is also available for download from:
http://www.sys-security.com/archive/snort/icmp_rules/ICMP_basic_plus.

alert icmp any any -> any any (msg:"ICMP Echo Reply"; itype: 0; icode:
0;)
alert icmp any any -> any any (msg:"ICMP Echo Reply (Undefined Code!)";
itype: 0;)
alert icmp any any -> any any (msg:"ICMP Unassigned! (Type 1)"; itype:
1; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Unassigned! (Tupe 1)
(Undefined Code)"; itype: 1;)
alert icmp any any -> any any (msg:"ICMP Unassigned! (Type 2)"; itype:
2; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Unassigned! (Type 2)"
(Undefined Code); itype: 2;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Network Unreachable)"; itype: 3; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable (Host
Unreachable)"; itype: 3; icode: 1;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Protocol Unreachable)"; itype: 3; icode: 2;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable (Port
Unreachable)"; itype: 3; icode: 3;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Fragmentation Needed and DF bit was set)"; itype: 3; icode: 4;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Source Route Failed)"; itype: 3; icode: 5;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Destination Network Unknown)"; itype: 3; icode: 6;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Destination Host Unknown)"; itype: 3; icode: 7;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Source Host Isolated)"; itype: 3; icode: 8;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Communication with Destination Network is Administratively
Prohibited)"; itype: 3; icode: 9;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Communication with Destination Host is Administratively Prohibited)";
itype: 3; icode: 10;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Network Unreachable for Type of Service)"; itype: 3; icode: 11;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable (Host
Unreachable for Type of Service)"; itype: 3; icode: 12;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Communication Administratively Prohibited)"; itype: 3; icode: 13;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable (Host
Precedence Violation)"; itype: 3; icode: 14;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Precedence Cutoff in effect)"; itype: 3; icode: 15;)
alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Undefined Code!)"; itype: 3;)
alert icmp any any -> any any (msg:"ICMP Source Quench"; itype: 4;
icode: 0;)

http://www.sys-security.com/archive/snort/icmp_rules/ICMP_basic_plus

ICMP Usage in Scanning
Version 2.5

149

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

alert icmp any any -> any any (msg:"ICMP Source Quench (Undefined
Code!)"; itype: 4;)
alert icmp any any -> any any (msg:"ICMP Redirect (for Network or
Subnet)"; itype: 5; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Redirect (for Host)"; itype:
5; icode: 1;)
alert icmp any any -> any any (msg:"ICMP Redirect (for TOS and
Network)"; itype: 5; icode: 2;)
alert icmp any any -> any any (msg:"ICMP Redirect (for TOS and Host)";
itype: 5; icode: 3;)
alert icmp any any -> any any (msg:"ICMP Redirect (Undefined Code!)";
itype: 5;)
alert icmp any any -> any any (msg:"ICMP Alternate Host Address";
itype: 6; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Alternate Host Address
(Undefined Code!)"; itype: 6;)
alert icmp any any -> any any (msg:"ICMP Unassigned! (Type 7)"; itype:
7; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Unassigned! (Type 7)
(Undefined Code!)"; itype: 7;)
alert icmp any any -> any any (msg:"ICMP Echo Request"; itype: 8;
icode: 0;)
alert icmp any any -> any any (msg:"ICMP Echo Request (Undefined
Code!)"; itype: 8;)
alert icmp any any -> any any (msg:"ICMP Router Advertisment"; itype:
9; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Router Advertisment (Undefined
Code!)"; itype:9 ;)
alert icmp any any -> any any (msg:"ICMP Router Selection"; itype: 10;
icode: 0;)
alert icmp any any -> any any (msg:"ICMP Router Selection (Undefined
Code!)"; itype: 10;)
alert icmp any any -> any any (msg:"ICMP Time-To-Live Exceeded in
Transit"; itype: 11; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Fragment Reassembly Time
Exceeded"; itype: 11; icode: 1;)
alert icmp any any -> any any (msg:"ICMP Time Exceeded (Undefined
Code!)"; itype: 11;)
alert icmp any any -> any any (msg:"ICMP Parameter Problem Code 0
(unspecified Error)"; itype: 12; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Parameter Problem Code 1
(Missing a Requiered Option)"; itype: 12; icode: 1;)
alert icmp any any -> any any (msg:"ICMP Parameter Problem Code 2 (Bad
Length)"; itype: 12; icode: 2;)
alert icmp any any -> any any (msg:"ICMP Parameter Problem (Undefined
Code!)"; itype: 12;)
alert icmp any any -> any any (msg:"ICMP Timestamp Request"; itype: 13;
icode: 0;)
alert icmp any any -> any any (msg:"ICMP Timestamp Request (Undefined
Code!)"; itype: 13;)
alert icmp any any -> any any (msg:"ICMP Timestamp Reply"; itype: 14;
icode: 0;)
alert icmp any any -> any any (msg:"ICMP Timestamp Reply (Undefined
Code!)"; itype: 14;)
alert icmp any any -> any any (msg:"ICMP Information Request"; itype:
15; icode: 0;)

