

Security Vulnerabilities in Java SE

Technical Report

Ver. 1.0.2

SE-2012-01 Project

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

INTRODUCTION

Java has been within our interest for nearly a decade. We've been breaking it with successes

since 2002 and are truly passionate about it. Regardless of the many changes that had

occurred in the Rich Internet Application's1 space, Java is still present in the vast number of

desktop computers. According to some published data2, Java is installed on 1.1 billion

desktops and there are 930 million Java Runtime Environment downloads each year. These

numbers speak for themselves and it's actually hard to ignore Java when it comes to the

security of PC computers these days.

Java is also one of the most exciting and difficult to break technologies we have ever met

with. Contrary to the common belief, it is not so easy to break Java. For a reliable, non

memory corruption based exploit codes, usually more than one issue needs to be combined

together to achieve a full JVM sandbox compromise. This alone is both challenging and

demanding as it usually requires a deep knowledge of a Java VM implementation and the

tricks that can be used to break its security.

The primary goal of this paper is to present the results of a security research project

(codenamed SE-2012-013) that aimed to verify the state of Java SE security in 2012.

Although, it includes information about new vulnerabilities and exploitation techniques, it

relies on the results obtained and reported to the vendor4 back in 2005. The techniques and

exploitation scenarios discovered seven years ago are still valid for Java. What’s even more

surprising is that multiple new instances of certain type of vulnerabilities could be found in

the latest 7th incarnation of Java SE software.

The other goal of this paper is to educate users, developers and possibly vendors about

security risks associated with certain Java APIs. We also want to show the tricky nature of

Java security.

In the first part of this paper, quick introduction to Java VM security architecture and model

will be made. It will be followed by a brief description of Reflection API, its implementation

and shortcomings being the result of certain design / implementation choices. We will

discuss in a detail the possibilities for abuse Reflection API creates.

The second part of the paper will present exploitation techniques and vulnerabilities found

during SE-2012-01 project. We will show how single and quite innocent looking Java security

breaches can lead to serious, full-blown compromises of a Java security sandbox. Technical

details of sample (most interesting) vulnerabilities that were found during SE-2012-01

research project will be also presented. The paper will wrap up with a few summary words

regarding security of Java technology and its future.

1 Rich Internet application http://en.wikipedia.org/wiki/Rich_Internet_application
2 Learn About Java Technology http://www.java.com/en/about/
3 SE-2012-01 Security Vulnerabilities In Java SE http://www.security-explorations.com/en/SE-2012-01.html
4 In 2005, this was Sun Microsystems which was acquired by Oracle corporation in 2010

http://en.wikipedia.org/wiki/Rich_Internet_application
http://www.java.com/en/about/
http://www.security-explorations.com/en/SE-2012-01.html

1. JAVA SECURITY ARCHITECTURE

Java language was invented over 20 years5. What’s interesting and worth mentioning is that

it was originally designed with a security in mind. The goal of Java was to provide an

ubiquitous programming and secure execution environment for running untrusted, mobile

code (Java programs). Below, we summarize the most important security features of the

language.

1.1 JAVA SECURITY FEATURES

Java is an object oriented programming language. Java classes can form hierarchies by the

means of inheritance. Contrary to the generic class inheritance model, in Java a given class

can inherit from only one class (it can have only one superclass). The class can however

implement multiple interfaces.

Classes and interfaces define fields and methods. Access to them is maintained with the use

of access scope modifiers. These modifiers allow defining the security and visibility of code

and data with respect to other classes.

There are four possible access modifiers that allow configuring access security in Java.

These are private, protected, public and default (package) access scope modifiers. They can

be applied at classes, methods and fields level.

Access security is not what decides about the strength of Java security. Java is a type-safe

language and it follows strict rules when it comes to operations on objects of different types.

