

Burp Suite Pro
Real-life tips & tricks

Nicolas Grégoire

Me & Myself
Founder & owner of Agarri

Lot of Web PenTesting

NOT affiliated with PortSwigger Ltd

Using Burp Suite for years

And others proxies before

Yes, I'm that old...

Warning
This is NOT about Web PenTesting methodologies

http://danielmiessler.com/projects/webappsec_testing_resources/

“Web Application Hacker's Handbook” 2nd Edition, Chapter 21

This is NOT “Burp 101”
http://portswigger.net/burp/help/suite_gettingstarted.html

http://www.irongeek.com/i.php?page=videos/web-application-pen-testing-tutorials-with-mutillidae

Everything was tested on Burp Pro v1.5.11

http://danielmiessler.com/projects/webappsec_testing_resources/
http://portswigger.net/burp/help/suite_gettingstarted.html

Pro vs. Free vs. Zap

To do...

Overview
Data visualization

GUI navigation

Managing state

Common tasks

Intruder payloads

Mobile applications

Extensions

Macros

Overview
Data visualization

GUI navigation

Managing state

Common tasks

Intruder payloads

Mobile applications

Extensions

Macros

Data visualization

By default

Via extensions

Parameters

Parameters

XML

XML

AMF

AMF

ViewState

ViewState

Data visualization

By default

Via extensions

JSON
http://api.twitter.com/1/statuses/user_timeline.json

JSON
json.dumps(json.loads(msg), indent=4)

http://128nops.blogspot.com/2013/02/json-decoder.html

http://128nops.blogspot.com/2013/02/json-decoder.html

Javascript

Javascript
Both beautifier extensions use

libs from jsbeautifier.org

burp-suite-beautifier-extension

Uses Rhino to call Javascript from Java
http://code.google.com/p/burp-suite-beautifier-extension/

burp_jsbeautifier

Much cleaner, uses the Python library
https://github.com/Meatballs1/burp_jsbeautifier

http://code.google.com/p/burp-suite-beautifier-extension/
https://github.com/Meatballs1/burp_jsbeautifier

Javascript

Protobuf
“Google Protocol Buffers”

https://code.google.com/p/protobuf/

Decode Protobuf messages

Allow tampering if a “.proto” is provided
https://github.com/mwielgoszewski/burp-protobuf-decoder

https://github.com/mwielgoszewski/burp-protobuf-decoder

Overview
Data visualization

GUI navigation

Managing state

Common tasks

Intruder payloads

Mobile applications

Extensions

Macros

GUI navigation
Contextual buttons

Hotkeys

Auto-scroll in Proxy / History

Custom payload lists

Personalized scans

Contextual buttons
RTFM

Restore defaults

Hotkeys

Hotkeys
Classic:

Ctrl+X|C|V for “Cut|Copy|Paste”

Decoding:

Ctrl+(Shift)+U|H|B for “URL|HTML|Base64 (de)code”

GUI navigation:

Ctrl+Shift+T|P|S|I|R for “Switching to ...”

Personal favorite:

Ctrl+G for "Issue Repeater request"

History auto-scroll

Custom payload lists
Some payload lists are shipped with Burp

Configurable from the Intruder menu

Magic combo:

Nikto

Burp

FuzzDB

DirBuster

Personalized scans
Define your own insertion points in Intruder

Then right-click and select “Actively scan ...”

Overview
Data visualization

GUI navigation

Managing state

Common tasks

Intruder payloads

Mobile applications

Extensions

Macros

Managing state

Automatic backups

Saving & restoring state

Automatic backups
Hacking is immersive

You WILL forget to use “Save state”

Of course, Murphy's Law applies ;-)

Automatic backups

Save & restore state
Complementary to automatic backups

Can also be used to

Export to your customers

Define your own defaults
Hotkeys / Automatic backups / Scope

Display all items in “Site map” and “Proxy history”

Custom payloads lists

Extensions options - buggy

Overview
Data visualization

GUI navigation

Managing state

Common tasks

Intruder payloads

Mobile applications

Extensions

Macros

Common tasks

Switching between GET and POST

Non proxy-aware clients

Importing & exporting an URL

GET to POST
Classic question: is it also exploitable via POST?

Non proxy-aware
$./skipfish -o 8777 http://127.0.0.1:8777/

Moving URL in & out
Import

“Paste URL as request”

Export

“Copy URL”
Works only with basic GET requests

Not body, no headers, no cookies, ...

