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Abstract

We introduce the area of remote physical device finger-
printing, or fingerprinting a physical device, as opposed to
an operating system or class of devices, remotely, and with-
out the fingerprinted device’s known cooperation. We ac-
complish this goal by exploiting small, microscopic devia-
tions in device hardware: clock skews. Our techniques do
not require any modification to the fingerprinted devices.
Our techniques report consistent measurements when the
measurer is thousands of miles, multiple hops, and tens of
milliseconds away from the fingerprinted device, and when
the fingerprinted device is connected to the Internet from
different locations and via different access technologies.
Further, one can apply our passive and semi-passive tech-
niques when the fingerprinted device is behind a NAT or
firewall, and also when the device’s system time is main-
tained via NTP or SNTP. One can use our techniques to
obtain information about whether two devices on the Inter-
net, possibly shifted in time or IP addresses, are actually the
same physical device. Example applications include: com-
puter forensics; tracking, with some probability, a physical
device as it connects to the Internet from different public ac-
cess points; counting the number of devices behind a NAT
even when the devices use constant or random IP IDs; re-
motely probing a block of addresses to determine if the ad-
dresses correspond to virtual hosts, e.g., as part of a virtual
honeynet; and unanonymizing anonymized network traces.

1 Introduction

There are now a number of powerful techniques for re-
mote operating system fingerprinting, i.e., techniques for
remotely determining the operating systems of devices on
the Internet [2, 3, 5, 27]. We push this idea further and in-
troduce the notion of remote physical device fingerprinting,
or remotely fingerprinting a physical device, as opposed to
an operating system or class of devices, without the finger-
printed device’s known cooperation. We accomplish this
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goal to varying degrees of precision by exploiting micro-
scopic deviations in device hardware: clock skews.

CLASSES OF FINGERPRINTING TECHNIQUES. We con-
sider three main classes of remote physical device finger-
printing techniques: passive, active, and semi-passive. The
first two have standard definitions — to apply a passive
fingerprinting technique, the fingerprinter (measurer, at-
tacker, adversary) must be able to observe traffic from the
device (the fingerprintee) that the attacker wishes to finger-
print, whereas to apply an active fingerprinting technique,
the fingerprinter must have the ability to initiate connec-
tions to the fingerprintee. Our third class of techniques,
which we refer to as semi-passive fingerprinting techniques,
assumes that after the fingerprintee initiates a connection,
the fingerprinter has the ability to interact with the finger-
printee over that connection; e.g., the fingerprinter is a web-
site with which the device is communicating, or is an ISP
in the middle capable of modifying packets en route. Each
class of techniques has its own advantages and disadvan-
tages. For example, passive techniques will be completely
undetectable to the fingerprinted device, passive and semi-
passive techniques can be applied even if the fingerprinted
device is behind a NAT or firewall, and semi-passive and
active techniques can potentially be applied over longer pe-
riods of time; e.g., after a laptop connects to a website and
the connection terminates, the website can still continue to
run active measurements.

METHODOLOGY. For all our methods, we stress that the
fingerprinter does not require any modification to or co-
operation from the fingerprintee; e.g., we tested our tech-
niques with default Red Hat 9.0, Debian 3.0, FreeBSD
5.2.1, OpenBSD 3.5, OS X 10.3.5 Panther, Windows XP
SP2, and Windows for Pocket PC 2002 installations.! In Ta-
ble 1 we summarize our preferred methods for fingerprint-
ing the most popular operating systems.

Our preferred passive and semi-passive techniques ex-
ploit the fact that most modern TCP stacks implement the

'Our techniques work for the default installs of other versions of these
operating systems; here we just mention the most recent stable versions of
the operating systems that we analyzed.



Technique and section | Class | NTP | Red Hat9.0 | OS X Panther | Windows XP
TCP timestamps, Section 3 passive Yes Yes Yes No
TCP timestamps, Section 3 semi-passive | Yes Yes Yes Yes

ICMP tstamp requests, Section 4 active No Yes No Yes

Table 1. This table summarizes our main clock skew-based physical device fingerprinting techniques.
A “Yes” in the NTP column means that one can use the attack regardless of whether the fingerprintee
maintains its system time with NTP [19]. One can use passive and semi-passive techniques when
the fingerprintee is behind a NAT or current generation firewall.

TCP timestamps option from RFC 1323 [13] whereby, for
performance purposes, each party in a TCP flow includes
information about its perception of time in each outgoing
packet. A fingerprinter can use the information contained
within the TCP headers to estimate a device’s clock skew
and thereby fingerprint a physical device. We stress that
one can use our TCP timestamps-based method even when
the fingerprintee’s system time is maintained via NTP [19].
While most modern operating systems enable the TCP
timestamps option by default, Windows 2000 and XP ma-
chines do not. Therefore, we developed a trick, which in-
volves an intentional violation of RFC 1323 on the part of
a semi-passive or active adversary, to convince Microsoft
Windows 2000 and XP machines to use the TCP times-
tamps option in Windows-initiated flows. In addition to
our TCP timestamps-based approach, we consider passive
fingerprinting techniques that exploit the difference in time
between how often other periodic activities are supposed to
occur and how often they actually occur, and we show how
one might use a Fourier transform on packet arrival times
to infer a device’s clock skew. Since we believe that our
TCP timestamps-based approach is currently our most gen-
eral passive technique, we focus on the TCP timestamps
approach in this paper.

An active adversary could also exploit the ICMP proto-
col to fingerprint a physical device. Namely, an active ad-
versary could issue ICMP Timestamp Request messages to
the fingerprintee and record a trace of the resulting ICMP
Timestamp Reply messages. If the fingerprintee does not
maintain its system time via NTP or does so only infre-
quently and if the fingerprintee replies to ICMP Timestamp
Requests, then an adversary analyzing the resulting ICMP
Timestamp Reply messages will be able to estimate the fin-
gerprintee’s system time clock skew. Default Red Hat 9.0,
Debian 3.0, FreeBSD 5.2.1, OpenBSD 3.5, and Windows
2000 and XP and Pocket PC 2002 installations all satisfy
the above preconditions.

PARAMETERS OF INVESTIGATION. Toward developing the
area of remote physical device fingerprinting via remote
clock skew estimation, we must address the following set
of interrelated questions:

(1) For what operating systems are our remote clock skew
estimation techniques applicable?

(2) Whatis the distribution of clock skews across multiple
fingerprintees? And what is the resolution of our clock
skew estimation techniques? (I.e., can one expect two
machines to have measurably different clock skews?)

(3) For a single fingerprintee, can one expect the clock
skew estimate of that fingerprintee to be relatively
constant over long periods of time, and through re-
boots, power cycles, and periods of down time?

(4) What are the effects of a fingerprintee’s access tech-
nology (e.g., wireless, wired, dialup, cable modem)
on the clock skew estimates for the device?

(5) How are the clock skew estimates affected by the dis-
tance between the fingerprinter and the fingerprintee?

(6) Are the clock skew estimates independent of the fin-
gerprinter? Le., when multiple fingerprinters are mea-
suring a single fingerprintee at the same time, will they
all output (approximately) the same skew estimates?

(7) How much data do we need to be able to remotely
make accurate clock skew estimates?

Question (6) is applicable because common fingerprinters
will probably use NTP-based time synchronization when
capturing packets, as opposed to more precise CDMA- or
GPS-synchronized timestamps. Answers to the above ques-
tions will help determine the efficacy of our physical device
fingerprinting techniques.

EXPERIMENTS AND HIGH-LEVEL RESULTS. To under-
stand and refine our techniques, we conducted experiments
with machines that we controlled and that ran a variety of
operating systems, including popular Linux, BSD, and Mi-
crosoft distributions. In all cases we found that we could
use at least one of our techniques to estimate clock skews
of the machines, and that we required only a small amount
of data, though the exact data requirements depended on the
operating system in question. For the most popular operat-
ing systems, we observed that when the system did not use
NTP- or SNTP-based time synchronization, then the TCP
timestamps-based and the ICMP-based techniques yielded



approximately the same skew estimates. This result, cou-
pled with details that we describe in the body, motivated
us to use the TCP timestamps-based method in most of our
experiments. We survey some of our experiments here.