The goal of this is to implement a fundamental security property of Java, which is a

memory-safety. No Java program can be considered secure without making sure that illegal

memory accesses are not allowed in it. Programs that are not memory-safe can easily lead

to security violation of Java access scope modifiers. Such programs can access fields and

methods of arbitrary classes regardless of their defined access. All that is required for an

attacker to break Java memory safety is to accomplish a forbidden cast operation, let’s say

from a TrustedClass to some EvilClass: If TrustedClass hides some secrets in a form of fields

or methods with a private access scope modifier, all that is required to gain access to them

is to clone the layout of these methods and fields in the EvilClass: After successful cast,

during runtime, access to protected fields and methods of TustedClass will be done. The

reason for it is because Java runtime usually accesses methods and fields of arbitrary object

instances by the means of methods table indices or fields offsets corresponding to a given

target type and with respect to current object instance (this reference).

Garbage Collection is the other feature of Java that helps maintain memory safety of its

programs. In Java, programmers deal with abstract references denoting objects instances of

arbitrary classes instead of pointers. Direct operations on memory pointers are forbidden.

This is the Java runtime that transforms object operations to memory pointer operations.

This includes object access operations, but also memory allocation and freeing. In Java,

while there exists a primitive to allocate an object instance by the means of new bytecode

instruction (opcode 0xbb), there is no direct way for the user to conduct a corresponding

5 Java (programming language) http://en.wikipedia.org/wiki/Java_%28programming_language%29

http://en.wikipedia.org/wiki/Java_%28programming_language%29

free operation6. This does not mean that a memory for objects that were allocated and are

not used any more cannot be reclaimed. The proper memory reclaiming is done by the

Garbage Collector, but its actual work is not visible to the user. Garbage Collector keeps

tracks of all Java objects that are allocated and in use by a Java program. Those that are

not in use any more are simply disposed. Garbage Collector prevents from insecure memory

related operations that could lead to the abuse of Java memory safety property. This in

particular includes all vulnerabilities that could lead to arbitrary sharing of memory between

the objects of two different (incompatible) types.

It should be also mentioned that in Java strings are immutable. This means that once a

string object is created its content cannot be changed any more. Strings are quite important

in Java – they can represent the names of resources and URLs in particular. One can

imagine an attack where a content of a given string passes a security check and is later

modified by an attacker, so that access to a completely different resource could be gained

(time of check, time of use attack).

Internal representation of Java strings also prevents from the risks associated with string

related operations known from the world of the C language. In Java, strings do not end with

the infamous 0x00 ASCII character. They are always encoded with the use UTF-8 coding

scheme and the length of the string is part of the internal string representation.

Finally, in Java all array accesses are subject to several runtime checks. One of them verifies

the type of the object to be stored into the given Java array. Other runtime checks always

detects whether the target index to store a given element at is within the allowed range of

indices (no underflow / overflow).

1.2 JAVA VM COMPONENTS

Java runtime has a form of an abstract Java Virtual Machine of which goal is to provide a

secure execution environment for Java programs. Java Virtual Machine is composed of

several components as illustrated in Fig. 1. Those of a critical nature to the security of a Java

VM environment are denoted below:

 Class Loaders

 Bytecode Verifier

 Security Manager

 JVM Runtime

- Execution engine

- Classes definition (Java / native code)

 OSR compiler

 Garbage Collector

We briefly describe only selected components, which are crucial for better understanding of

the attacks outlined further in this paper.

1.2.1 Class loaders

6 Users can still force Garbage Collector work by the means of calls to runFinalization method of

java.lang.Runtime class or gc method of java.lang.System class.

Class Loaders are special Java objects that always inherit from java.lang.ClassLoader

class or its subclass. They provide Java Virtual Machine with Java programs to execute.

These programs have a form of Class files, which may come from arbitrary locations such as

remote hosts or local file system. Class Loader location denoting a base source of classes is

called a codebase.

Figure 1. Java Virtual Machine security architecture.

Multiple Class files being part of a given Java application can be packaged in a form of ZIP

or JAR files. They can be also cryptographically signed in order to verify the authenticity of

the application and its provider.

Class Loader objects implements several security critical methods. This includes the

following:

- protected Class findClass(String name)

This method is invoked whenever a definition of a target class name is not found in

the Java VM and when an attempt is made to load it from some external location.

