
SinFP3
More Than a Complete Framework for Operating System Fingerprinting – v1.1

Patrice <GomoR> Auffret

@PatriceAuffret

@networecon

 Patrice <GomoR> Auffret

 10+ years of InfoSec experience

 www.gomor.org

 www.protocol-hacking.org (french only)

 www.secure-side.com (FreeBSD Web hosting company)

 www.networecon.com (where the tool will be released)

 Currently working for technicolor (security assessments coordinator)

 Network protocol « Hacker »

 Net::Frame Perl modules

 8021.Q, LLTD, OSPF, IPv4/6, ICMPv4/6, TCP/UDP, STP, …

 Net::SinFP & Net::SinFP3 Perl modules

 That is the subject of today

 FreeBSD addict & Perl developer (http://search.cpan.org/~gomor/)

2

`whoami`

9/21/2012

http://www.gomor.org/
http://www.protocol-hacking.org/
http://www.protocol-hacking.org/
http://www.protocol-hacking.org/
http://www.secure-side.com/
http://www.secure-side.com/
http://www.secure-side.com/
http://www.networecon.com/
http://search.cpan.org/~gomor/

 Operating system fingerprinting
 What is it? (quickly)
 What is SinFP?

 Current tools and their limitations
 Nmap & p0f

 SinFP approach to active and passive fingerprinting

 SinFP3 matching algorithm and database

 Demo 1

 SinFP3 architecture and advances
 Comparison with previous versions of SinFP
 Zoom on Input::SynScan, Input::Connect, Input::ArpDiscovery

 Demo 2 & 3 (if time permits)

 Conclusion

3

Agenda

9/21/2012

 Yes, what’s that stuff? (pretty sure everyone knows already)

 The art or remotely identifying the nature of an Operating System by
analyzing how its TCP/IP stack is crafting network packets

 Two approaches
 Active mode

 Sends probes to elicit responses

 Analyst decides on the format of requests (very important)

 Passive mode
 Listen to the network

 Analyst does not decide on the format of requests (also very important)

 These two approaches give a different signature (or fingerprint)
 More on that later…

 Why not simply using application-level « banners »?
 If you have the choice, use this option

 Or correlate with OSFP to have a better identification

4

What is operating system fingerprinting (one slide)

9/21/2012

 An Operating System FingerPrinting tool (OSFP)

 Written in Perl (the best language, /troll)

 Module based, for easy integration in other (Perl?) projects

 Based on the Net::Frame Perl modules (since SinFP3)

 1st tool to implement IPv6 fingerprinting (active and passive)

 History

 V0.92: June 2005

 V1.00: March 2006

 V2.02: September 2006 (complete rewrite)

 V2.09: March 2011

 SinFP3 v1.00: now 

 Was integrated in BackTrack, but no more in latest versions

 Who knows why?

5

What is SinFP? (before SinFP3)

9/21/2012

 Nmap philosophy: one target IP has only one operating system

 Nmap probes

 6 TCP SYN (open port)

 1 ICMP echo

 1 TCP ECN (open port)

 1 TCP null (open port)

 1 TCP SYN|FIN|URG|PSH (open port)

 1 TCP ACK (open port)

 1 TCP SYN (closed port)

 1 TCP ACK (closed port)

 1 TCP FIN|PSH|URG (closed port)

 1 UDP (closed port)

 For a complete fingerprint, target MUST:

 Have one open TCP port

 Have one closed TCP port

 Allow ICMP echo requests

 Have one closed UDP port (those who answer ICMP port unreachable)

6

Current tools and their limitations (Nmap 1/2)

9/21/2012

 Problem 1: what if some of target’s answers are spoofed?

 A fitering device in-between answers to:

 UDP requests

 Out-of-state probes

 You have a fingerprint composed of different TCP/IP stacks

 TurtleOS, anyone?

 Problem 2: filtering, packet normalization and stateful inspection

 Nmap tests remaining:

 6 TCP SYN (open port)

 1 TCP ECN (open port) (not sure this one will resist packet normalization)

 Problem 3: easily detected by IDSs/IPSs

 Too noisy and packet format too easy to classify as Nmap fingerprinting

 Conclusion

 Nmap is only ok for LAN-side OS fingerprinting in today’s Internet conditions

7

Current tools and their limitations (Nmap 2/2)

9/21/2012

 p0f performs

 IPv4 and IPv6 passive fingerprinting

 TCP SYN and TCP SYN|ACK

 p0f

 No real limitation (except for SYN|ACK fingerprinting?)

 But at the time of SinFP introduction, p0f did not support IPv6 passive

fingerprinting

 A very comprehensive signature database

 SinFP3 lacks this

 @lcamtuf: relationship between window size and MTU does not survive

modification of MTU by a device in-between. And we don’t need that if we

keep the value of both window size and MSS as a signature element.

