
Fernando Gont Marc Heuse

Security Assessments of

IPv6 Networks and Firewalls

IPv6 Kongress 2013

Frankfurt, Germany. June 6-7, 2013

About Fernando Gont

• Security researcher and consultant at SI6 Networks

• Have worked on security assessment on communications protocols for:

• UK NISCC (National Infrastructure Security Co-ordination Centre)

• UK CPNI (Centre for the Protection of National Infrastructure)

• Active participant at the IETF (Internet Engineering Task Force)

• More information available at: http://www.gont.com.ar

http://www.gont.com.ar/

About Marc Heuse

• Independent security researcher and consultant

• Worked at SuSE (Linux), KPMG, n.runs

• Founder of The Hacker’s Choice (www.thc.org)

• Author of many public security tools like thc-ipv6, hydra, amap, THC-

Scan, SuSEfirewall 1 + 2, etc.

• More information at: www.mh-sec.de

http://www.gont.com.ar/

Agenda

Implemtation
Tests

Addressing Conclusions

• TCP Tests

• Fragmentation Tests

• Real Life Tests:
Firewall

• Statistics

• Network Scanning

• Host Tracking

THC-IPv6 Toolkit: Introduction

• First IPv6/ICMPv6 attack toolkit for many years

• Powerful attacks

• Only minimal IPv6 knowledge required

• Easy to use

• Only runs on Linux with Ethernet

• Rudimentary documentation

• Free software

• Available at: www.thc.org/thc-ipv6

http://www.si6etworks.com/tools/ipv6toolkit

SI6 Networks' IPv6 Toolkit: Introduction

• For ages, THC's IPv6 attack suite (http://www.thc.org) has been the

only publicly-available IPv6 security toolkit

• We've produced “SI6 Networks' IPv6 toolkit”

• SI6 Networks' IPv6 Toolkit goals:

• Security analysis and trouble-shooting of IPv6 networks and

implementations

• Clean, portable, and secure code

• Good documentation

• Free software

• Available at: http://www.si6etworks.com/tools/ipv6toolkit

http://www.thc.org/
http://www.si6etworks.com/tools/ipv6toolkit

SI6 Networks' IPv6 Toolkit: Tools

• ns6

• na6

• rs6

• ra6

• addr6

• rd6

• scan6

• frag6

• tcp6

• icmp6

• ni6

• flow6

• jumbo6

Assessing

Implementations

IPv6 Fragmentation
Assessing Implementations

IPv6 Fragmentation: Overview

• IPv6 fragmentation performed only by hosts (never by routers)

• Fragmentation support implemented in “Fragmentation Header”

| 8 bits | 8 bits | 13 bits | 2b |1b|

• Where:

• Fragment Offset: Position of this fragment with respect to the start

of the fragmentable part

• M: “More Fragments”, as in IPv4

• “Identification”: Identifies the packet (with Src IP and Dst IP)

Next Header Reserved Fragment Offset Res M

Identification

Predictable fragment Identification values

• Security implications known from the IPv4 world:

• idle-scanning

• DoS attacks (fragment ID collisions)

• Discussed in IETF I-D: draft-ietf-6man-predictable-fragment-id

• The frag6 tool can assess the Fragment ID generation policy:

frag6 -i eth0 -v --frag-id-policy -d fc00:1::1

What some popular IPv6 stacks do

Operating System Algorithm

FreeBSD 9.0 Randomized

NetBSD 5.1 Randomized

OpenBSD-current Randomized (based on SKIPJACK)

Linux 3.0.0-15 Predictable (GC init. to 0, incr. by +1)

Linux-current Unpredictable (PDC init. to random value)

Solaris 10 Predictable (PDC, init. to 0)

Windows 7 Home Prem. Predictable (GC, init. to 0, incr. by +2)

GC: Global Counter PDC: Per-Destination Counter

IPv6 fragment reassembly

• Security implications of overlapping fragments well-known (think

Ptacek & Newsham, etc,)

• Nonsensical for IPv6, but originally allowed in the specs

• Different implementations allow them, with different results

• RFC 5722 updated the specs, forbidding overlapping fragments

• Assess the fragment reassembly policy of a target with:

frag6 -i IFACE -v --frag-reass-policy -d TARGET

(Results for some popular implementations available at:

http://blog.si6networks.com)

http://blog.si6networks.com/

TCP-based Attacks
Porting TCP-based attacks to the IPv6 world

IPv6-based TCP SYN-floods

• tcp6 is a very flexible tool for sending IPv6-based TCP segments

• A TCP SYN-flood attack can be performed with:

tcp6 -i IFACE -s SRCPRF -d TARGET -a DSTPORT -X S \

-F 100 -l -z 1 -v

Real Life Test Results
Die, firewalls, die!