- public Class loadClass(String name)

protected Class loadClass(String name, boolean resolve)

This are the base methods that allows to load a given class (denoted by the name

argument) to VM. The returned object is the instance of java.lang.Class class,

which is a Java representation of VM classes. The second form of loadClass

method contains additional argument that specifies whether class resolving (linking)

should take place.

- protected final Class defineClass(String name, byte body[],

int off, int size, ProtectionDomain protectiondomain)

This method is invoked whenever a given class (denoted by the name argument) is

to be defined in the VM. The body argument holds the Class bytes to define. The

protectiondomain argument will be discussed further in this document. It is sufficient

to say that it denotes the permissions of a defined class.

The abovementioned methods are not accessible to untrusted code, except one argument

loadClass() method.

Class Loader objects are quite powerful. They provide class definitions to the VM. They can

specify permissions for loaded classes. Finally, they can also load native libraries into Java

VM. These are just a few of the many reasons behind the requirement for the possession of

a proper security privilege designating Class Loader creation. The checks for this privilege

are implemented in ClassLoader instance initialization method (<init>).

Class Loaders provide the means to dynamically resolve unknown classes. With respect to

this, their role in Java VM is similar to dynamic linkers’ role in Unix.

In order to understand the class resolving process in Java VM, one needs to be aware that

Class Loaders can form complex hierarchies too. They can delegate a Class loading process

to the so called parent Class Loader. What this means is that a caller of the loadClass()

method does not necessarily be the same as the caller of defineClass() method. This is

how we come to the concept of defining class loader. The Class Loader calling

defineClass method is a given class’ defining class loader. Whenever there is a need to

resolve (load) an unknown class referenced from let’s say class A, this is the loadClass()

method of class A’s defining class loader that will be called for assistance. The assumption is

that any class referenced by a given class is likely to come from the same location as the

class that refers it.

Classes defined by a given Class Loader instance denote its namespace. Since, multiple

Class Loader instances can coexist in one Java VM, this implicates the existence of multiple

Class Loader namespaces. This also creates a risk of a class spoofing attack relying on the

possibility to define a Class with the same name in two different Class Loader namespaces.

Class Loader constraints detect conflicts (spoofed classes) between classes defined in two

different namespaces. They are enforced during field / method resolution occurring across

different Class Loader namespaces.

What’s important for further topics discussed in this paper is that a NULL Class Loader value

designates a trusted, bootstrap class loader. All system classes, such as those coming from

rt.jar file are defined in this namespace.

Also, a package (default) based access to classes, fields and methods is guarded at the class

loader namespace level. In order to gain access to a class with default (package) access, the

following two conditions need to be fulfilled:

- the package name of a requesting class needs to be the same as the package name

of a target class,

- both classes need to be defined in the same Class Loader namespace.

The above makes package based access one of the strongest among Java access scope

modifiers. In order to beat it, an attacker needs to achieve a compromise through Class

Loader or Class Loader constraints. In our opinion, that is sufficiently challenging itself.

1.2.2 Bytecode Verifier

Bytecode Verifier is the primary gatekeeper of Java VM security. This component is called

during class loading process. It makes sure that a given sequence of bytes provided to the

defineClass() method of Class Loader conforms to the Class file format. It also verifies

the integrity and safety of bytecode instruction streams embedded in a Class definition.

Bytecode Verifier works in multiple passes during which it verifies VM constraints defined in

Java Virtual Machine Specification. This is the Bytecode Verifier that verifies the type-safety

of a target Java code. Any attempt to conduct an illegal type-cast from integer to object or

vice-versa should be detected by this VM component.

Bytecode Verifier conducts a static analysis of a target bytecode instruction stream. It does

this work by emulating the effect of a target instruction to the content of Java VM state, but

solely with respect to the type information held in registers and on the stack. In the past,

Bytecode Verifier algorithm inferenced all type information during the analysis of bytecode

instruction flow.

Starting, from Java SE 6 and above, there is a new rewritten implementation of Bytecode

Verifier that uses a split bytecode verification process upon Eva Rose’s Lightweight Bytecode

Verification thesis.