 8

Current tools and their limitations (p0f)

9/21/2012

 Philisophy: one target IP/port has only one operating system

 Every probes MUST generate an answer from the true target

 Every probes MUST reach the true target (filtering evasion)

 We come with 3 TCP packets all targeted at one open TCP port

 One TCP SYN with just MSS TCP option (SinFP2 hadn’t options at all)

 One TCP SYN with many valid TCP options

 One TCP SYN|ACK (used for LAN-side fingerprinting)

 One operating system has only one signature in the database

 Matching algorithm takes care of modified fingerprints due to

 Filtering device in-between (MTU change, for instance)

 Customization of TCP/IP stack on the system

 During our tests, usually only one TCP SYN is enough to fingerprint reliably a
target

9

SinFP approach, active mode

9/21/2012

 SinFP2 passive fingerprinting

 TCP SYN and TCP SYN|ACK

 SinFP2 limitations

 No passive signature in the database

 A transform was applied on a fingerprint to make use of active signatures

 It was failure *

 Conclusion: SYN|ACK fingerprinting does not work

 SYN|ACKs are generated compared to the original SYN probe

 You don’t control how SYNs are generated by different equipments you are
monitoring

 So, there exists a multitude of SYN|ACK fingerprints for one unique operating
system

 p0fv3 uses this approach

* @GoulagParkinson: thanks for catching this up

10

SinFP approach, passive mode (1/2)

9/21/2012

 SinFP3 approach:

 Only TCP SYNs are fingerprinted

 Signature database schema update to have passive signatures appart from

active signatures

 But still work in progress, not many signatures right now

 Need contributions, please send signatures to sinfp[AT]networecon.com

 % sqlite3 bin/sinfp3.db

 sqlite> select count(*) from SignatureP;

 21

 sqlite> select count(*) from Signature;

 275

11

SinFP approach, passive mode (2/2)

9/21/2012

nmap -P0 -p 80 -O ovh1.secure-side.com

Running (JUST GUESSING): FreeBSD 7.X|6.X|8.X (98%)

Aggressive OS guesses: FreeBSD 7.0-RELEASE (98%), FreeBSD 6.3-RELEASE (98%),

FreeBSD 7.1-PRERELEASE 7.2-STABLE (98%), FreeBSD 7.2-RELEASE - 8.0-RELEASE

(94%), FreeBSD 8.1-RELEASE (94%), FreeBSD 7.1-PRERELEASE - 7.3-RELEASE (93%),

FreeBSD 7.1-RELEASE - 9.0-CURRENT (93%), FreeBSD 8.0-STABLE (93%), FreeBSD

7.0-STABLE (93%), FreeBSD 7.0-RELEASE - 8.0-STABLE (92%)

12

A fingerprinting example: Nmap

9/21/2012

sinfp3.pl -input-ipport -target ovh1.secure-side.com -port 80 -threshold 70 –active-2

Result for target [213.251.166.100]:80:

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144 M1460 S3 L20

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.4 (7.4-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.0 (7.0-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.3 (7.3-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 8.1 (8.1-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 8.0 (8.0-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.1 (7.1-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 8.2 (8.2-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 8.3 (8.3-RELEASE)

IPv4: [score:100]: BH0FH0WH0OH0MH0SH0LH0/S1S2: BSD: OSS: FreeBSD: 7.2 (7.2-RELEASE)

IPv4: [score:94]: BH0FH0WH0OH0MH0SH1LH0/S1S2: BSD: OSS: FreeBSD: 9.0 (9.0-RELEASE)

13

A fingerprinting example: SinFP3

9/21/2012

 Binary flags, comparison between probe and response IP/TCP headers

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 Some comparison methods were taken from Nmap (O2)

 Comparison between TCP probes and replies on SEQ and ACK numbers

 Not anymore binary, but kept the name

14

SinFP3 matching algorithm (signatures 1/8)

9/21/2012

 TCP flags

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 Maybe a target will answer with more flags than SYN|ACK or RST?

 Never seen yet

15

SinFP3 matching algorithm (signatures 2/8)

9/21/2012

 TCP window size

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 One of the most important element

16

SinFP3 matching algorithm (signatures 3/8)

9/21/2012

 TCP options, values are extracted (like MSS, WScale)

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 The most important element

 Number and order of TCP options is the best differientor between OSs

 Data may be returned from the target

 It is integrated into this element

 HP-UX loves to add « No TCP » data like this:

S3: B11120 F0x04 W0 O4e6f20544350 M0 S0 L6

17

SinFP3 matching algorithm (signatures 4/8)

9/21/2012

 Extracted MSS value

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 By extracting it, we make it easier to write our deformation masks

 Explanation will come

18

SinFP3 matching algorithm (signatures 5/8)

