Recent Advances in IPv6 Security

Fernando Gont

Hackito Ergo Sum 2012 Paris, France. April 12-14, 2012

About...

- Security researcher and consultant for SI6 Networks
- Have worked on security assessment on communications protocols for:
 - UK NISCC (National Infrastructure Security Co-ordination Centre)
 - UK CPNI (Centre for the Protection of National Infrastructure)
- Active participant at the IETF (Internet Engineering Task Force)
- More information available at: http://www.gont.com.ar

Agenda

- Disclaimer
- Motivation for this presentation
- Recent Advances in IPv6 Security
 - IPv6 Addressing
 - IPv6 Fragmentation & Reassembly
 - IPv6 First Hop Security
 - IPv6 Firewalling
 - Mitigation to some Denial of Service attacks
- Conclusions
- Questions and Answers

Disclaimer

- This talks assumes:
 - You know the basics of IPv4 security
 - You now the basics about IPv6 security
 - (i.e. I'm not doing an "IPv6 primer" in this presentation, sorry)
- Much of this is "work in progress" → your input is welcome!

Motivation for this presentation

Motivation for this presentation

- Sooner or later you will need to deploy IPv6
 - In fact, you have (at least) partially deployed it, already
- IPv6 represents a number of challenges: What can we do about them?

Option #1

Option #2

Option #3

Motivation for this presentation (II)

- We have been doing a fair share of IPv6 security research
 - Identification of problems
 - Proposals to mitigate those problems
- Part of our research has been taken to the IETF
- This talk is about our ongoing work to improve IPv6 security

Advances in IPv6 Addressing

IPv6 Global Addresses format

- Traditional auto-configuration (SLAAC) addresses embed the MAC address in the Interface ID
- Originally considered convenient for auto-configuration
- But turned out to be a bad idea

Problem #1: Host-scanning attacks

- Search space for host-scanning considered to be 2⁶⁴ bits and IPv6 host-scanning deemed infeasible – really?
- Modified EUI-64 format identifiers are created as:

• In practice, the search space is $\sim 2^{24}$ bits – **feasible!**

Problem #2: Host-tracking attacks

- Modified EUI-64 IIDs are constant for each interface
- As the host moves, the prefix changes, but the IID doesn't
 - the 64-bit IID results in a super-cookie!
- This introduces a problem not present in IPv4: host-tracking
- Example:
 - In net #1, host configures address: 2001:db8:1::1111:2222:3333:4444
 - In net #2, host configures address: 2001:db8:2::1111:2222:3333:4444
 - The IID "1111:2222:3333:4444" leaks out host "identity".

"Mitigation" to host-tracking

- RFC 4941: privacy/temporary addresses
 - Random IIDs that change over time
 - Generated in addition to traditional SLAAC addresses
 - Traditional addresses used for server-like communications, temporary addresses for client-like communications
- Operational problems:
 - Difficult to manage!
- Security problems:
 - They mitigate host-tracking only partially
 - They do not mitigate host-scanning attacks

Industry mitigations for scanning attacks

- Microsoft replaced the MAC-address-based identifiers with (non-standard) randomized IIDs
 - Essentially RFC 4941, but they don't vary over time
- Certainly better than MAC-address-based IIDs, but still not "good enough"
- They mitigate host-scanning, but not host tracking constant IIDs are still present!

Auto-configuration address types

	Stable	Temporary	
Predictable	Mod. EUI-64 IIDs	None	
Unpredictable	NONE	RFC 4941	

- We lack stable privacy-enhanced IPv6 addresses
 - Used to replace MAC-derived addresses
 - Pretty much orthogonal to privacy addresses
 - Probably "good enough" in most cases even without RFC 4941

Stable privacy-enhanced addresses

 draft-gont-6man-stable-privacy-addresses proposes to generate Interface IDs as:

F(Prefix, Modified_EUI64, Network_ID, secret_key)

- Where:
 - F() is a PRF (e.g., a hash function)
 - Network_ID could be e.g. the SSID of a wireless network
 - the rest should be obvious ;-)
- This function results in addresses that:
 - Are stable within the same subnet
 - Have different Interface-IDs when moving across networks
 - For the most part, they have "the best of both worlds"

Work in progress

- Proposal presented at IETF 83 (Paris, March 2012)
- 6man wg currently being polled about adoption of this document
- Hopefully, host-scanning attacks will become unfeasible, and host tracking less trivial;-)

IPv6 Fragmentation and Reassembly

IPv6 fragmentation

- IPv6 fragmentation performed only by hosts (never by routers)
- Fragmentation support implemented in "Fragmentation Header"
- Fragmentation Header syntax:

8 bits	8 bits	13 bits	2b 1b		
Next Header	Reserved	Fragment Offset	Res M		
Identification					

Fragment Identification

- Security Implications of predictable Fragment IDs well-known from the IPv4 world
 - idle-scanning, DoS attacks, etc.
- Situation exacerbated by larger payloads resulting from:
 - Larger addresses
 - DNSSEC
- But no worries, since we learned the lesson from the IPv4 world... right?