To understand the effects of topology and access tech-
nology on our skew estimates, we fixed the location of the
fingerprinter and applied our TCP timestamps-based tech-
nique to a single laptop in multiple locations, on both North
American coasts, from wired, wireless, and dialup loca-
tions, and from home, business, and campus environments
(Table 3). All clock skew estimates for the laptop were
close — the difference between the maximum and the min-
imum skew estimate was only 0.67 ppm. We also simul-
taneously measured the clock skew of the laptop and an-
other machine from multiple PlanetLab nodes throughout
the world, as well as from a machine of our own with a
CDMA-synchronized Dag card [1, 9, 11, 17] for taking net-
work traces with precise timestamps (Table 4). With the ex-
ception of the measurements taken by a PlanetLab machine
in India (over 300 ms round trip time away), for each exper-
iment, all the fingerprinters (in North America, Europe, and
Asia) reported skew estimates within only 0.56 ppm of each
other. These experiments suggest that, except for extreme
cases, the results of our clock skew estimation techniques
are independent of access technology and topology.

Toward understanding the distribution of clock skews
across machines, we applied the TCP timestamps technique
to the devices in a trace collected on one of the U.S.’s Tier 1
OC-48 links (Figure 2). We also measured the clock skews
of 69 (seemingly) identical Windows XP SP1 machines in
one of our institution’s undergraduate computing facilities
(Figure 3). The latter experiment, which ran for 38 days,
as well as other experiments, show that the clock skew es-
timates for any given machine are approximately constant
over time, but that different machines have detectably dif-
ferent clock skews. Lastly, we use the results of these and
other experiments to argue that the amount of data (packets
and duration of data) necessary to perform our skew estima-
tion techniques is low, though we do not perform a rigorous
analysis of exactly what “low” means.

APPLICATIONS AND ADDITIONAL EXPERIMENTS. To test
the applicability of our techniques, we applied our tech-
niques to a honeyd [24] virtual honeynet consisting of 100
virtual Linux 2.4.18 hosts and 100 virtual Windows XP SP1
hosts. Our experiments showed with overwhelming proba-
bility that the TCP flows and ICMP timestamp responses
were all handled by a single machine as opposed to 200
different machines. We also applied our techniques to a
network of five virtual machines running under VMware
Workstation [4] on a single machine. In this case, the clock
skew estimates of the virtual machines are significantly dif-
ferent from what one would expect from real machines (the
skews were large and not constant over time; Figure 5). An

application of our techniques, or natural extensions, might
therefore be to remotely detect virtual honeynets.

Another applications of our techniques is to count the
number of hosts behind a NAT, even if those hosts use ran-
dom or constant IP IDs to counter Bellovin’s attack [7],
even if all the hosts run the same operating system, and even
if not all of the hosts are up at the same time. Furthermore,
when both our techniques and Bellovin’s techniques are ap-
plicable, we expect our approach to provide a much higher
degree of resolution. One could also use our techniques for
forensics purposes, e.g., to argue whether or not a given lap-
top was connected to the Internet from a given access loca-
tion. One could also use our techniques to help track laptops
as they move, perhaps as part of a Carnivore-like project
(here we envision our skew estimates as one important com-
ponent of the tracking; other components could be informa-
tion gleaned from existing operating system fingerprinting
techniques, usage characteristics, and other heuristics). One
can also use our techniques to catalyze the unanonymization
of prefix-preserving anonymized network traces [28, 29].

BACKGROUND AND RELATED WORK. It has long been
known that seemingly identical computers can have dis-
parate clock skews. The NTP [19] specification describes
a method for reducing the clock skews of devices’ sys-
tem clocks, though over short periods of time an NTP-
synchronized machine may still have slight clock skew. In
1998 Paxson [22] initiated a line of research geared toward
eliminating clock skew from network measurements, and
one of the algorithms we use is based on a descendent of
the Paxson paper by Moon, Skelly, and Towsley [20]. Fur-
ther afield, though still related to clock skews, Pasztor and
Veitch [21] have created a software clock on a commod-
ity PC with high accuracy and small clock skew. One fun-
damental difference between our work and previous work
is our goal: whereas all previous works focus on creat-
ing methods for eliminating the effects of clock skews, our
work exploits and capitalizes on the effects of clock skews.

Anagnostakis et. al. [6] use ICMP Timestamp Requests
to study router queuing delays. It is well known that a net-
work card’s MAC address is supposed to be unique and
therefore could serve as a fingerprint of a device assum-
ing that the adversary can observe the device’s MAC ad-
dress and that the owner of the card has not changed the
MAC address. The main advantage of our techniques over
a MAC address-based approach is that our techniques are
mountable by adversaries thousands of miles and multiple
hops away. One could also use cookies or any other per-
sistent data to track a physical device, but such persistent
data may not always be available to an adversary, perhaps
because the user is privacy-conscious and tries to minimize
storage and transmission of such data, or because the user
never communicates that data unencrypted.

See [15] for the full version of this paper.



2 Clocks and clock skews

When discussing clocks and clock skews, we build on
the nomenclature from the NTP specification [19] and from
Paxson [22]. A clock C is designed to represent the amount
of time that has passed since some initial time i[C]. Clock
C’s resolution, r[C], is the smallest unit by which the clock
can be incremented, and we refer to each such increment
as a ftick. A resolution of 10 ms means that the clock is de-
signed to have 10 ms granularity, not that the clock is always
incremented exactly every 10 ms. Clock C’s intended fre-
quency, Hz[C], is the inverse of its resolution; e.g., a clock
with 10 ms granularity is designed to run at 100 Hz. For
all ¢ > i[C], let R[C](¢) denote the time reported by clock
C at time t, where ¢ denotes the true time as defined by
national standards. The offset of clock C, off[C], is the dif-
ference between the time reported by C and the true time,
i.e., off[C](¢) = R[C](¢) — t for all ¢ > i[C]. A clock’s
skew, s[C], is the first derivative of its offset with respect to
time, where we assume for simplicity of notation that R[C]
is a differentiable function in . We report skew estimates in
microseconds per second (us/s) or, equivalently, parts per
million (ppm). As we shall show, and as others have also
concluded [22, 20, 26], it is often reasonable to assume that
a clock’s skew is constant. When the clock in question is
clear from context, we shall remove the parameter C from
our notation; e.g., s[C] becomes s.

A given device can have multiple, possibly independent,
clocks. For remote physical device fingerprinting, we ex-
ploit two different clocks: the clock corresponding to a de-
vice’s system time, and a clock internal to a device’s TCP
network stack, which we call the device’s TCP timestamps
option clock or TSopt clock. We do not consider the hard-
ware bases for these clocks here since our focus is not on
understanding why these clocks have skews, but on exploit-
ing the fact these clocks can have measurable skews on pop-
ular current-generation systems.

THE SYSTEM CLOCK. To most users of a computer sys-
tem, the most visible clock is the device’s system clock,
Csys. Which is designed to record the amount of time since
00:00:00 UTC, January 1, 1970. Although the system
clocks on professionally administered machines are often
approximately synchronized with true time via NTP [19]
or, less accurately, via SNTP [18], we stress that it is much
less likely for the system clocks on non-professionally man-
aged machines to be externally synchronized. This lack of
synchronization is because the default installations of most
of the popular operating systems that we tested do not syn-
chronize the hosts’ system clocks with true time or, if they
do, they do so only infrequently. For example, default Win-
dows XP Professional installations only synchronize their
system times with Microsoft’s NTP server when they boot
and once a week thereafter. Default Red Hat 9.0 Linux

installations do not use NTP by default, though they do
present the user with the option of entering an NTP server.
Default Debian 3.0, FreeBSD 5.2.1, and OpenBSD 3.5 sys-
tems, at least under the configurations that we selected (e.g.,
“typical user”), do not even present the user with the op-
tion of installing ntpd. For such a non-professionally-
administered machine, if an adversary can learn the values
of the machine’s system clock at multiple points in time,
the adversary will be able to infer information about the de-
vice’s system clock skew, s[Csys].