Kids …

Router Advertisement Flooding

Flood FW with random Ras

(prefix or route information)

DOS:

●Cisco IOS+ASA (fixed)

●Juniper Netscreen

ICMPv6 Multicast Support Flooding

Flood FW with random ICMPv6 MLD

Router and MLD Reports.

DOS:

●Juniper Netscreen

Zyxel: Fragmentation == Established

TCP SYN, Port 22

TCP SYN, Port 22

FRAG + TCP SYN, Port 22

RULE CHANGE!

Zyxel does not consider this a bug …
(unfixed)

Astaro: I need lots of memory

FRAG ID A, Offset 0 FRAG ID A, Offset 20.000 FRAG ID A, Offset 60.000

FRAG ID B, Offset 0 FRAG ID B, Offset 20.000 FRAG ID B, Offset 60.000

FRAG ID C, Offset 0 FRAG ID C, Offset 20.000 FRAG ID C, Offset 60.000

Cisco ICMP ACL Bypass

ICMP6 Ping

ACL

ICMP6 Ping with Router Alert

ICMP6 Pong!

Still unfixed but in the making

More!

CVE SYSTEM PROBLEM

CVE-2004-0592 Linux Denial of service via IPv6 + TCP header large option length

CVE-2006-4572 Linux Bypass rules by using an extension header

CVE-2007-1497 Linux Bypass rules due fragmentation states errors

CVE-2008-3816 Cisco ASA Denial of service via unspecified IPv6 packet

CVE-2009-0687 OpenBSD Denial of service when IPv4 + ICMPv6 packet

CVE-2009-4913 Cisco ASA Bypass rules by unknown IPv6 based packets

CVE-2011-0393 Cisco ASA Denial of service with IPv6 traffic if IPv6 is not configured

CVE-2011-3296
CVE-2012-3058

Cisco FWSM Denial of service with IPv6 Syslog messages

CVE-2012-1324 Cisco IOS Denial of service with IPv6 traffic into firewall zones with IPS

CVE-2012-2744 Linux Denial of service with fragmented IPv6 packets

CVE-2012-4444 Linux Bypass rules via overlapping fragments

Juniper SRX

Fortinet

Checkpoint

…

?!

Juniper Netscreen

Linux

Cisco

Zyxel

Oh, rly?

The Candidates!

X

USGv6

What should a firewall do for IPv6?

Check Extension Headers
Filter Extension Headers

Check Extension Header Options
Filter Extension Header Options

Handle Fragmentation securely

Handle ICMPv6 stateful Check for harmful ICMPv6
content

No rule bypass due Fragmentation
No rule bypass due Extension

Headers

Filter invalid source addresses
Correct handling of IPv6,

Extension Headers and ICMPv6

Test Setup

sniff here!

YES

Please do this

at home!

Filter bypass due EH and/or Fragmentation

• Test bypass techniques to open port:

firewall6 eth0 2001:db8:2::2 80

• Test bypass techniques to filtered port:

firewall6 eth0 2001:db8:2::2 22

Test results

All pass

ICMPv6 & Extension Header support

implementation6 –p eth0 2001:db8:2::2

Test results (Default settings)

• Cisco

• only Source Routing Option is dropped

• all extension header pass

• Fortinet

• all extension header pass

• Source Routing Option is not dropped

• Juniper

• only Source Routing Option is dropped

• all extension header pass

• all ICMPv6 packets get through (erroneous objects)

Fragmentation Resource Issues

CPU/RAM exhaustion tests:

for TEST in `seq 1 33`; do

timeout –s KILL 60 \

fragmentation6 –p -f eth0 \
2001:db8:2::2 $TEST

done

Test results

All are shaky, showing small/medium

impact on packet forwarding

Testing anti-spoofing protection

Network vendors call this the RPF check

thcping6 eth0 2001:db8:2::a 2001:db8:2::2

Test results

Fortinet does not filter the spoofed packets!

Stateful ICMPv6

TooBig messages not belonging to a connection:

toobig6 -u eth0 2001:db8:1::3 \
2001:db8:2::2 1280

Test results

Juniper does not filter the spoofed packet!