Fragment ID generation policies

Operating System	Algorithm	
FreeBSD 9.0	Randomized	
NetBSD 5.1	Randomized	
OpenBSD-current	Randomized (based on SKIPJACK)	
Linux 3.0.0-15	Predictable (GC init. to 0, incr. by +1)	
Linux-current	Unpredictable (PDC init. to random value)	
Solaris 10	Predictable (PDC, init. to 0)	
Windows 7 Home Prem.	Predictable (GC, init. to 0, incr. by +2)	

GC: Global Counter PDC: Per-Destination Counter

At least Solaris and Linux patched in response to our IETF I-D – more patches expected!

IPv6 Fragment Reassembly

- Security implications of overlapping fragments well-known (think Ptacek & Newsham, etc,)
- Nonsensical for IPv6, but originally allowed in the specs
- Different implementations allow them, with different results
- RFC 5722 updated the specs, forbidding overlapping fragments
- Most current implementations reflect the updated standard
- See http://blog.si6networks.com

IPv6 Fragment reassembly (II)

- ICMPv6 PTB < 1280 triggers inclusion of a FH in all packets to that destination (not actual fragmentation)
- Result: IPv6 atomic fragments (Frag. Offset=0, More Frag.=0)
- Some implementations mixed these packets with "normal" fragmented traffic
- draft-ietf-6man-ipv6-atomic-fragments fixes that:
 - IPv6 atomic fragments required to be processed as non-fragmented traffic
 - Document ready for WGLC

Handling of IPv6 atomic fragments

Operating System	Atomic Frag. Support	Improved processing
FreeBSD 8.0	No	No
FreeBSD 8.2	Yes	No
FreeBSD 9.0	Yes	No
Linux 3.0.0-15	Yes	Yes
NetBSD 5.1	No	No
OpenBSD-current	Yes	Yes
Solaris 11	Yes	Yes
Windows Vista (build 6000)	Yes	No
Windows 7 Home Premium	Yes	No

At least OpenBSD patched in response to our IETF I-D – more patches expected!

IPv6 First Hop Security

IPv6 First Hop Security

- Security mechanisms/policies employed/enforced at the first hop (local network)
- Fundamental problem: lack of feature-parity with IPv4
 - arpwatch-like Neighbor Discovery monitoring virtually impossible
 - DHCP-snooping-like RA blocking trivial to circumvent

IPv6 First-Hop Security (II)

- Fundamental problem: complexity of traffic to be "processed at layer-2"
- Example:

Bringing "sanity" to ND traffic

- draft-gont-6man-nd-extension-headers forbids use of fragmentation with Neighbor Discovery
 - It makes ND monitoring feasible
 - Turns out it is vital for SEND (or SEND could be DoS'ed with fragments)
- Work in progress:
 - Discussed last year
 - Presented at IETF 83 (Paris, March 2012)
 - 6man wg to be polled about adoption shortly

RA-Guard

- Meant to block RA packets on "unauthorized" switch ports
- Real implementations trivial to circumvent
- draft-gont-6man-ra-guard-implementation contains:
 - Discussion of RA-Guard evasion techniques
 - Advice to filter RAs, while avoiding false positives
- Can only be evaded with overlapping fragments
 - But most current OSes forbid them
 - And anyway there's nothing we can do about this :-)
- Work in progress: to be WGLC'ed soon.

IPv6 firewalling

First step away from "insanity"

- Specs-wise, state-less IPv6 packet filtering is impossible
- draft-gont-6man-oversized-header-chain tries to improve that:
 - The entire IPv6 header chain must be within the first PMTU bytes of the packet
 - i.e. packets with header chains that span more than one fragment may be blocked – don't send them!
- Work in progress:
 - Presented at IETF 83 (Paris, March 2012)
 - To be discussed on the 6man wg mailing-list
- There's an insanely large amount of work to be done in the area of IPv6 firewalling

Mitigation to some DoS attacks

IPv6 Smurf-like Attacks

- IPv6 is assumed to eliminate Smurf-like attacks
 - Hosts are assumed to not respond to global multicast addresses
- But,
 - Options of type 10xxxxxx require hosts to generate ICMPv6 errors
 - Even if the packet was destined to a multicast address
- Probably less important than the IPv4 case (since it requires multicast routing)
- But might be an issue if multicast routing is deployed
- draft-gont-6man-ipv6-smurf-amplifier addresses this issue:
 - Discusses the problem
 - Recommends that multicasted packets must not elicit ICMPv6 errors

Some conclusions

Some conclusions

- Many IPv4 vulnerabilities have been re-implemented in IPv6
 - We just didn't learn the lesson from IPv4, or,
 - Different people working in IPv6 than working in IPv4, or,
 - The specs could make implementation more straightforward, or,
 - All of the above? :-)
- Still lots of work to be done in IPv6 security
 - We all know that there is room for improvements
 - We need IPv6, and should work to improve it

Questions?

Thanks!

Fernando Gont

fgont@si6networks.com

IPv6 Hackers mailing-list

http://www.si6networks.com/community/