THE TCP TIMESTAMPS OPTION CLOCK. RFC 1323 [13]
specifies the TCP timestamps option to the TCP protocol.
A TCP flow will use the TCP timestamps option if the net-
work stacks on both ends of the flow implement the option
and if the initiator of the flow includes the option in the
initial SYN packet. All modern operating systems that we
tested implement the TCP timestamps option. Of the sys-
tems we tested, Microsoft Windows 2000 and XP are the
only ones that do not include the TCP timestamps option in
the initial SYN packet (Microsoft Windows Pocket PC 2002
does include the option when initiating TCP flows). In Sec-
tion 3 we introduce a trick for making Windows 2000- and
XP-initiated flows use the TCP timestamps option.

For physical device fingerprinting, the most important
property of the TCP timestamps option is that if a flow uses
the option, then a portion of the header of each TCP packet
in that flow will contain a 32-bit timestamp generated by
the creator of that packet. The RFC does not dictate what
values the timestamps should take, but does say that the
timestamps should be taken from a “virtual clock” that is “at
least approximately proportional to real time [13];” the RFC
1323 PAWS algorithm does stipulate (Section 4.2.2) that the
resolution of this virtual clock be between 1 ms and 1 sec-
ond. We refer to this “virtual clock™ as the device’s TCP
timestamps option clock, or its TSopt clock Cycp. There is no
requirement that a device’s TSopt clock and its system clock
be correlated. Moreover, for popular operating systems like
Windows XP, Linux, and FreeBSD, a device’s TSopt clock
may be unaffected by adjustments to the device’s system
clock via NTP. To sample some popular operating systems,
standard Red Hat 9.0 and Debian 3.0 Linux distributions?
and FreeBSD 5.2.1 machines have TSopt clocks with 10 ms
resolution, OS X Panther and OpenBSD 3.5 machines have
TSopt clocks with 500 ms resolution, and Microsoft Win-
dows 2000, XP, and Pocket PC 2002 systems have TSopt
clocks with 100 ms resolution. Most systems reset their
TSopt clock to zero upon reboot; on these systems i[Cycp)
is the time at which the system booted. If an adversary can
learn the values of a device’s TSopt clock at multiple points
in time, then the adversary may be able to infer information
about the device’s TSopt clock skew, s[Cicp).

2We do not generalize this to all Linux distributions since Knoppix 3.6,
with the 2.6.7 experimental kernel, has 1 ms resolution.



3 Exploiting the TCP Timestamps Option

In this section we consider (1) how an adversary might
obtain samples of a device’s TSopt clock at multiple points
in time and (2) how an adversary could use those samples
to fingerprint a physical device. We assume for now that
there is a one-to-one correspondence between physical de-
vices and IP addresses, and defer to Section 8 a discussion
of how to deal with multiple active hosts behind a NAT; in
this section we do consider NAT's with a single active device
behind them.

THE MEASURER. The measurer can be any entity capable
of observing TCP packets from the fingerprintee, assum-
ing that those packets have the TCP timestamps option en-
abled. The measurer could therefore be the fingerprintee’s
ISP, or any tap in the middle of the network over which
packets from the device travel; e.g., we apply our techniques
to a trace taken on a major Tier 1 ISP’s backbone OC-48
links. The measurer could also be any system with which
the fingerprintee frequently communicates; prime examples
of such systems include a search engine like Google, a news
website, and a click-through ads service that displays con-
tent on a large number of websites. If the measurer is ac-
tive, then the measurer could also be the one to initiate a
TCP flow with the fingerprintee, assuming that the device
is reachable and has an open port. If the measurer is semi-
passive or active, then it could make the flows that it ob-
serves last abnormally long, thereby giving the measurer
samples of the fingerprintee’s clock over extended periods
of time.

A TRICK FOR MEASURING WINDOWS 2000 AND XP MA-
CHINES. We seek the ability to measure TSopt clock skews
of Windows 2000 and XP machines even if those machines
are behind NAT's and firewalls. But, because of the nature of
NATs and firewalls, in these cases we will typically be lim-
ited to analyzing flows initiated by the Windows machines.
Unfortunately, because Windows 2000 and XP machines do
not include the TCP timestamps option in their initial SYN
packets, the TCP timestamps RFC [13] mandates that none
of the subsequent packets in Windows-initiated flows can
include the TCP timestamps option. Thus, assuming that all
parties correctly implement the TCP RFCs, a passive adver-
sary will not be able to exploit the TCP timestamps option
with Windows 2000/XP-initiated flows.

If the adversary is semi-passive, we observe the follow-
ing trick. Assume for simplicity that the adversary is the de-
vice to whom the Windows machine is connecting. After re-
ceiving the initial SYN packet from the Windows machine,
the adversary will reply with a SYN/ACK, but the adversary
will break the RFC 1323 specification and include the TCP
timestamps option in its reply. After receiving such a reply,
our Windows 2000 and XP machines ignored the fact that

they did not include the TCP timestamps option in their ini-
tial SYN packets, and included the TCP timestamps option
in all of their subsequent packets. As an extension, we note
that the adversary does not have to be the device to whom
the Windows machine is connecting. Rather, the adversary
simply needs to be able to mount a “device-in-the-middle”
attack and modify packets such that the Windows machine
receives one with the TCP timestamps option turned on. If
the adversary is the device’s ISP, then the ISP could rewrite
the Windows machine’s initial SYN packets so that they in-
clude the TCP timestamps option. The SYN/ACKs from
the legitimate recipients will therefore have the TCP times-
tamps option enabled and, from that point forward, the Win-
dows machine will include the TCP timestamps option in all
subsequent packets in the flows.

We applied this technique to Windows XP machines on
a residential cable system with a LinkSys Wireless Access
Point and a NAT, as well as to Windows XP SP2 machines
using the default XP SP2 firewall, and to Windows XP SP1
machines with the Windows ZoneAlarm firewall. (While
current firewalls do not detect this trick, it is quite possible
that future firewalls might.)

ESTIMATING THE TSOPT CLOCK SKEW. Let us now as-
sume that an adversary has obtained a trace 7 of TCP pack-
ets from the fingerprintee, and let us assume for simplicity
that all | 7| packets in the trace have the TCP timestamps
option enabled. Toward estimating a device’s TSopt clock
skew s[C;cp] we adopt the following additional notation. Let
t; be the time in seconds at which the measurer observed the
i-th packet in 7" and let 7} be the Cyc, timestamp contained
within the i-th packet. Define

T, = t;—1t
v, = T;—-T
w, = wv;/Hz
Yi = Wi T
Or = {(zyy) ie{l,...,|T|}}.

The unit for w; is seconds; y; is the observed offset of the i-
th packet; O is the the offset-set corresponding to the trace
T. We discuss below how to compute Hz if it is not known
to the measurer in advance. As an example, Figure 1 shows
the offset-sets for two devices in a two-hour trace of traffic
from an Internet backbone OC-48 link on 2004-04-28 (we
omit IP addresses for privacy reasons). Shifting the clocks
by t1 and T} for x; and v; is not necessary for our analysis
but makes plots like in Figure 1 cleaner.

If we could assume that the measurer’s clock is accurate
and that the ¢ values represent true time, and if we could as-
sume that there is no delay between when the fingerprintee
generates the i-th packet and when the measurer records
the i-th packet, then y; = off(xz; 4+ ¢1). Under these as-
sumptions, and if we make the additional assumption that
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Figure 1. TSopt clock offset-sets for two
sources in BBy. Trace recorded on an OC-
48 link of a U.S. Tier 1 ISP, 2004-04-28 19:30—
21:30PDT. The source with the wide band has
a 10 Hz TSopt clock, the source with the nar-
row band has a 100 Hz TSopt clock. A source
with no clock skew would have a horizontal
band.