1.2.3 Security Manager

Security Manager verifies and authorizes all security sensitive operations in a given VM

environment. Security Manager objects are instances of java.lang.SecurityManager

class or its subclass. There is one special object in each Java VM environment that denotes

the Security Manager. A reference to it can be obtained by calling

getSecurityManager() method of java.lang.System class. This is the reference

that’s stored in a private static security field of this class.

Security Manager implements security checks verifying for the permissions required prior to

conducting a given security sensitive operation. Its sample invocation is illustrated by Fig. 2.

Figure 2. Sample invocation of Security Manager’s check.

The absence of Security Manager is indicated by its null value. In such a case, no security

checks are in place and Java program can run without any restrictions in a target Java VM

environment.

The possibility to create an instance of a Security Manager does not lead to a direct

compromise of VM security. The reason for it is that this is the security field of

java.lang.System class that matters - it holds a reference to the Security Manager,

which is in use by the environment.

Security Manager verifies whether a target class has specific permissions required for a

given security sensitive operation. Java permissions are instances of

java.security.Permission class or its subclasses.

Java SE has dedicated permissions for specific operations, such as network access, file

system access, native library loading, specific API access, restricted package access,

program execution, etc. There is also one special permission object that denotes ROOT

privileges in Java. This is AllPermission permission.

It should be noted that many single permissions can be easily elevated to AllPermission.

This includes, but is not limited to the following permissions: createClassLoader,

accessClassInPackage.sun, setSecurityManager, suppressAccessChecks.

It was already mentioned that defineClass() method of ClassLoader class can be

used to provide Java VM with both Class definition and its permissions. The permissions that

are used for the call are not provided in a direct form, but are encapsulated inside a

Protection Domain object. The reason for it is because each class loaded into VM is defined

in a specific Protection Domain (instance of java.security.ProtectionDomain class).

Same Protection Domain (PD) is assigned to classes that come from the same location

(CodeSource) and that share both a Class loader instance and a set of Permissions

(permissions assigned to classes by this PD). Sample protection domain is illustrated on Fig.

3.

Figure 3. Sample Protection Domain of untrusted Java Applet application.

As this was the case for Class Loaders, null value of Protection Domain also has a special

meaning. It indicates a privileged, system code (the one coming from a bootstrap

classpath).

1.3 JAVA SECURITY MODEL

Oracle’s Java SE implementation is based on a security model utilizing stack inspection with

scopes described in Understanding Java Stack Inspection paper by Dan S. Wallach and

Edward W. Felten. This security model was first introduced to Netscape 4.x web browsers.

Although, Java stack inspection used in Netscape was completely broken7, the idea still

deserves a credit as being extremely clever and powerful.

In short, Java stack inspection is a mechanism that allows either verifying or enabling class’

permissions. In this model, permissions granted to the class are not in effect till proper

construct is used that actually enables them. Granted permissions can be enabled only for a

specific, implicitly denoted code scope. This code scope has a form of a stack frame.

Enabling class permissions requires proper marking of a privileged code scope (its start) on

a call stack. In case of Java SE, a call to the doPrivileged method of

java.security.AccessController class is responsible for doing this. This call asserts

a special, privileged frame into a call stack and executes run() method of the

PrivilegedAction (or PrivilegedExceptionAction) object provided as an

argument to the doPrivileged method call. This mechanism is illustrated on Fig. 4.

Figure 4. Example privileged operation in Java.

Java stack inspection mechanism makes it impossible to abuse target system’s security by

the means of arbitrary injection of a stack frame belonging to untrusted code inside a

privileged code block (scope). The reason for it is simple. Security Manager’s check methods

verify permissions of all the classes from a current scope (call stack). Stack frames are

inspected until either the end of a call stack or a special (privileged) frame is reached. The

permission check will succeed only if all classes from a current code scope have a given

permission granted. In the case of encountering an unprivileged stack frame, security

exception is thrown. The operation of this mechanism is illustrated on Fig. 5.

7 Full sandbox bypass exploit for all Netscape 4.x versions was developed in 2002, though it was never
published.

Figure 5. Java stack inspection in action.