(same erroneous defaults)

Harmful ICMPv6 packet contents

TooBig message with impossible small or large values:

toobig6 eth0 2001:db8:1::2 \
2001:db8:2::2 48

toobig6 eth0 2001:db8:1::2 \
2001:db8:2::2 100000

Test results

All let this pass

NDP Exhaustion Tests

Perform NDP Exhaustion attacks with ICMPv6 TooBig and
EchoRequest:

ndpexhaust26 -c –r eth0 2001:db8:2::

ndpexhaust26 -c –r -p eth0 \
2001:db8:2::

Test results

Fortinet & Cisco get 100% CPU

(also after doing vendor recommended settings)

SYN Flooding Tests

Send SYN packets to port 80 and random ports, send
SYN-ACK to random ports, send ACK packets to port 80:

thcsyn6 eth0 2001:db8:2::2 80

thcsyn6 eth0 2001:db8:2::2 x

thcsyn6 –S eth0 2001:db8:2::2 x

thcsyn6 –A eth0 2001:db8:2::2 80

Test results

All get 100% CPU

(also after doing vendor recommended settings)

At some point in the test:

lost all IPv6 filter rules, defaulted to
open, not visible in GUI

In Conclusion …

More tests: Remote

for TEST in X ’s 80’ 0 1; do
fuzz_ip6 -x -n 3 -DFHIR -$TEST eth0
2001:db8:2::2

done

randicmp6 eth0 2001:db8:2::2

More tests: Local

for TEST in X `seq 0 9`; do
fuzz_ip6 -x -n 3 -DFHIR -$TEST eth0 fe80::1 (FW-LL)

done

dos-new-ip6 eth0

flood_router26 -R eth0

flood_router26 -P eth0

flood_router26 -s -R eth0

flood_router26 -s -P eth0

flood_advertise6 eth0 fe80::1 (FW-LL)

flood_solicitate6 eth0 fe80::1 (FW-LL)

flood_mld26 eth0

flood_mldrouter6 eth0

IPv6 Addressing
Analyzing IPv6 Addresses

Analyzing IPv6 Address Types

• The addr6 tool can analyze IPv6 addresses

• Example:

addr6 -a ADDRESS

• Format:

type=subtype=scope=IID_type=IID_subtype

Filtering IPv6 addresses

• When assessing networks, lists of IPv6 are produced

• Not all addresses in the list might be useful

• It is may be useful to filter a group of IPv6 addresses:

• Remove duplicates from a list

• Remove addresses that do not belong to a specific prefix

• Obtain addresses of a specific scope

• etc.

Filtering IPv6 addresses (II)

• Remove duplicate addresses:

cat LIST.TXT | addr6 -i -q

• Accept (or block) specific prefixes:

cat LIST.TXT | addr6 --accept PREFIX

• Accept (or block) address types:

cat LIST.TXT | addr6 --accept-type TYPE

• Types: unicast, unspec, multicast

Filtering IPv6 addresses (III)

• Accept (or block) address scopes:

cat LIST.TXT | addr6 --accept-scope SCOPE

• Scopes: interface, link, admin, site, local, global...

• Accept (or block) unicast address types:

cat LIST.TXT | addr6 --accept-utype TYPE

• Types: loopback, ipv4-compat, ipv4-mapped, link-local, site-local,

unique-local, 6to4, teredo, global

• Accept (or block) IID types:

cat LIST.TXT | addr6 --accept-iid TYPE

• Types: ieee, isatap, ipv4-32, ipv4-64, ipv4, embed-port, embed-

port-rev, embed-port-all, low-byte, byte-pattern, random

Producing statistics

• The addr6 tool can produce statistics based on a group of IPv6

addresses

• Example:

cat LIST.TXT | addr6 -i -s

IPv6 Addressing
An assessment of the public IPv6 Internet

IPv6 address distribution for web servers

IPv6 address distribution for mail servers

IPv6 address distribution for DNS servers

IPv6 address distribution for clients (M. Ford)

IPv6 Addressing
Address-scanning attacks

IPv6 host scanning attacks

“Thanks to the increased IPv6

address space, IPv6 host scanning

attacks are unfeasible. Scanning a

/64 would take 500.000.000 years”

– Urban legend

We know the search space for a /64 is not 264 addresses!

IPv6 addresses embedding IEEE IDs

• In practice, the search space is at most ~223 bits – feasible!