R is differentiable, then the first derivative of y, which is
the slope of the points in O, is the skew s of Ci,. Since
we cannot generally make these assumptions, we are left to
approximate s from the data.

Let us consider plots like those in Figure 1 more closely.
We first observe that the large band corresponds to a device
where the TSopt clock has low resolution (r = 100 ms) and
that the narrow band corresponds to a device with a higher
resolution (r = 10 ms). The width of these bands, and in
particular the wide band, means that if the duration of our
trace is short, we cannot always approximate the slope of
the points in O by computing the slope between any two
points in the set. Moreover, as Paxson and others have noted
in similar contexts [22, 20], variable network delay renders
simple linear regression insufficient. Consequently, to ap-
proximate the the skew s from O7, we borrow a linear pro-
gramming solution from Moon, Skelly, and Towsley [20],
which has as its core Graham’s convex hull algorithm on
sorted data [12].

The linear programming solution outputs the equation of
a line aux + B that upper-bounds the set of points O7. We
use an upper bound because network and host delays are all
positive. The slope of the line, «, is our estimate of the clock
skew of Cicp. In detail, the linear programming constraints
for this line are that, for all ¢ € {1,...,|7T|},

OZQCZ-Fﬁ > Yi

which means that the solution must upper-bound all the
points in O7. The linear programming solution then mini-

mizes the average vertical distance of all the points in O
from the line; i.e., the linear programming solution is one
that minimizes the objective function
1 7
T e w).
i=1
Although one can solve the above using standard linear pro-
gramming techniques, as Moon, Skelly, and Towsley [20]
note, there exist techniques to solve linear programming
problems in two variables in linear time [10, 16]. We use
a linear time algorithm in all our computations.
It remains to discuss how to infer Hz if the measurer does
not know it in advance. One solution involves computing
the slope of the points

7= {(xivvi) : 26{177|T|}

and rounding to the nearest integer. One can compute the
slope of this set by adapting the above linear programming
problem to this set.

AN EQUIVALENT VIEW. If A is the slope of the points in
the above set Z, derived using the linear programming al-
gorithm, then one could also approximate the skew of Cip
as A/Hz — 1. This approach is simply a different way of
arriving at the same solution since we can prove that, when
using the linear programming method for slope estimation,
both approaches produce the same skew estimate. We use
the offset-set approach since these sets naturally yield fig-
ures where the skews are clearly visible; e.g., Figure 1.

4 Exploiting ICMP Timestamp Requests

THE MEASURER. To exploit a device’s system time clock
skew, the measurer could be any website with which the fin-
gerprintee communicates, or any other device on the Inter-
net provided that the measurer is capable of issuing ICMP
Timestamp Requests (ICMP message type 13) to the fin-
gerprintee. The measurer must also be capable of record-
ing the fingerprintee’s subsequent ICMP Timestamp Reply
messages (ICMP message type 14). In order for this tech-
nique to be mountable, the primary limitation is that the de-
vice must not be behind a NAT or firewall that filters ICMP.

ESTIMATING THE SYSTEM CLOCK SKEW. Let us now as-
sume that an adversary has obtained a trace 7 of ICMP
Timestamp Reply messages from the fingerprintee. The
ICMP Timestamp Reply messages will contain two 32-bit
values generated by the fingerprintee. The first value is
the time at which the corresponding ICMP Timestamp Re-
quest packet was received, and the second value is the time
at which the ICMP Timestamp Reply was generated; here
time is according to the fingerprintee’s system clock, Cys,
and is reported in milliseconds since midnight UTC. Win-
dows machines report the timestamp in little endian for-



mat, whereas all the other machines that we tested report
the timestamp in big endian notation. The remaining nota-
tion and the method for skew estimation is now identical to
what we presented in Section 3, with two minor exceptions.
First, the adversary does not have to compute Hz since RFC
792 [23] requires that Hz be 1000 (or, if not, that a spe-
cial bit be set to indicate non-compliance). Second, since
the time reported in the ICMP Timestamp Reply is in mil-
liseconds since midnight UTC, we expect the timestamps
reported in the ICMP Timestamp Reply messages to reset
approximately once a day; we adjust the v values accord-
ingly. (The only thing special that our attack exploits about
ICMP is the fact that ICMP has a message type that will
reveal a device’s system time; our techniques would work
equally well with any other protocol that leaks information
about a device’s system or other clock.)

BRIEF COMPARISON WITH TCP TIMESTAMPS. For much
of the rest of this paper, we focus on our TCP timestamps-
based approach for physical device fingerprinting rather
than our ICMP-based approach. This is not because we
consider the ICMP-based approach to be inferior. Rather,
we focus on the TCP timestamps-based approach because
most systems have TSopt clocks that operate at a lower
frequency than the 1000 Hz clocks included in the ICMP
timestamp reply messages. This means that it should re-
quire less data for an active adversary to mount our ICMP
fingerprinting technique than to mount our TCP timestamps
technique. Our positive results for the TCP timestamps-
based fingerprinting techniques imply that the ICMP-based
fingerprinting technique will be effective and will have low
data requirements. Focusing on our TCP timestamps based
approach also allows us to experiment with machines be-
hind NATs and firewalls. We also remark that for popular
operating systems, if a system does not externally synchro-
nize its system time, then the system’s TSopt and system
clocks will be highly correlated (Section 7), which means
that the distribution of system clock skews for machines not
using NTP will be similar to the distribution of TSopt clocks
skews.

5 Distribution and stability of TSopt clock
skew measurements

We now address two fundamental properties that must
hold in order for remote clock skew estimation to be an
effective physical device fingerprinting technique. First,
we show that there is variability in different devices’ clock
skews, meaning that it is reasonable to expect different de-
vices on the Internet to have measurably different clock
skews. Second, we give evidence to suggest that clock
skews, as measured by our techniques, are relatively con-
stant over time. These two facts provide the basis for our

min pkts | min duration total sources with | entropy
per hour per hour sources | stable skews (bits)
(mp) | (md,mins) | (IS (S
0 10 18335 8225 4.87
0 30 13517 6859 5.39
0 50 7246 4120 5.87
500 10 4356 2583 5.99
500 30 4016 2446 6.11
500 50 3368 2104 6.18
2000 10 1730 1116 6.22
2000 30 1629 1077 6.32
2000 50 1489 1009 6.41

Table 2. Entropy estimates from BB-2004-04-
28 when pv = 1 ppm.

use of remote clock skew estimation as a physical device
fingerprinting technique since they imply that an adversary
can gain (sometimes significant) information by applying
our techniques to measure a device’s or set of devices’ clock
skews.

The novelty here is not in claiming that these proper-
ties are true. Indeed, it is well known that different com-
puter systems can have different clock skews, and others
[22, 20, 21, 26] have argued that a given device generally
has a constant clock skew. Rather, the contribution here is
showing that these properties survive our remote clock skew
estimation techniques and, in the case of our analyses of the
distribution of clock skews, measuring the bits of informa-
tion (entropy) a passive adversary might learn by passively
measuring the TSopt clock skews of fingerprintees.

DISTRIBUTION OF CLOCK SKEWS: ANALYSIS OF PAS-
SIVE TRACES. Our first experiment in this section focuses
on understanding the distribution of clock skews across de-
vices as reported by our TCP timestamps-based passive fin-
gerprinting technique. For this experiment we analyzed a
passive trace of traffic in both directions of a major OC-48
link; CAIDA collected the trace between 19:30 and 21:30
PDT on 2004-04-28. Since the OC-48 link runs North-
South, let BBy denote the Northbound trace, and let BBg
denote the Southbound trace (BB stands for backbone).
CAIDA obtained the traces using different Dag [11] cards in
each direction; these cards’ clocks were synchronized with
each other, but not with true time. This latter property does
not affect the following discussion because (1) the clock
skews of the Dag cards appear to be constant and therefore
only shift our skew estimates by a constant amount and (2)
here we are only interested in the general distribution of the
clock skews of the sources in the traces.

