
Token
Kidnapping

Cesar CerrudoCesar Cerrudo
ArgenissArgeniss

Who am I?

• Argeniss Founder and CEO
• I have been working on security for 7 years
• I have found and helped to fix hundreds of

vulnerabilities in software such as MS Windows,
MS SQL Server, Oracle Database Server, IBM
DB2, and many more...

• I have researched and created novel attacks and
exploitation techniques

• I have spoken around the world at most
important security conferences

• I have never written a book

Agenda

• Introduction
• What is impersonation and what are tokens?
• Windows XP and 2003 services security
• Windows XP and 2003 services security

weaknesses
• Windows Vista and 2008 services security
• Windows Vista and 2008 services security

weaknesses
• Token Kidnapping in action
• Conclusions

Introduction

• In the beginning all Windows services ran as Local
SYSTEM account
–Compromise of a service==full system compromise

• Then MS introduced NETWORK SERVICE and
LOCAL SERVICE accounts
–Compromise of a service!=full system compromise

• Then with Windows Vista and 2008 new
protections were introduced and some previous
weaknesses were corrected

• But as we are going to see Windows is still not
perfect...

What is impersonation and
what are tokens?

• Impersonation is the ability of a thread to
execute using different security information than
the process that owns the thread
– Threads impersonate to run code under another user

account, ACL checks are done against the
impersonated users

– Impersonation can only be done by processes
with the following privilege:
• “Impersonate a client after authentication”

(SeImpersonatePrivilege)

–When a thread impersonates it has an associated
impersonation token

What is impersonation and
what are tokens?

• An access token is an object that describes the
security context of a process or thread
– It includes the identity and privileges of the user

account associated with the process or thread
– They can be Primary or Impersonation tokens

• Primary ones are those that are assigned to
processes

• Impersonation ones are those that can be get
when impersonation occurs
– Four impersonation levels: SecurityAnonymous,

SecurityIdentity, SecurityImpersonation,
SecurityDelegation

Windows XP and 2003 services
security

• Services run under
– LOCAL SYSTEM, NETWORK SERVICE, LOCAL

SERVICE and user accounts

• Services seemed to be armoured
– Processes are created with “special” permissions

• A service running under “X” account can't directly
access another service running under the same
account

• Gentle Security found that services were
improperly protected and that service account has
WRITE_DAC permissions on service

Windows XP and 2003 services
security

• All services can impersonate
– If a service can get a SYSTEM impersonation

token the game is over
• This doesn't happen always in all services

– Impersonation takes place mostly during Inter
Process Communication (IPC) using Local
Procedure Call (LPC), Named Pipes, etc.
– Impersonation can be limited by clients by setting

proper options in the used functions

Windows XP and 2003 services
security weaknesses

• While service processes are not well protected,
threads aren't either
– Service threads have default account permissions

–A service running under X account can access
threads of another services running under the
same account
• Service X can run arbitrary code on service Y
• Service X can get impersonation tokens from

service Y

Windows XP and 2003 services
security weaknesses

• While service processes are not well protected,
threads aren't either
– Threads from RpcSs service process (runs under

NetworkService) can be accessed
• This process always has impersonation tokens from

many different accounts including SYSTEM
• Services will need first to get NetworkService

impersonation token and then use it to access RpCSs
threads

Windows XP and 2003 services
security weaknesses

• Calling APIs that interacts with a service ends
up getting the service account impersonation
token
–Calling process only needs to be able to

“impersonate”
– If impersonation tokens have higher privileges

then calling process can elevate privileges
– Problem present in MSDTC (runs under

NetworkService)
• Call DtcGetTransactionManagerEx() to get

NetworkService impersonation token
– The function starts MSDTC if not running

Windows XP and 2003 services
security weaknesses

• Both weaknesses combined lead to full system
compromise just having Impersonation rights
–Any service can run code as SYSTEM
–Any ASP web page, CGI, etc. on IIS can run code

as SYSTEM
–Any SQL Server administrator can run code as

SYSTEM
– Etc.

Windows Vista and 2008
services security

• Huge improvements in latest Windows versions
(at least in theory)

• Session 0 isolation
–Not big deal, mostly protect against Shatter

attacks

• Least privilege
–Not big deal, most Windows services requires

Impersonation privileges

• Per service SID
–Nice feature, now the service process it's really

protected and its resources can be armoured

Windows Vista and 2008
services security

• Per service SID
–Service running under X account can't access

other service resources no matter the service is
running under same account
– Threads are now properly protected

• Write restricted token
–Nice feature, service can have write access to

resources only if explicitly granted to the service
SID, logon SID, Everyone SID or write-restricted
SID

Windows Vista and 2008
services security

• Restricted network access
–Nice feature
–Services can only accept connections on specified

ports and protocols
–Services can only make connections to specified

ports and protocols
–Services can be restricted to have no network

access
– Implemented as firewall rules

• Can't be disabled after service starts

Windows Vista and 2008
services security weaknesses

• Per service SID weaknesses
–While regular threads are properly protected,

threads from thread pools are not
• Service running under X account can submit work to

thread pools on other services running under same
account

• This means arbitrary code execution bypassing per
service SID protection

Windows Vista and 2008
services security weaknesses

• Per service SID weaknesses
–While service processes are protected some

regular processes running under LOCAL SERVICE
and NETWORK SERVICE are not
• Service process running under X account can access

regular processes running under same account
– Services can execute arbitrary code on other

processes
–WMI processes have this problem

» They impersonate SYSTEM account

Windows Vista and 2008
services security weaknesses
• Write restricted token weaknesses
– Just a couple of services are restricted by default