• Examples:

scan6 -i eth0 -d fc00::/64 -K 'Dell Inc' -v

• Special cases:

scan6 -i eth0 -d fc00::/64 -V vbox

scan6 -i eth0 -d fc00::/64 -V vmware -Q 10.10.0.0/8

IEEE OUI FF FE Lower 24 bits of MAC

| 24 bits | 16 bits | 24 bits |

Known or guessable Known Unknown

IPv6 addresses embedding IPv4 addr.

• They simply embed an IPv4 address in the IID

• Two variants found in the wild:

• 2000:db8::192.168.0.1 <- Embedded in 32 bits

• 2000:db8::192:168:0:1 <- Embedded in 64 bits

• Search space: same as the IPv4 search space – feasible!

• Example:

scan6 -i eth0 -d fc00::/64 -B all -Q 10.10.0.0/8

scan6 -i eth0 -d fc00::/64 -B 32 -Q 10.10.0.0/8

IPv6 addresses embedding service ports

• They simply embed the service port the IID

• Two variants found in the wild:

• 2001:db8::1:80 <- n:port

• 2001:db8::80:1 <- port:n

• Additionally, the service port can be encoded in hex vs. dec

• 2001:db8::80 vs. 2001:db8::50

• Search space: smaller than 28 – feasible!

• Example:

scan6 -i eth0 -d fc00::/64 -g

IPv6 “low-byte” addresses

• The IID is set to all-zeros, “except for the last byte”

• e.g.: 2000:db8::1

• Other variants have been found in the wild:

• 2001:db8::n1:n2 <- where n1 is typically greater than n2

• Search space: usually 28 or 216 – feasible!

• Example:

scan6 -i eth0 -d fc00::/64 --tgt-low-byte

IPv6 Addressing
Host tracking

Introdution

• Traditional IIDs are constant for each interface

• As the host moves, the prefix changes, but the IID doesn't

• the 64-bit IID results in a super-cookie!

• This introduces a problem not present in IPv4: host-tracking

• Example:

• In net #1, host configures address:

2001:db8:1::1111:22ff:fe33:4444

• In net #2, host configures address:

2001:db8:2::1111:22ff:fe33:4444

• The IID “1111:22ff:fe33:4444” leaks out host “identity”.

IPv6 host-tracking with scan6

• Sample scenario:

• Node is known to have the IID 1:2:3:4

• To check whether the node is at fc00:1::/64 or fc00:2::/64:

• ping fc00:1::1:2:3:4 and fc00:2::1:2:3:4

• Examples:

scan6 -i eth0 -d fc00:1::/64 -d fc00:2::/64 –W \

::1:2:3:4

scan6 -i eth0 -m prefs.txt -w iids.txt -l -z 60 -t -v

Scanning with DNS reverse mappings

• Technique:

• Given a zone X.ip6.arpa., try the labels [0-f].X.ip6.arpa.

• If an NXDOMAIN is received, that part of the “tree” should be

ignored

• Otherwise, if NOERROR is received, “walk” that part of the tree

• Example (using dnsrevenum6 from THC-IPv6):

$ dnsrevenum6 DNSSERVER IPV6PREFIX

IPv6 First Hop Security

IPv6 First Hop Security

Fundamental problem: complexity of traffic to be “processed at layer-2”

Example:

Evading IPv6 First Hop Security

• Basic idea: Leverage IPv6 Extension Headers and fragmentation

• Sample RA-based attack (disable a router):

ra6 -i IFACE -s ROUTER -t 0 -d TARGET –e -u

1400 -y 1280

Some conclusions

Some conclusions

• Many IPv4 vulnerabilities have been re-implemented in IPv6

• We just didn't learn the lesson from IPv4, or,

• Different people working in IPv6 than working in IPv4, or,

• The specs could make implementation more straightforward, or,

• All of the above?

• Networks tend to overlook IPv6 security controls

• Quite a few times there is no parity in the security controls with

IPv6 and IPv4

• Still quite a bit of work to be done in IPv6 security

Current missing IPv6 firewall features

• Full Extension Header filtering support

• Deny any type

• Limit times any type may be present

• Support filtering of options in extension headers

• Rewrite hop count values

• ICMPv6 content checking (e.g. TooBig MTU)

• Efficient DOS protection (local attacks, NDP exhaustion, SYN

flooding)

Hints on how to filter IPv6 on firewalls

• http://heise.de/-1851747

Questions?