9/21/2012

 Extracted WScale value

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 Same here, easy to write deformation masks

19

SinFP3 matching algorithm (signatures 6/8)

9/21/2012

 Length of TCP options (in bytes)

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

20

SinFP3 matching algorithm (signatures 7/8)

9/21/2012

 Complete IPv4 active signature (FreeBSD 8.3-RELEASE)

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 Complete IPv6 active signature (FreeBSD 8.3-RELEASE)

S1: B11013 F0x12 W65535 O0204ffff M1440 S0 L4

S2: B11013 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1440 S3 L20

S3: B10020 F0x04 W0 O0 M0 S0 L0

 Complete IPv4 passive signature (Windows 7)

SP: F0x02 W8192 O0204ffff010303ff01010402 M1460 S8 L12

 Complete IPv6 passive signature (Windows 7)

SP: F0x02 W8192 O0204ffff010303ff01010402 M1420 S8 L12

21

SinFP3 matching algorithm (signatures 8/8)

9/21/2012

 3 level of deformation

 Heuristic0: no deformation

 Heuristic1: minor deformations

 Heuristic2: major deformations

 Deformation mask takes care of devices modifying packets

 No need to add many signatures for one same operating system

 So, number of signatures is far less than from Nmap’s database

 Example: all elements with heuristic1 deformation:

S1H1: B...13 F0x12 W6[45]... O0204ffff M1[34].. S. L4

S2H1: B...13 F0x12 W6[45]...
O0204ffff(?:01)?(?:0303ff)?(?:0402)?(?:080affffffff44454144)? M1[34].. S.
L(?:8|9|[12].)

S3H1: B...20 F0x04 W0 O0 M0 S. L0

22

SinFP3 matching algorithm (masks 1/4)

9/21/2012

 Non-deformed signature

 Match score: 100% (BH0FH0WH0OH0MH0SH0LH0)

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1460 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 23

SinFP3 matching algorithm (masks 2/4)

9/21/2012

 Deformed signature because of reduced MTU (classic stuff)

 Match score: 98% (BH0FH0WH0OH0MH1SH0LH0)

S1: B11113 F0x12 W65535 O0204ffff M1452 S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1452 S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

24

SinFP3 matching algorithm (masks 3/4)

9/21/2012

 Deformed signature because of reduced MTU (classic stuff)

 Match score: 98% (BH0FH0WH0OH0MH1SH0LH0)

S1: B11113 F0x12 W65535 O0204ffff M1[34].. S0 L4

S2: B11113 F0x12 W65535 O0204ffff010303ff0402080affffffff44454144

M1[34].. S3 L20

S3: B11120 F0x04 W0 O0 M0 S0 L0

 Each element (B, F, W, O, M, S, L) has a weight

 No deformation means higher weight (BH0, FH0, WH0, …)

 Most discriminent elements have higher weights (window size, options)

 Match score is calculated by additioning these match scores

25

SinFP3 matching algorithm (masks 4/4)

9/21/2012

 Every element has heurisitic0 (no deformation), heuristic1 and heuristic2
patterns in the database

 A match is found when:

 Intersection exists between S1, S2 and S3 signatures

 And by applying deformation masks when no match is found

 Highest score are kept as a matched fingerprint

 Then S1 intersection with S2, then only S2

 For IPv6:

 A matching signature is found: OK

 Nothing found, try searching against IPv4 signatures

 This works great, thanks to deformation masks

 For passive fingerprinting:

 Same algorithm, but against passive signatures

26

SinFP3 matching algorithm (intersection)

9/21/2012

 SQLite based

 Table Signature (active ones; 275 at this day)

 Table SignatureP (passive ones; 21 at this day)

 Not every signature is integrated

 Only taken from best conditions (usually target is installed on a VM)

 Only one signature per operating system version

 Trusted and untrusted signatures (flag in the database)

 All pcap traces are kept

 Ready for changes on analysis in the future

 A pretty good pcap database of operating systems

 Complete SinFP exchange for active mode, and SYN only for passive mode

 Need contributors for passive signature

 Did I said it already? ;) => sinfp[at]networecon.com

27

SinFP3 database

9/21/2012

 SYN scan a C-class, output results on Console, IPv4 fingerprinting

 And also works for IPv6, add -6 parameter

 Default modules

 Input::SynScan

 DB::SinFP3

 Mode::Active

 Search::Active

 Output::Console

 Command line

sinfp3.pl -target 192.168.1.0/24 -port 80 -verbose 1 -active-2 -threshold

80

28

Demo 1 - enough for the theory right now

9/21/2012

 Architecture and features

 Plugin-based

 Input, Mode, Search, DB, Output

 Improvements

 Matching algorithm

 Deformation masks were written manually

 No match score

 Probe requests

 Probe P1 has now a TCP MSS option

 Autonomous passive mode

 Passive signature database is no more correlated with active one

 And of course, the plugin-based architecture

 Allowing massive parallel scanning (for instance)