Let mp and md be positive integers. For simplicity, fix
BB = BBy or BBs. Also assume for simplicity that BB



only contains TCP packets with the TCP timestamps option
turned on. Recall that the trace BB last for two hours. At
a high-level, our analysis considers the set S of sources in
BB that have > mp packets in both the first and the sec-
ond hours, and where the differences in time between the
source’s first and last packets in each hour are > md min-
utes. If mp and md are large, then the sources in S all gen-
erate a large number of packets, and over a long period of
time.

For each source in S, we apply our clock skew estima-
tion technique from Section 3 to the full trace, the first hour
only, and the second hour only. Let pv be a positive number,
and let S’ be the subset of S corresponding to the sources
whose skew estimates for the full trace, the first hour, and
the second hour are all within pv ppm of each other, and
whose intended frequency Hz is one of the standard val-
ues (1, 2, 10, 100, 512, 1000). If pv is small, then we are
inclined to believe that the skew estimates for the sources
in &’ closely approximate the true skews of the respective
sources. Table 2 shows values of |S| and |S’| for different
values of mp and md and when pv = 1 ppm.

The value |S’|/|S| gives an indication of the ratio of
sources of which we can accurately (within pv ppm) mea-
sure the clock skew. While useful, this value provides little
information about the actual distribution of the clock skew
estimates. Much more (visually) telling are images such as
Figure 2, which shows a histogram of the skew estimates
(for the full two hour trace) for all the sources in S’ when
mp = 2000, md = 50 minutes, and pv = 1 ppm. (The true
histogram may be shifted horizontally based on the clock
skew of the Dag cards, but a horizontal shift does not af-
fect the general shape of the distribution.) Empirically, for
any given values for mp, md, and pv, we can compute the
entropy of the distribution of clock skews. Doing so serves
as a means of gauging how many bits of information an
adversary might learn by passively monitoring a device’s
clock skew, assuming that devices’ clock skews are con-
stant over time, which is something we address later. To
compute the entropy, we consider bins of width pv, and for
each source s in S’, we increment the count of the bin cor-
responding to devices with clock skews similar to the skew
of s (here we use the skew estimate computed over full two
hours). We then allocate another bin of size |S| — |S’|; this
bin counts the number of sources that do not have consis-
tent clock skew measurements. We apply the standard en-
tropy formula [25] to compute the entropy of this distribu-
tion of bins, the results of which appear in the last column
of Table 2. As one might expect, the amount of information
available to an adversary increases as mp and md increase.

Assuming that clock skews are constant over time, our
results suggest that a passive adversary could learn at least
six bits of information about a physical device by applying
our techniques from Section 3. More bits of information
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Figure 2. Histogram of TSopt clock skew es-
timates for sources in BBy. Trace recorded
on an OC-48 link of a U.S. Tier 1 ISP, 2004-04-
28 19:30-21:30PDT. Here mp = 2000 packets,
md = 50 minutes, and pv = 1 ppm.

should be available to an active adversary since an active
adversary might be able to force the fingerprintee to send
packets more frequently or over longer periods of time.

DISTRIBUTION OF CLOCK SKEWS: EXPERIMENTS WITH
A HOMOGENEOUS LAB. One observation on the above
analysis is that we applied it to a wide variety of machines,
which likely ran a wide variety of operating systems. There-
fore, one may wonder whether the distribution shown in
Figure 2 is due to operating system differences or to ac-
tual physical differences on the devices. For example, given
only the above results, it might still be possible to argue
that if we applied our skew estimates to a large number
of (apparently) homogeneous machines, we would get back
approximately the same (i.e., indistinguishable) skew esti-
mates for all of the machines. To address this issue, we con-
ducted an experiment with 69 (apparently) homogeneous
machines in one of UCSD’s undergraduate computing lab-
oratories. All the machines were Micron PCs with 448MHz
Pentium II processors running Microsoft Windows XP Pro-
fessional Service Pack 1. Our measurer, host2, was a
Dell Precision 410 with a 448MHz Pentium III processor
and running Debian 3.0 with a recompiled 2.4.18 kernel;
host2 is located within the University’s computer science
department and is 3 hops and a half a millisecond away from
the machines in the undergraduate laboratory.

To create the requisite trace of TCP packets from these
machines, we repeatedly opened and then closed connec-
tions from host2 to each of these machines. Each open-
then-close resulted in the Windows machines sending two
packets to host2 with the TCP timestamps option turned
on (the Windows machine sent three packets for each flow,



but the TCP timestamp was always zero in the first of these
three packets). Because of our agreement with the admin-
istrators of these machines, we were only able to open and
close connections with these Windows machines at random
intervals between zero and five minutes long. Thus, on av-
erage we would expect to see each machine send host?2
48 TCP packets with the TCP timestamps option turned
on per hour. The experiment lasted for 38 days, begin-
ning at 19:00PDT 2004-09-07 and ending at approximately
20:30PDT 2004-10-15.

Figure 3 shows a plot, similar to Figure 1, for the 69
Micron machines as measured by host2 but sub-sampled
to one out of every two packets. Note that the plot uses
different colors for the observed offsets for different ma-
chines (colors are overloaded). Since the slopes of the sets
of points for a machine corresponds to the machine’s skew,
this figure clearly shows that different machines in the lab
have measurably different clock skews. Thus, we can eas-
ily distinguish some devices by their clock skews (for other
devices, we cannot). Because Windows XP machines re-
set their TSopt clocks to zero when they reboot, some of
the diagonal lines seem to disappear several days into the
figure. Our algorithms handle reboots by recalibrating the
initial observed offset, though this recalibration is not vis-
ible in Figure 3. The time in Figure 3 begins on 8:30PDT
2004-09-10 (Friday) specifically because the administrators
of the lab tend to reboot machines around 8:00PDT, and
beginning the plot on Friday morning means that there are
fewer reboots in the figure. We consider this experiment in
more detail below, where our focus is on the stability of our
clock skew estimates.

STABILITY OF CLOCK SKEWS. We now consider the sta-
bility of the TSopt clock skews for the devices in the above-
mentioned undergraduate laboratory. Consider a single ma-
chine in the laboratory. We divide the trace for this machine
into 12- and 24-hour periods, discarding 12-hour periods
with less than 528 packets from the device, and discarding
24-hour periods with less than 1104 packets from the device
(doing so corresponds to discarding 12-hour periods when
the device is not up for at least approximately 11 hours, and
discarding 24-hour periods that the device is not up for at
least 23 hours). We compute the device’s clock skew for
each non-discarded period, and then compute the difference
between the maximum and minimum estimates for the non-
discarded periods. This value gives us an indication of the
stability of the device’s clock skew.

For 12-hour periods, the maximum difference for a sin-
gle device in the lab ranged between 1.29 ppm and 7.33
ppm, with a mean of 2.28 ppm. For 24-hour periods, the
maximum difference for a single device ranged between
0.01 ppm and 5.32 ppm, with a mean of 0.71 ppm. In-
terestingly, there seems to have been some administrator
function at 8:00PDT on 2004-09-10 that slightly adjusted
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Figure 3. TSopt clock offset-sets for 69
Micron 448MHz Pentium Il machines run-
ning Windows XP Professional SP1. Trace
recorded on host2, three hops away, 2004-
09-10 08:30PDT to 2004-09-14 08:30PDT.

the TSopt clock skews of some of the machines. If we con-
duct the same analysis for the trace beginning at 8:30PDT
2004-09-10 and ending on 2004-10-15, for 24-hour periods,
the range for maximum difference for each device in the lab
dropped to between 0.00 ppm and 4.05 ppm. See [15] for a
detailed table.

The current results strongly support our claim that mod-
ern processors have relatively stable clock skews. More-
over we believe that if the administrators of the lab allowed
us to exchange more packets with the 69 fingerprintees, we
would have found the clock skews to be even more stable.
In Section 6 we apply our clock skew estimates to a single
computer at multiple locations and on multiple dates, and
the skew estimates again are close (Table 3); our results be-
low further support our claim of the stability of clock skews
over time.