ICMP Usage in Scanning
Version 2.5

150

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

alert icmp any any -> any any (msg:"ICMP Information Request (Undefined
Code!)"; itype: 15;)
alert icmp any any -> any any (msg:"ICMP Information Reply"; itype: 16;
icode: 0;)
alert icmp any any -> any any (msg:"ICMP Information Reply (Undefined
Code!)"; itype: 16;)
alert icmp any any -> any any (msg:"ICMP Address Mask Request"; itype:
17; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Address Mask Request
(Undefined Code!)"; itype: 17;)
alert icmp any any -> any any (msg:"ICMP Address Mask Reply"; itype:
18; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Address Mask Reply (Undefined
Code!)"; itype: 18;)
alert icmp any any -> any any (msg:"ICMP Reserved for Security (Type
19)"; itype: 19; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Reserved for Security (Type
19) (Undefined Code!)"; itype: 19;)
alert icmp any any -> any any (msg:"ICMP Traceroute"; itype: 30; icode:
0;)
alert icmp any any -> any any (msg:"ICMP Traceroute (Undefined Code!";
itype: 30;)
alert icmp any any -> any any (msg:"ICMP Datagram Conversion Error";
itype: 31; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Datagram Conversion Error
(Undefined Code!)"; itype: 31;)
alert icmp any any -> any any (msg:"ICMP Mobile Host Redirect"; itype:
32; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Mobile Host Redirect
(Undefined Code!)"; itype: 32;)
alert icmp any any -> any any (msg:"ICMP IPV6 Where-Are-You"; itype:
33; icode: 0;)
alert icmp any any -> any any (msg:"ICMP IPV6 Where-Are-You (Undefined
Code!)"; itype: 33;)
alert icmp any any -> any any (msg:"ICMP IPV6 I-Am-Here"; itype: 34;
icode: 0;)
alert icmp any any -> any any (msg:"ICMP IPV6 I-Am-Here (Undefined
Code!"; itype: 34;)
alert icmp any any -> any any (msg:"ICMP Mobile Registration Request";
itype: 35; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Mobile Registration Request
(Undefined Code!"; itype: 35;)
alert icmp any any -> any any (msg:"ICMP Mobile Registration Reply";
itype: 36; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Mobile Registration Reply
(Undefined Code!)"; itype: 36;)
alert icmp any any -> any any (msg:"ICMP SKIP"; itype: 39; icode: 0;)
alert icmp any any -> any any (msg:"ICMP SKIP (Undefined Code!"; itype:
39;)
alert icmp any any -> any any (msg:"ICMP Photuris Code 0 (Reserved)";
itype: 40; icode: 0;)
alert icmp any any -> any any (msg:"ICMP Photuris Code 1 (Unknown
Security Parameters Index)"; itype: 40; icode: 1;)
alert icmp any any -> any any (msg:"ICMP Photuris Code 2 (Valid
Security Parameters, But Authentication Failed)"; itype: 40; icode: 2;)
alert icmp any any -> any any (msg:"ICMP Photuris Code 3 (Valid
Security Parameters, But Decryption Failed)"; itype: 40; icode: 3;)

ICMP Usage in Scanning
Version 2.5

151

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

alert icmp any any -> any any (msg:"ICMP Photuris (Undefined Code!)";
itype: 40;)
alert icmp any any -> any any (msg:"ICMP Unknown Type";)

ICMP Usage in Scanning
Version 2.5

152

Copyright  Ofir Arkin, 2000-2001
http://www.sys-security.com

For corrections/additions/suggestions for this research

paper, please send email to ofir@sys-security.com.
Further Information and updates would be posted to

http://www.sys-security.com.

Thank you for reading

Ofir Arkin

Founder

The Sys-Security Group

http://www.sys-security.com
ofir@sys-security.com

mailto:ofir@sys-security.com
http://www.sys-security.com/
http://www.sys-security.com/
mailto:ofir@sys-security.com