The implementation of Java stack inspection requires that during runtime, it is possible to

identify permissions of a given stack frame. This is accomplished by inspecting permissions

of a class declaring a called method. In a case when an unprivileged class inherits from a

privileged one and the class does not overload the method that is to be called and that is

pushed onto the call stack, this will be the privileged class that will be the subject of a

permission check, not the untrusted class.

1. 4 PACKAGE ACCESS RESTRICTIONS

Oracle Java SE security model implements additional isolation of classes at the package

level. There are many runtime classes that implement potentially dangerous functionality

related to security, reflection, deployment and instrumentation in particular. Granting access

to these packages might result in a Java VM compromise.

Oracle Java SE implements and enforces package access restriction in various runtime

locations. This includes Class Loaders and Security Manager in particular.

Security Manager contains checkPackageAccess method verifying whether a given

package name is on the list of restricted packages. The list of restricted packages is defined

in java.security file as package.access property. Some of restricted packages

include: sun, com.sun.xml.internal.ws, com.sun.xml.internal.bind and

com.sun.imageio.

Many Class Loaders contain proper checks verifying access to restricted packages in their

loadClass() methods. This check usually has the form similar to the one denoted on Fig.

6.

Figure 6. Most common implementation of a check for access to a restricted class.

What’s worth mentioning is that in the past, many Class Loaders could be tricked into

loading restricted classes. All that was required to accomplish that was a class name

denoting an array of classes and using internal Java VM representation such as

[Lsun.misc.Unsafe; (array of sun.misc.Unsafe class).

One of the most interesting locations where a security check for package access is enforced

is the checkPackageAccess method of java.lang.ClassLoader class. This method is

called internally by the Java VM at the time of class linking, such as the one occurring

between a class and its superclass. The actual call does not take place every time, but only

when VM detects that a linking is conducted between classes coming from a non-system and

a system class loader namespaces. This corresponds to the scenario when a user class

inherits from or refers to the class from a restricted package defined in a NULL Class Loader

namespace.

2. REFLECTION API

Java Reflection API provides a functionality for dynamic loading of classes, inspection and

use of their members (fields, methods and constructors). The API can be extremely useful

and powerful, especially for a code requiring more dynamic capabilities such as the one of

which execution is driven by input data.

Reflection API allows to deal with references to methods and fields in a similar way this is

done in C/C++ languages. Field values can be queried or modified by the means of

corresponding set and get operations. Similarly, methods can be invoked by the means of

the invocation operation.

This chapter provides brief introduction to both old (Core) and new Reflection APIs, which

are implemented by latest version of Java SE 7 software.

2.1 CORE API

The Core Java Reflection API is implemented by java.lang.Class and the classes from

the java.lang.reflect package. The API allows examining or modifying the runtime

behavior of applications running in Java VM. This includes the following functionality:

 obtaining Class objects,

 examining properties of a class (fields, methods, constructors),

 setting and getting field values,

 invoking methods,

 creating new instances of objects.

Reflection API is implemented by several classes that correspond directly to Java classes and

their members.

The table below provides a summary of the functionality provided by the

java.lang.Class class representing classes and interfaces in a running Java application.

Method name Description
Class forName(String name) Returns the Class object associated with

the class or interface with the given string
name

Class forName(String name,boolean b,ClassLoader cl) Returns the Class object associated with
the class or interface with the given string
name, using the given class loader

Method[] getMethods() Returns an array containing Method objects
reflecting all the public member methods of
the class or interface represented by this
Class object, including those declared by
the class or interface and those inherited

from superclasses and superinterfaces
Method[] getDeclaredMethods() Returns an array of Method objects

reflecting all the methods declared by the
class or interface represented by this Class
object

Method getMethod(String name,Class[] desc) Returns a Method object that reflects the
specified public member method of the class
or interface represented by this Class
object

Method getDeclaredMethod(String name,Class[] desc) Returns a Method object that reflects the
specified declared method of the class or
interface represented by this Class object.