6 Access technology-, topology-, and
measurer-independent measurements

Here we consider our experiments which suggest that
clock skew estimates are relatively independent of the fin-
gerprintee’s access technology, the topology between the
fingerprintee and the measurer, and the measurer’s machine.

LAPTOPS IN MULTIPLE LOCATIONS. Our first set of ex-
periments along these lines measures laptop connected to
the Internet via multiple access technologies and locations
(Table 3). For all these experiments, laptop is a Dell Lat-
itude C810 notebook with a 1.133GHz Pentium III Mobile
processor and running a default installation of Red Hat 9.0
(Linux kernel 2.4.20-8). The measurer in all these experi-



Laptop location Start time (PDT) | Duration | Packets | Wireless | NAT Skew est.

San Diego, CA, home cable | 2004-07-09, 22:00 3 hours 181 Yes, WEP | Yes —58.17 ppm
SD Supercomputer Center 2004-07-10, 10:00 | 3 hours 182 Yes No | —58.00 ppm
CSE Dept, UCSD 2004-07-12, 12:00 | 3 hours 180 Yes No | —58.24 ppm
San Diego, CA, home cable | 2004-07-12, 21:00 | 3 hours 180 Yes Yes | —58.21 ppm
Clinton, CT, home cable 2004-07-26, 06:00 | 3 hours 182 No Yes | —58.19 ppm
San Diego, CA, home cable | 2004-09-14, 21:00 | 30 min 1795 Yes Yes | —58.22 ppm
SD Supercomputer Center 2004-09-22, 12:00 | 30 min 1765 Yes Yes | —58.13 ppm
San Diego dialup, 33.6kbps | 2004-10-18, 10:00 | 30 min 1749 No No | —57.57 ppm
SD Public Library 2004-10-18, 14:45 | 30 min 946 Yes Yes | —57.63 ppm

Table 3. TCP timestamps-based skew estimates of 1aptop running Red Hat Linux 9.0 when connected
to host1 from multiple locations and when not running ntpd. The traces were recorded at host1.

ments, host1, is a Dell Precision 340 with a 2GHz Intel
Pentium 4 processor located within the UCSD Computer
Science and Engineering department and running Debian
3.0 with a recompiled 2.4.18 Linux kernel; host1 is also
configured to synchronize its system time with true time via
NTP.

For all experiments, we establish a TCP connection be-
tween laptop and host1, and then exchange TCP pack-
ets over that connection. On host1, we record a trace of
the connection using tcpdump. We then use our tech-
niques from Section 3 to estimate the skew of laptop’s
TSopt clock. As the horizontal line in Table 3 indicates, we
divide our experiments into two sets. In the first set, our ex-
periments last for three hours and exchange one TCP packet
every minute (we do this by performing a sleep (60) on
host1). For the second set of experiments, the connec-
tions last for 30 minutes, and a packet is exchanged at ran-
dom intervals between 0 and 2 seconds, as determined by a
usleep on hostl. With few exceptions, the packets from
laptop are all ACKs with no data.

We conduct experiments when the laptop is connected
to the Internet via residential cable networks on both coasts
(Table 3). For our residential experiments, we use a 802.11b
wireless connection with 128-bit WEP encryption, a stan-
dard (unencrypted) 802.11b wireless connection, and a
standard 10Mbps 10baseT wired connection. We also con-
ducted experiments with our laptop connected to the San
Diego Supercomputer Center’s 802.11b wireless network,
from the UCSD Computer Science and Engineering wire-
less network, and from the San Diego Public Library’s wire-
less network. As the final column in the table shows, the
skew estimates are all within a fraction of a ppm of each
other. (If we subsample the first set of experiments to one
packet every 3 minutes, then the difference between the
skew estimates for any two measurements in the first set
is at most 0.45 ppm.)

PLANETLAB AND TOPOLOGY QUESTIONS. Although the

above results strongly suggest that skew estimates are inde-
pendent of access technology, the above experiments do not
stress-test the topology between the fingerprinter and the
fingerprintee. Therefore, we conducted the following set of
experiments. We selected a set of PlanetLab nodes from
around the world that reported, via ntptrace, approx-
imately accurate system times. We chose PlanetLab ma-
chines located at the University of California at San Diego,
the University of California at Berkeley, the University of
Washington, the University of Toronto (Canada), Prince-
ton (New Jersey), the Massachusetts Institute of Technol-
ogy, the University of Cambridge (UK), ETH (Switzerland),
IIT (India), and Equinix (Singapore). These PlanetLab ma-
chines, along with host1 and (in one case) CAIDA’s test
machine with a CDMA-synchronized Dag card, served as
our fingerprinters. Our fingerprintees were laptop and
host1, where laptop was connected both to the SDSC
wireless and to the CAIDA wired networks.

For each of our experiments, and for each of our cho-
sen PlanetLab nodes, we created a flow between the node
and the fingerprintee. Over each flow our fingerprintee sent
one packet at random intervals between O and 2 seconds;
here the fingerprintee executed usleep with appropriate
parameters. We then recorded the flows on the PlanetLab
machines using plabdump. On hostl we recorded the
corresponding flow using tcpdump. And on the machine
with the Dag card we used Coral [14] (that machine was
only reachable when laptop was connected directly to
CAIDA’s wired network). We then computed the skew us-
ing the techniques from Section 3. The results for 1aptop
are in Table 4. Notice that the skew estimates are in general
within a fraction of a ppm of each other, suggesting that our
skew estimates are independent of topology.

For distance measurements for Table 4, we used tracer-
oute to determine hop count, and then used mean time be-
tween when t cpdump recorded a packet on the measured
device and the time between when plabdump recorded the
packet on the measurer. This distance estimate also includes



laptop, 2004-09-17, 08:00-10:00 PDT | laptop, 2004-10-08, 08:00-10:00 PDT
Measurer Skew estimate Dist. from measurer Skew estimate Dist. from measurer
hostl —58.23 ppm 7 hops, 2.77 ms —58.03 ppm 8 hops, 1.16 ms
San Diego, CA —58.07 ppm 7 hops, 1.21 ms —58.03 ppm 8 hops, 1.15 ms
Berkeley, CA —58.17 ppm 10 hops, 4.02 ms —58.02 ppm 12 hops, 5.06 ms
Seattle, WA —58.15 ppm 8 hops, 14.74 ms —58.01 ppm 9 hops, 15.12 ms
Toronto, Canada —58.31 ppm 16 hops, 44.43 ms
Princeton, NJ —57.97 ppm 13 hops, 37.59 ms —57.91 ppm 14 hops, 36.97 ms
Boston, MA —57.93 ppm 12 hops, 35.82 ms —58.10 ppm 13 hops, 41.09 ms
Cambridge, UK —58.06 ppm 20 hops, 84.19 ms —58.18 ppm 21 hops, 86.45 ms
ETH, Switzerland —58.38 ppm 20 hops, 90.51 ms —58.40 ppm 21 hops, 84.07 ms
IIT, India —59.60 ppm 16 hops, 199.27 ms
Equinix, Singapore | —58.10 ppm 18 hops, 99.50 ms —58.05 ppm 15 hops, 93.55 ms
CAIDA test lab —57.98 ppm 5 hops, 0.24 ms

Table 4. Skew estimates of 1aptop, running Red Hat 9.0 with ntpd, for traces taken simultaneously
at multiple locations. On 2004-09-17 the laptop was connected to the SDSC wireless network, and on
2004-10-08 the laptop was connected to the CAIDA wired network. The Toronto and India lines have
empty cells because the PlanetLab machines at those locations were down during the experiment.
The Boston machine on 2004-10-08 was a different PlanetLab machine than the one on 2004-09-17.
The empty cell for the CAIDA test lab is because the lab is only reachable from CAIDA’s wired network.

the time spent in the application layers on the machines, but
should give a rough estimate of the time it takes packets to
go from the fingerprintee to the measurer.

The results of these experiments suggest that our TSopt
clock skew estimation technique is generally independent
of the topology and distance between the fingerprinter and
the fingerprintee. Furthermore, these results suggest that
our skew estimation technique is independent of the actual
fingerprinter, assuming that the fingerprinter synchronizes
its system time with NTP [19] or something better [26].

