

Detecting the Presence of Virtual

Machines Using the Local Data Table

Danny Quist {chamuco@gmail.com}
Val Smith {mvalsmith@metasploit.com}

Offensive Computing

http://www.offensivecomputing.net/

Abstract

In this paper we describe a method for determining the presence of virtual machine
emulation in a non-privileged operating environment. This attack is useful for triggering
anti-virtualization attacks and evading analysis. We then discuss methods for mitigating
this risk for malware analysts. This method was demonstrated using the Windows series
of operating systems.

Introduction

The SIDT mechanism as implemented by Tobias Klein [1] and separately by Joanna
Rutkowska [2] is a method for detecting the presence of a virtual machine environment.
While the test is by no means thorough, it is an effective test for the presence of an
emulated CPU environment on a single-processor machine. There are various problems
with the implementation, however. If a multi-core CPU is used, the interrupt descriptor
table can change significantly when the process is run on different cores. Furthermore if
two or more physical processors are present the same implementation issues apply.

The Interrupt Descriptor Table (IDT) is an internal data structure used by the operating
system in processing interrupts. Devices use the IDT to process events in the operating
system. The IDT is a data structure often exploited by rootkits. [4] By subverting the
IDT, the attacker can point critical items such as the keyboard interrupt to a different
function. Using this method an attacker can then insert malicious code to be executed
when certain interrupts are run.

The Redpill and scoopy_doo mechanisms use the SIDT assembly operation to retrieve
the interrupt descriptor table from the CPU. This data is available at unprivileged
operating levels. By providing this key information a non-privileged (non-OS level)
process can then query this information. This is bad for a number of reasons. First this

exposes a small level of detail regarding the operating state of the underlying OS.
Second, this information can be used to ascertain the operating environment of the OS.
Malicious software can then determine the presence of a virtual machine. This can allow
the program to terminate itself, or implement specific exploits to escape from the virtual
machine.

IDT Usage Issues and Workarounds

The value of the IDT is specific to the running processor. In a single-processor
environment the value of the IDT is constant, and can be effectively used to determine
the presence of a multi-processor machine. When multiple cores are added, each
processor has it’s own IDT. This is the source of the problems given by the scoopy_doo
and Redpill methods.

There are a couple of ways to get around the IDT problem. First using the Redpill
method, one can run the tasks repeatedly in a loop on the system. The inherent problem
is that the IDT value will be different for each of the processors. By running multiple
times one can build a statistical map of the changes present on the system. This may not
be optimal due to the added loading of the processor.

Another possible work around to the issue is to use the SetThreadAffinityMask()
Windows API call to limit thread execution to one processor. When running this test it is
possible to accurately limit the threads execution environment on a native processor only.
It is not possible, however to limit that execution on the VM system. Since the VM can
be scheduled to run on various processors, this value will change as the VM thread is
executed on different processors. Since the problem space is centered around detecting
virtualization or not, this check is useless.

LDT Process Determination

Our method is a variant on the SIDT process used by Redpill and scoopy_doo. We use
the Local Descriptor Table (LDT) as a signature for virtualization. The LDT provides
segmentation for operating privilege changes. It provides the base addresses, access
rights, type, length, and usage information for each segment.

The value of the LDT, like the IDT and Global Descriptor Table (GDT) are readable by
unprivileged memory. The problem for the VM arises when these memory addresses are
used. [3] Since the VM is running under an unprivileged process itself, it cannot load or
unload the values of the registers.

Furthermore the LDT is not used by all operating systems. Notably Windows does not
use it, however Linux does. Since the VM must account for any discrepancies in the
GDT and LDT, Windows’ LDT running in virtualization must be a separate value than
that which is present on the operating system. The SIDT, SLDT, and SGDT assembly
operations must be further virtualized to maintain the virtualization. Since these cannot
be the same, the VM provides a separate copy of each of these values.

Experimentation

The IDT (Redpill) and LDT (Nopill) methods were both tested extensively on multiple
pieces of hardware and across multiple virtual machines.