“curlit” extension
Generates a “curl” command

Moving URL in & out

https://github.com/faffi/curlit

Overview
Data visualization

GUI navigation

Managing state

Common tasks

Intruder payloads

Mobile applications

Extensions

Macros

Intruder payloads

HTTP Basic Authentication

Opaque data

Anti-CSRF tokens

Basic Auth

Basic Auth
Algorithm

Base64(username + “:” + password)

Blogs

My Sys Admin Cookbook: Use prefix/suffix

SecurityNinja: Use prefix/suffix

SecureState: Use prefix/suffix or precompiled lists

SANS: Use prefix/suffix or precompiled lists

Smeege Sec: Use an extension or precompiled lists

Basic Auth

Basic Auth
Use the “Custom Iterator” payload!

From the documentation:

The custom iterator defines up to 8 different "positions" which are used to
generate permutations. Each position is configured with a list of items, and an
optional "separator" string, which is inserted between that position and the
next.

That's exactly what we want!

Only the “ePsiLoN's Information Security Blog” was right

Basic Auth

http://blog.securestate.com/burp-suite-series-efficient-use-of-payload-options-when-attacking-http-basic-authentication/

http://carnal0wnage.attackresearch.com/2009/08/using-burp-intruder-to-brute-force.html

http://www.smeegesec.com/2012/02/attacking-basic-authentication-with.html

http://sysadmincookbook.blogspot.fr/2013/01/test.html

http://www.securityninja.co.uk/hacking/burp-suite-tutorial-the-intruder-tool/

http://www.sans.org/reading_room/whitepapers/testing/fuzzing-approach-credentials-discovery-burp-intruder_33214

http://www.dailysecurity.net/2013/03/22/http-basic-authentication-dictionary-and-brute-force-attacks-with-burp-suite/

http://portswigger.net/burp/help/intruder_payloads_types.html#customiterator

http://blog.securestate.com/burp-suite-series-efficient-use-of-payload-options-when-attacking-http-basic-authentication/
http://carnal0wnage.attackresearch.com/2009/08/using-burp-intruder-to-brute-force.html
http://www.smeegesec.com/2012/02/attacking-basic-authentication-with.html
http://sysadmincookbook.blogspot.fr/2013/01/test.html
http://www.securityninja.co.uk/hacking/burp-suite-tutorial-the-intruder-tool/
http://www.sans.org/reading_room/whitepapers/testing/fuzzing-approach-credentials-discovery-burp-intruder_33214
http://www.dailysecurity.net/2013/03/22/http-basic-authentication-dictionary-and-brute-force-attacks-with-burp-suite/
http://portswigger.net/burp/help/intruder_payloads_types.html#customiterator

Basic Auth
Howto

Payload type : Custom Iterator

Position #1: list of usernames + separator “:”

Position #2: list of passwords

Payload processing: Base64-encode

Payload encoding: None

Basic Auth
Another approach

Payload type : Custom Iterator

Position #1: list of usernames

Position #2: string “:”

Position #3: list of passwords

Position #4: common suffixes

Payload processing: Base64-encode

Payload encoding: None

Basic Auth

Intruder payloads

HTTP Basic Authentication

Opaque data

Anti-CSRF tokens

Opaque data

Opaque data
No cookie + long token + authenticated access?

Is the token

An anti-cache mechanism: OK

A session ID: not safe (logs, referrer)

Authentication data provided by the client
Checked server-side: OK

Not checked server-side: not safe

From the documentation:

It cycles through the base string one character at a time, incrementing the ASCII
code of that character by one.

Opaque data

Opaque data

Opaque data

It looks like unverified encrypted data (XOR or ECB)

We know which part of the string impacts the UID

Let's try to modify it at the bit level

Opaque data

Opaque data

Opaque data

Intruder payloads

HTTP Basic Authentication

Opaque data

Anti-CSRF tokens

Anti CSRF tokens

Anti CSRF tokens

Anti CSRF tokens

Anti CSRF tokens
Recursive Grep to the rescue!

From the documentation

This payload type lets you extract each payload from the
response to the previous request in the attack.

The text that was extracted from the previous response in the
attack is used as the payload for the current request.