29

SinFP3 architecture and advances (1/2)

9/21/2012

30

SinFP3 architecture and advances (2/2)

9/21/2012

Input Next Mode DB Mode Search

Output

R

e

s

u

l

t

Lookup

 Input modules

 Input::Pcap, Input::IpPort, Input::SynScan, Input::ArpDiscover, Input::Sniff

 Input::Signature, Input::SignatureP, Input::Connect

 DB modules

 DB::SinFP3

 Mode modules

 Mode::Active, Mode::Passive

 Search modules

 Search::Active, Search::Passive

 Output modules

 Output::Console, Output::Pcap, Output::CSV, Output::OsOnly,
Output::OsVersionFamily, Output::Ubigraph

31

Currently implemented plugins

9/21/2012

 Written in Perl/XS/C

 IPv4 and IPv6 ready

 Efficient enough

 Deterministic

 20 minutes for TOP10 ports against a C-class

 Default: 200 packets per second, 3 tries (around 10 kB/s)

 KISS algorithm (do it yourself ;))

 Writes TCP packets directly at layer 4

 Don’t bother with computing checksums and other IP headers

 Works under GNU/Linux and BSD systems

 Uses SinFP3 magic SYN packet

 Scan once, replay fingerprinting

 Output::Pcap, then Input::Pcap

32

Zoom on Input::SynScan

9/21/2012

 Because SYN|ACK fingerprinting was a failure …

 Use TCP connect() and send a classic « GET / HTTP/1.0 »

 A listener is catching SYN probe and SYN|ACK reply

 Mode::Active generates the fingerprint

 Search::Active searches a matching signatures

 Works great from Linux (only?)

 Cause the SYN probe is the same used in SinFP active mode

 Same window size and TCP options

 Nearly stealthiest option for fingerprinting

 Not seen as active fingerprinting by a potential target IDS/IPS

33

Zoom on Input::Connect

9/21/2012

 On your LAN (of course)

 Performs a standard ARP scanning against all LAN IP addresses

 Gathers all live hosts

 Then performs an active fingerprinting of all live hosts

 Currently, you have to specify which target ports to test

 For IPv6

 Performs a standard ARP scanning against all LAN IPv4 addresses

 Gathers all live hosts

 Apply EUI-64 transform against MAC addresses

 You have the list of auto-configured link-local IPv6 addresses

 Then performs an active fingerprinting of all live hosts

 For IPv6, you didn’t thought of scanning the fe80::/64, did you?

34

Zoom on Input::ArpDiscover

9/21/2012

 ARP discovery, IPv4 active fingerprinting

 For IPv6 mode, it is as easy as adding -6 option

 Default modules

 Input::SynScan (-input-synscan)

 DB::SinFP3 (-db-sinfp3)

 Mode::Active (-mode-active)

 Search::Active (-search-active)

 Output::Console (-output-console)

 Command lines

sinfp3.pl -input-arpdiscover -output-pcap

% sinfp3.pl -input-pcap -pcap-file '*.pcap' -output-csv –threshold 80

% sinfp3.pl -db-null -search-null -mode-null -input-null -output-ubigraph

35

Demo 2

9/21/2012

 SYN scan a C-class, output results using Ubigraph, IPv4 fingerprinting

 And also works for IPv6, add -6 parameter

 Default modules

 Input::SynScan

 DB::SinFP3

 Mode::Active

 Search::Active

 Output::Console

 Command lines

sinfp3.pl –target 192.168.0.0/24 –port top10 -output-pcap

% sinfp3.pl -input-pcap -pcap-file '*.pcap' -output-csv –threshold 80

% sinfp3.pl -db-null -search-null -mode-null -input-null -output-ubigraph

36

Demo 3 – if time permits

9/21/2012

 Improvements on matching algorithm

 No more manual deformation masks

 Computes a matching score for easy human comprehension

 Improvements on architecture allowing to

 Write new modules, like new matching algorithms or output methods

 Perform more than OS fingerprinting

 Improvements on passive fingerprinting

 But needs more signature (did I said that already?)

 Many more features

 Plugin to add signatures to the database by yourself

 Update database with –update-db

 Logging modules

 Design your own plugins … limitless?

 Follow @networecon to get informed of releases

 http://www.networecon.com/

37

Conclusion

9/21/2012

http://www.networecon.com/

38 9/21/2012

Questions? (I can haz a beer now?)

This document is for background informational purposes only. Some points may,

for example, be simplified. No guarantees, implied or otherwise, are intended

http://www.networecon.com/

http://www.networecon.com/