• These restricted services can and do Impersonate
SYSTEM account and administrative accounts
– eg.: when an administrator configures Windows

Firewall, the Windows Firewall service impersonates
the administrator and SYSTEM account

• No sense in make them restricted since them can
own Windows after impersonating SYSTEM

• Restricted network access weaknesses
–A service can easily bypass all restrictions by

executing code under another process

Token Kidnapping in action

• Windows XP & 2003
–Since threads are not protected they can be

easily manipulated
– Using SetThreadContext() the thread can execute any

code in target process
• Need to have the some code already on target

process
– Brett Moore cool technique using WLSI to build a call

stack and then set proper thread context
• Using thread manipulation techniques from c0de90e7

– Code can be executed without putting any code on
target process

– Techniques needs to find proper op codes

Token Kidnapping in action

• Windows XP & 2003
–An APC can be submitted to a thread

• QueueUserAPC() can be called with
ImpersonateSelf() as parameter

• Thread starts to impersonate service account
• Impersonation token is get by OpenThreadToken()
• Token is used to access the process
• Token handles are brute forced in target process

until SYSTEM token is found
• SYSTEM token is used to run code

Token Kidnapping in action

• Windows XP & 2003
– RpcSs service is the best target for getting SYSTEM

token
• Attacker must have a NetworkService

impersonation token
• Attacker can get NetworkService impersonation

token just calling DtcGetTransactionManagerEx()
– SQL Server exploit demo
– IIS 6 exploit demo

Token Kidnapping in action

• Windows Vista & 2008
– Unprotected thread on pools don't resume execution

unless work is submitted to the pool
• We have to wait in order to manipulate the thread, it

can take arbitrary time unless we can trigger some
action to get a thread executing

– APC can be used to get code executed
• APC on a thread from a pool can't be manipulated by

SetThreadContext()
• Calling ImpersonateSelf() crashes target process, an

APC in a thread from a pool can't end impersonating

Token Kidnapping in action

• Windows Vista & 2008
– APC can be used to get code executed

• Need to call a useful function that allows to
execute code in order to elevate privileges

• LoadLibrary() can be called to get code executed
– We only need to find a pointer to a letter in memory

for dll name
» .dll extension is automatically appended

– Dll must be in dlls search paths or full path must be
provided
» We need permissions to copy dll or we need a way to

put a string in target process

• Code can be executed in this was but there is an easier
way...

Token Kidnapping in action

• Windows Vista & 2008
– Getting SYSTEM token from WMI process

(WmiPrvSE.exe)
• This process runs under NetworkService,

LocalService or SYSTEM accounts
• This process is not protected and it impersonates

SYSTEM account
• Services running under NetworkService and

LocalService can get SYSTEM token from it
– Invoke WMI functionality
– Patch CloseHandle() and OpenThreadToken() on WMI

process
– Brute force token handles until SYSTEM token is found

Token Kidnapping in action

• Windows Vista & 2008
– RpcSs Dll injection demo

• A Dll is injected into RpcSs service from an ASP .NET
web page, the site is running under NetworkService
account (default)
– Bypass per service SID

• RpcSs injects the same Dll into IIS service (runs as
SYSTEM), this service then runs a reverse shell
– Bypass least privilege
– Bypass restricted network access

– IIS 7 exploit demo

*All demos are with Windows 2008 default firewall settings,
just World Wide Web Services (HTTP Traffic-In) enabled

Recomendations

• Windows XP and Windows 2003
– On IIS 6 don't run ASP .NET in full trust and if classic

ASP is enabled don't allow users to execute binaries

• On Windows Vista and 2008
– On IIS 7 don't run ASP .NET in full trust or don't run

web sites under NetworkServer or LocalService
accounts

– Don't run services under NetworkService or
LocalService accounts
• Use regular user accounts to run services

Conclusions

• On Windows XP and Windows 2003
– If a user can impersonate then game is over
• User can execute code as SYSTEM

• On Windows Vista and 2008
–LocalService==SYSTEM
–NetworkService==SYSTEM
–New services protections are almost useless

References

• Impersonate a client after authentication

http://support.microsoft.com/kb/821546
• Access tokens

http://msdn2.microsoft.com/en-us/library/aa374909.aspx

• Thread manipulation

http://www.rootkit.com/vault/c0de90e7/gw_ng.c
• The weakness in the Windows impersonation model

http://www.gentlesecurity.com/04302006.html

• Process explorer

http://www.sysinternals.com

http://msdn2.microsoft.com/en-us/library/aa374909.aspx
http://www.gentlesecurity.com/04302006.html

Fin

• Questions?

• Thanks

• Contact:
cesar>at<argeniss>dot<com

Argeniss – Information Security
WE BREAK ANYTHING

www.argeniss.com