7 Effects of operating system, NTP, and spe-
cial cases

OPERATING SYSTEMS AND NTP ON FINGERPRINTEE. In
Table 5 we show skew estimates for the same physical de-
vice, laptop, running both Red Hat 9.0 and Windows XP
SP2, and both with and without NTP-based system clock
synchronization. (For this experiment, laptop sent one
packet to the measurer, host1, at random intervals be-
tween 0 and 2 seconds; laptop was connected to the
SDSC wireless network, and was 7 hops away from host 1;
host1 also sent a ICMP Timestamp Request to laptop
at random intervals between O and 60 seconds.) The ta-
ble shows that, for the listed operating systems, the system
clock and the TSopt clock effectively have the same clock
skew when the device’s system time is not synchronized
with NTP, and that the TSopt clock skew is independent of
whether the device’s system clock is maintained via NTP.

Although not shown in the figure, our experiments with
OpenBSD 3.5 on another machine suggest that the TSopt
clock and system clock on default OpenBSD 3.5 installa-
tions have the same skew (approximately 68 ppm). On the
other hand, at least with this test machine, the TSopt clock
and system clock on a default FreeBSD 5.2.1 system have
different skews (the TSopt clock skew estimate is about the
same as with OpenBSD, but the system clock skew estimate
is approximately 80 ppm). When we turn on ntpd under
FreeBSD 5.2.1, the TSopt clock skew remained unchanged.

POWER OPTIONS FOR LAPTOPS. We also consider how
the clock skews of devices are affected by the power op-
tions of laptops. In the case of Red Hat 9.0, when laptop
is running with the power connected, if we switch to battery
power, there is a brief jump in the TSopt clock offset-set for
the device, and then the device continues to have the same
(within a fraction of a ppm) clock skew. For laptop run-
ning Windows XP SP2, if the laptop is idle from user input
but continues to maintain a TCP flow that we can monitor,
then the TSopt clock skew changes after we switch to bat-
tery power. If we repeat this experiment several times, and
if we boot with only battery power, we find that the clock
skews with battery power are in all cases similar. When
booting with outlet power, the clock skew on 1aptop run-
ning Windows XP initially begins with a large magnitude,
and then stabilizes to a skew like that in Table 5 until we
disconnect the power; the initially large skew may be due
to the laptop recharging its batteries. We have not sam-
pled a large enough set of laptops to determine whether the



Start time

Operating System ‘ NTP

skew estimate skew estimate

(TCP tstamps) | (ICMP tstamps)
2004-09-22, 12:00 PDT Red Hat 9.0 No —58.20 ppm —58.16 ppm
2004-09-17, 08:00 PDT Red Hat 9.0 Yes —58.16 ppm —0.14 ppm
2004-09-22, 21:00 PDT | Windows XP SP2 | No —85.20 ppm —85.42 ppm
2004-09-23, 21:00 PDT | Windows XP SP2 | Yes —84.54 ppm 1.69 ppm

Table 5. Experiments for the same physical device, 1aptop, running different operating systems and
with NTP synchronization both on and off. For all experiments, 1aptop was located on the SDSC
wireless network. Additionally, 1aptop was up for an hour before the Windows measurements.
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Figure 4. TSopt clock offset-sets for 100
honeyd 0.8b Windows XP SP1 virtual hosts.
Start time: 2004-09-19, 23:00PDT; honeyd
running on host3. Points are connected in
this figure to highlight the correlation be-
tween the virtual hosts.

clock skews with battery power are a simple function of the
clock skews with outlet power, though the skews with bat-
tery power seem to be consistent for a single laptop.

8 Applications

We now consider some applications of our techniques,
though we emphasize that our most important results are
the foundations we introduced in the previous sections that
make the following applications possible.

VIRTUALIZATION AND VIRTUAL HONEYNETS. We cre-
ated a honeyd [24] version 0.8b virtual honeynet consist-
ing of 100 Linux 2.4.18 virtual hosts and 100 Windows XP
SP1 virtual hosts. Our server in this experiment, host3,
is identical to host 1, has 1GB of RAM, and maintains its
system time via NTP. We ran honeyd with standard nmap
and xprobe?2 configuration files as input; honeyd used

the information in these files to mimic real Linux and Win-
dows machines. We ran nmap and xprobe2 against the
virtual hosts to verify that nmap and xprobe2 could not
distinguish the virtual hosts from real machines.

We applied our TCP timestamps- and ICMP-based skew
estimation techniques to all 200 virtual hosts. Our fin-
gerprinter in this experiment was on the same local net-
work. We observed several methods for easily distinguish-
ing between honeyd virtual hosts and real machines. First,
we noticed that unlike real Linux and Windows machines,
the virtual hosts always returned ICMP Timestamp Replies
with zero in the transmit timestamp field. Additionally, we
observed that the honeyd Windows XP virtual hosts had
TSopt clocks Cyep with Hz[Cyep] = 2, whereas all of the real
Windows XP machines that we tested had Hz[Cy,] = 10.
The lesson here is that although the nmap and xprobe?2
configuration files provide enough information for the re-
spective programs to effectively fingerprint real operating
systems, the configuration files do not provide enough in-
formation for honeyd to be able to correctly mimic all as-
pects of the Linux and Windows protocol stacks.

Even if honeyd completely mimicked the network
stacks of real Linux 2.4.18 and Windows XP SP1 machines,
we could still use our remote physical device fingerprint-
ing techniques to distinguish between our 200 virtual hosts
and 200 real machines. Our TSopt clock skew estimates for
all 200 virtual hosts were approximately zero and the sys-
tem clock skew estimates for all 200 virtual hosts were ap-
proximately the same positive value. Given our discussion
in Section 5 of the distribution of clock skews, this lack
of variability in clock skews between virtual hosts is not
what one would expect from real machines. Furthermore,
the TSopt and system clocks between all the virtual hosts
of the same operating system were highly correlated; e.g.,
Figure 4 shows the TSopt offset-sets for all 100 Windows
XP SP1 virtual hosts 241 minutes into our experiment. We
communicated our results to the author of honeyd and, in
response, version 1.0 of honeyd randomly assigns TSopt
clock skews to each virtual host using a Gaussian distribu-
tion around the server’s system time. This decision may
affect other components of the system, e.g., if the server



runs ntpd, changes to the server’s system time may appear
as global changes to the distribution of the virtual hosts’
clocks. Version 1.0 of honeyd still issues ICMP Times-
tamp Replies with zero transmit timestamps. Furthermore,
the system clocks on version 1.0 honeyd virtual hosts are
still highly synchronized and are too fast by several orders
of magnitude.

To experiment with real virtualization technologies, we
installed VMware Workstation 4.5.2 on host3, but this
time host3 ran Red Hat 9.0. We then installed five default
copies of Red Hat 9.0 under VMware. We applied our skew
estimation techniques to these five virtual machines, as well
as to host 3. The results show that the five virtual machines
do not have constant (or near constant) clock skews, shown
by the non-linearity of the points in Figure 5. Furthermore,
the magnitude of the clock skews on these virtual machines
is larger than we would expect for physical machines. We
feel confident that these observations and natural extensions
could prove useful in distinguishing virtual honeynets from
real networks.

COUNTING THE NUMBER OF DEVICES BEHIND A NAT.
Another natural application of our techniques is to count the
number of devices behind a NAT. To briefly recall previous
work in this area, Bellovin [7] showed that an adversary
can exploit the IP ID field to count the number of devices
behind a NAT, but his approach is limited in three ways:
(1) the IP ID field is only 16-bits long; (2) recent operating
systems now use constant or random IP ID fields; and (3)
his technique cannot count the total number of devices be-
hind a NAT if not all of them are active at the same time.
Our suggested approach to this problem has two phases.
First, partition the trace into (candidate) sets corresponding
to different sequences of time-dependent TCP timestamps;
creating such a partition is relatively easy to do unless two
machines have approximately the same TSopt clock values
at some point in time, perhaps because the machines booted
at approximately the same time. Then apply our clock skew
estimation techniques to each partition, counting hosts as
unique if they have measurably different clock skews. If two
devices have approximately the same TSopt clock values
at some point in time but have measurably different clock
skews, then one can detect and correct this situation in the
analysis of the partition’s offset-set.