Anti CSRF tokens
Attack type: Pitchfork

Payload #1:

Location: Parameter “token”

Type: Recursive Grep

Initial value: A valid token

Regexp: name="token" value="(.*?)"/>

Payload #2:

Location: Parameter “value”

Type: Numbers from 0 to 50

Anti CSRF tokens
Caveats

Only applies if the result page includes a valid token

You must use only one thread (idem if macro-based)

Twice faster than its macro-based counterpart

Anti CSRF tokens

Anti CSRF tokens

DEMOS?

Overview
Data visualization

GUI navigation

Managing state

Common tasks

Intruder payloads

Mobile applications

Extensions

Macros

Mobile applications

Traffic redirection

Burp CA certificate

Missing developers tools

Redirect to Burp

Your target is running on a rooted Android smartphone

You want to use your usual tool and workflow

Burp listens elsewhere, on an external interface

ProxyDroid redirects to the Burp instance

App-specific or global proxying

Option “DNS Proxy” should be checked

Redirect to Burp

Redirect to Burp

Redirect to Burp

Redirect to Burp

Burp CA

Burp CA
Fetch your Burp CA certificate

GUI: Proxy / Options / Proxy Listeners / CA Certificate / Export in DER

Proxied browser: http://burp/cert

Rename from DER to CRT

No need for OpenSSL

Depending on the Android version:

Touch the file in any “File Explorer” application

Parameters / Security / Install from SD

Burp CA

Burp CA
First request when opening Google Play

Developers tools

Mobile browsers miss some common features

Like no built-in developers tools

I don't care, except when looking for XSS

Developers tools

Let's include Firebug Lite in every response

“startOpened=true” is your friend

Developers tools

This seems to be a good idea

But Firebug itself contains the “</head>” string

Developers tools

http://www.agarri.fr/docs/JavaScriptInjector.py

Also works with BeEF and autpwn during a MITM!

Developers tools

Overview
Data visualization

GUI navigation

Managing state

Common tasks

Intruder payloads

Mobile applications

Extensions

Macros

Extensions

As an user

As a developer

Resources
Repositories

http://www.burpextensions.com/Extensions/

https://github.com/Meatballs1/burp-extensions

Online documentation

http://portswigger.net/burp/help/extender.html

http://www.burpextensions.com/category/tutorials/

Forum

http://forum.portswigger.net/board/2/burp-extensions

Blog (+ samples)

http://blog.portswigger.net/search/label/burp%20extender

http://www.burpextensions.com/
http://portswigger.net/burp/help/extender.html
http://forum.portswigger.net/board/2/burp-extensions

May be useful
Format specific

JSON, JS, Protobuf, AMF, Serialized Java, WSDL, WCF

External tools

Google hacks, nmap, sqlmap, w3af, curl

Misc

Custom Logger, Burp Notes, Proxy Color, Referrer Checker

My own

JavaScript Injector, HTTP Traceroute, DomXssRegexp

Detect reverse-proxies

Generate from WSDL

Take notes

Takes notes

As a developer

Choose your language

Quick reload

Debugging

Language
Java

Provides the best integration with Burp internals

Python

My personal choice

But Python != Jython

Ruby

Same drawbacks than Python

Python vs. Java API
Java API

ApplyMarkers(

 IHttpRequestResponse httpRequestResponse,

 java.util.List<int[]> requestMarkers,

 java.util.List<int[]> responseMarkers)

Python code

markers = []

for n in non_overloapping:

 markers.append(array.array('i', [offset + n[0], offset + n[1]]))

marked_message = self._callbacks.applyMarkers(message, None, markers)

Quick reload
Use Ctrl-Click to quickly reload an extension

Debugging
Custom Logger captures everything

http://blog.portswigger.net/2012/12/sample-burp-suite-extension-custom.html

http://blog.portswigger.net/2012/12/sample-burp-suite-extension-custom.html

Overview
Data visualization

GUI navigation

Managing state

Common tasks

Intruder payloads

Mobile applications

Extensions

Macros

Target & Goal

Target application requires authentication

Sessions are very short-lived

You want to work “as usual”

Manual tools: Repeater, ...

Automated tools: Intruder, Scanner, ...

App details
/index.php

Display (GET) & process (POST) the login form

username=User33&password=S3CR3T

/logged.php

Display session info

Display & process the target form

Target value is between 1 and 100

Session lasts for 15 seconds

Debugging

Macros

DEMO?

Overview
Data visualization

GUI navigation

Managing state

Common tasks

Intruder payloads

Mobile applications

Extensions

Macros

That's all, folks!

Thanks for your attention
Any questions?

@Agarri_FR

nicolas.gregoire@agarri.fr