Specs:
 - Dual Intel Xeon CPU 3.06GHz
 - Single AMD Athalon 2.0 GHz
 - Microsoft Virtual PC 5.4.582.27
 - VMWare Workstation 5.5.1 build-19175
 - Windows XP Sp 2
 - Windows 2000 SP 4

Redpill was found to correctly determine its virtualized state 100% of the time when run
inside a VM, as was Nopill. However, when run on native, non-virtualized, hardware
Redpill was only %50.36 accurate while Nopill was 100%. Out of 10,000 runs on native
Dual Processor Intel hardware Redpill generated 4964 false positives. This means that
49.64% of the time a piece of software implementing the SIDT VM signature technique
will incorrectly detect that it is running inside of a virtual machine.

The IDT base address flipped ~50% of the time on a dual processor. Assuming even
distribution across all processors the IDT VM signature method will be incorrect
proportionately to the number of processors in the system.

Ex. On a quad processor system Redpill will be correct ~25% of the time and incorrect
~75%.

The above graph shows the results of 100 runs of Nopill and Redpill and is broken down
by descriptor table values. For example Running Nopill on native Intel dual processor
hardware the IDT was one value 50% ff0760b571f7 of the time and a second value
ff0700f40380 the other 50%. The same was true for the GDT. However LDT had the
same value 100% of the time. Since Redpill is an IDT only technique its accuracy
proportion is dictated by the number of processors.

Screenshots

Fig. 1 Native Hardware Runs

The Figure 1 graphic shows various runs of Redpill and the false positive rate. To the
right are the registry settings showing the dual processor configuration.

Fig. 2 Virtual PC Runs

Figure 2 show runs of Redpill and Nopill inside a Microsoft Virtual PC emulator.

Fig. 3 VMWare Runs

Figure 3 shows runs of both Redpill and Nopill on a VMWare emulator.

LDT Problems

The LDT method is not without problems, however. There are some issues when using
these on a fully emulated VM. Specifically we’ve found that the Virtual PC
implementation running on the Power PC architecture will not yield any useful results.
The virtual PC environment exhibits extremely poor performance on the PowerPC
architecture. This can cause analysis of malicious binaries to take much more time than
other VM instantiations.

Mitigation Techniques

Since this attack relies on fundamental implementations of the VM architecture, it is
difficult to mitigate these issues. Some methods that can be done are to perform a
completely non-executed analysis of the binary. Also binary patching can be
implemented to jump over or skip the checks. With further binary obfuscation it could be
possible to completely bypass any analysts efforts to dynamically analyze the binary.

References

[1] http://www.trapkit.de/research/vmm/scoopydoo/scoopy_doo.htm
[2] http://www.invisiblethings.org/papers/redpill.html
[3] J. S., Robin; C. E., Irvine: "Analysis of the Intel Pentium's
 Ability to Support a Secure Virtual Machine Monitor", Proceedings
 of the 9th USENIX Security Symposium, August 14-17, 2000.
[4] G. Hoglund; J. Butler: “Rootkits”
[5] http://www.embedded.com/showArticle.jhtml?articleID=55301875

http://www.trapkit.de/research/vmm/scoopydoo/scoopy_doo.htm
http://www.invisiblethings.org/papers/redpill.html
http://www.embedded.com/showArticle.jhtml?articleID=55301875

Appendix A: Code

#include <stdio.h>

inline int idtCheck ()
{
 unsigned char m[6];

 __asm sidt m;
 printf("IDTR: %2.2x %2.2x %2.2x %2.2x %2.2x %2.2x\n", m[0], m[1],
m[2], m[3], m[4], m[5]);
 return (m[5]>0xd0) ? 1 : 0;
}

int gdtCheck()
{
 unsigned char m[6];

 __asm sgdt m;
 printf("GDTR: %2.2x %2.2x %2.2x %2.2x %2.2x %2.2x\n", m[0], m[1],
m[2], m[3], m[4], m[5]);
 return (m[5]>0xd0) ? 1 : 0;

}

int ldtCheck()
{
 unsigned char m[6];

 __asm sldt m;
 printf("LDTR: %2.2x %2.2x %2.2x %2.2x %2.2x %2.2x\n", m[0], m[1],
m[2], m[3], m[4], m[5]);
 return (m[0] != 0x00 && m[1] != 0x00) ? 1 : 0;

}

int main(int argc, char * argv[])
{
 idtCheck();
 gdtCheck();
 if (ldtCheck())
 printf("Virtual Machine detected.\n");
 else
 printf("Native machine detected.\n");

 return 0;
}