FORENSICS AND TRACKING INDIVIDUAL DEVICES. The
utility of our techniques for forensics purposes follows
closely from our claims (1) that there is variability in the
clock skews between different physical devices (Section 5),
(2) that the clock skew for a single device is approximately
constant over time (Section 5), and (3) that our clock skew
estimates are independent of access technology, topology,
and the measurer (Section 6). For forensics, we anticipate
that our techniques will be most useful when arguing that a
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Figure 5. TSopt clock offset-sets for five
VMware Workstation virtual machines run-
ning Red Hat 9.0, and for the host, host3,
also running Red Hat 9.0. 2004-10-27 17:00-
19:00PDT. The top set of points corresponds
to the TSopt clock offset set for host3.

given device was not involved in a recorded event. With re-
spect to tracking individual devices, we stress that our tech-
niques do not provide unique serial numbers for devices,
but that our skew estimates do provide valuable bits of in-
formation that, when combined with other sources of infor-
mation such as operating system fingerprinting results, can
help track individual devices on the Internet.

UNANONYMIZING ANONYMIZED DATA SETS. It is com-
mon for organizations that provide network traces contain-
ing payload data to anonymize the IP addresses in the traces
using some prefix-preserving anonymization method [28,
29]. If an organization makes available both anonymized
and unanonymized traces from the same link, one can
use our techniques to catalyze the unanonymization of the
anonymized traces. Such a situation is not hypothetical: in
addition to the 2004-04-28 trace that we used in Section 5,
CAIDA took another trace from the same link on 2004-04-
21, but the 2004-04-21 trace included payload data and was
therefore anonymized.

To study how one might use our clock skew estima-
tion techniques to help unanonymize anonymized traces,
on 2005-01-13 and 2005-01-21 CAIDA took two two-hour
traces from a major OC-48 link (the same link from which
CAIDA captured the 2004-04-28 trace). We anonymized
the 2005-01-13 trace and experimented with our ability to
subsequently unanonymize it. Given the value of a de-
vice’s TSopt clock and knowledge of that clock’s intended
frequency Hz, we can compute the approximate uptime of
the device. (Prior to our work, one method for inferring
Hz from a passive trace would be to use a program like



pOf [3].) As a first attempt at unanonymizing the 2005-01-
13 trace, we paired anonymized IP addresses from 2005-
01-13 with IP addresses from 2005-01-21 when our uptime
estimate of a host in 2005-01-21 is eight days higher (plus
or minus five minutes) than the uptime of a host in 2005-01-
13 and when both hosts have the same TTLs and intended
frequencies. Our program produced 4613 pairs of candidate
anonymous to real mappings, of which 2660 (57.66%) were
correct. To reduce the number of false matches, especially
for small uptimes, we modified our program to filter out
pairs that have TSopt clock skews different by more than 3
ppm. We also incorporated our clock skew estimates into
our uptime estimates. These changes reduced the number
of candidate mappings to 2170, of which 1902 (87.65%)
were correct. There are a total of 11862 IP addresses in
both the 2005-01-13 and 2005-01-21 traces that have the
TCP timestamps option enabled. Since the anonymiza-
tion is prefix-preserving, given the candidate mappings one
can begin to unanonymize address blocks. We are un-
aware of any previous discussion of the problems to prefix-
preserving anonymization caused by leaking information
about a source via the TCP timestamps option.

9 Other measurement techniques

Although the techniques we describe above will likely
remain applicable to current generation systems, we suspect
that future generation security systems might try to resist
some of the physical device fingerprinting techniques that
we uncover. In anticipation of these future systems, we con-
sider possible avenues for clock-based physical device fin-
gerprinting when information about a system’s TSopt clock
or system clock is not readily available to an adversary; we
do not consider here but recognize the possibility of finger-
printing techniques that profile other aspects of a device’s
hardware, e.g., processor speed or memory. These direc-
tions assume that new operating systems mask or do not in-
clude the TSopt clock values in the TCP headers and do not
reply to ICMP Timestamp Requests, but that the systems’
underlying clocks still have non-negligible skews. (This as-
sumption may not be valid if, for example, at boot a new op-
erating system does a more precise estimation of the oscilla-
tor frequencies supplying the hardware basis for the clocks.)
The techniques we propose in this section are less refined
than the techniques elsewhere in this paper; we envision
them as starting points for more sophisticated techniques.

FOURIER TRANSFORM. Some systems send packet at 10
or 100 ms intervals, perhaps due to interrupt processing
or other internal operating system feature on one side of
a flow. When this condition holds, we can use the Fourier
transform to extract information about the system’s clock
skew. Figure 6 plots the TSopt clock offset-sets for a de-
vice in BBs with a 2 Hz TSopt clock. The five diagonal
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Figure 6. TSopt clock skew estimate for a
source in BBs. Trace recorded on an OC-48
link of a U.S. Tier 1 ISP, 2004-04-28 19:30—
21:30PDT. TSopt clock skew estimate via lin-
ear programming: 175.2 ppm. Clock skew es-
timate via the Fourier transform: 175.6 ppm.

bands suggests that the machine clusters packet transmis-
sions at approximately 100 ms intervals, and we can use the
Fourier transform on packet arrival times to estimate the fre-
quency at which the device actually transmits packets (here
packet arrival times refers to the times at which the moni-
tor records the packets). For the source shown in Figure 6,
after computing the Fourier transform, the frequency with
the highest amplitude was 25.00439, which implies a skew
of 25.00439/25 — 1, or 175.6 ppm. Moreover the top 19
frequencies output by the Fourier transform all imply skews
between 171.0 ppm and 179.3 ppm. These values are all
close to the 175.2 ppm output by our TCP timestamps-based
approach but do not make any use the TCP timestamps con-
tained with the packets.

Although our Fourier-based technique does not require
knowledge of a device’s TSopt or system clocks, our
Fourier-based solution is currently not automated. This lack
of automation, coupled with the fact that current generation
systems readily relinquish information about their TSopt
and system clocks, means that our Fourier-based solution
is currently less attractive than the techniques we described
in Sections 3 and 4.

PERIODIC USER-LEVEL ACTIVITIES. Toward estimating
the system clock skew of devices that do not synchronize
their system times with NTP, we note that many applica-
tions perform certain operations at semi-regular intervals.
For example, one can configure most mail clients to poll for
new mail every n minutes. As another example, Broido,
Nemeth, and claffy show that some Microsoft Windows
2000 and XP systems access DNS servers at regular inter-



vals [8]. It may be possible to infer information about a
device’s system clock skew by comparing differences be-
tween actual intervals of time between these periodic activ-
ities and what the application intends for those intervals of
time to be.

10 Conclusions

In this study we verified the ability and developed tech-
niques for remote physical device fingerprinting that exploit
the fact that modern computer chips have small yet non-
trivial and remotely detectable clock skews. We showed
how our techniques apply to a number of different practi-
cally useful goals, ranging from remotely distinguishing be-
tween virtual honeynets and real networks to counting the
number of hosts behind a NAT. Although the techniques we
described will likely remain applicable to current generation
systems, we suspect that future generation security systems
might offer countermeasures to resist some of the finger-
printing techniques that we uncover. In anticipation of such
developments, we discussed possible avenues for physical
device fingerprinting when information about a system’s
TSopt clock or system clock are not readily available to the
adversary. Our results compellingly illustrate a fundamental
reason why securing real-world systems is so genuinely dif-
ficult: it is possible to extract security-relevant signals from
data canonically considered to be noise. This aspect renders
perfect security elusive, and even more ominously suggests
that there remain fundamental properties of networks that
we have yet to integrate into our security models.
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