Constructor[] getConstructors() Returns an array containing Constructor
objects reflecting all the public constructors
of the class represented by this Class object

Constructor[] getDeclaredConstructors() Returns an array of Constructor objects
reflecting all the constructors declared by
the class represented by this Class object

Constructor getConstructor(Class[] desc) Returns a Constructor object that reflects
the specified public constructor of the class
represented by this Class object

Constructor getDeclaredConstructor(Class[] desc) Returns a Constructor object that reflects
the specified constructor of the class or
interface represented by this Class object

Field[] getFields() Returns an array containing Field objects
reflecting all the accessible public fields of
the class or interface represented by this
Class object

Field[] getDeclaredFields() Returns an array of Field objects reflecting
all the fields declared by the class or
interface represented by this Class object

Field getField(String name) Returns a Field object that reflects the
specified public member field of the class or
interface represented by this Class object

Field getDeclaredField(String name) Returns a Field object that reflects the
specified declared field of the class or
interface represented by this Class object

Methods of java.lang.Class class can be used to obtain detailed information about

fields, methods and constructors of a given Java class or interface. This includes information

about both public and declared members.

Method objects can be used for arbitrary method invocations. The invoke method

implemented by java.lang.reflect.Method class can be used for that purpose. Its

syntax is presented in a table below.

Method name Description

Object invoke(Object obj,Object[] args) Invokes the underlying method represented by
this Method object, on the specified object with

the specified parameters

Field objects can be used to get or set the value of arbitrary fields. The table below provides

a summary of the functionality provided by the java.lang.reflect.Field class that

represents fields of Java classes or interfaces.

Method name Description

Object get(Object obj) Returns the value of the field represented by this
Field, on the specified object

void set(Object obj,Object val) Sets the field represented by this Field object
on the specified object argument to the specified
new value

boolean getBoolean(Object obj) Gets the value of a static or instance boolean
field

void setBoolean(Object obj,Object val) Sets the value of a field as a boolean on the
specified object

byte getByte(Object obj) Gets the value of a static or instance byte field.
void setByte(Object obj,byte val) Sets the value of a field as a byte on the

specified object.
char getChar(Object obj) Gets the value of a static or instance field of type

char or of another primitive type convertible to
type char via a widening conversion

void setChar(Object obj,char val) Sets the value of a field as a char on the
specified object

int getInt(Object obj) Gets the value of a static or instance field of type
int or of another primitive type convertible to
type int via a widening conversion

void setInt(Object obj,int val) Sets the value of a field as an int on the
specified object

long getLong(Object obj) Gets the value of a static or instance field of type
long or of another primitive type convertible to
type long via a widening conversion

void setLong(Object obj,long val) Sets the value of a field as a long on the
specified object

Constructor objects can be used to create new instances of Java classes. The newInstance

method of java.lang.reflect.Constructor class corresponding to class constructor

can be used for the creation of arbitrary object instances. Its syntax is presented in a table

below.

Method name Description

Object newInstance(Object[] args) Uses the constructor represented by this
Constructor object to create and initialize a
new instance of the constructor's declaring class,
with the specified initialization parameters

Field, Method and Constructor classes inherit from

java.lang.reflect.AccessibleObject class. This class provides a functionality to

override standard Java access scope modifiers by the means of its private field called

override. If the value of this field is set to true operations on class or interface members

are allowed regardless of their Java security protections (access). This is illustrated in Fig. 7.

Figure 7. Override field and its impact to access security checks.

In case of the invoke method implementation, true value of override leads to the bypass

of security check verifying whether a caller class of the method is allowed to access it.

The only way to change the value of the override field is through the invocation of

setAccessible method done inside a privileged code block.

Figure 8. Type confusion condition with the use of Reflection API.

Core Reflection API can be also abused to break memory safety. This can be accomplished

with the use of a type field value of a reflective Field object. It denotes the type (Java

Class) of the underlying field. Proper change to this value may allow setting the value of a

target field to the value of incompatible type. One can imagine a situation where the type of

the field denoting java.lang.Object value is changed to int. In such a case, access to

fields of the object may lead to memory accesses from the base pointer denoted by the

integer value as it will be confused with the object reference. This condition is illustrated in

Fig. 8.

2.2 IMPLEMENTATION

Reflection API implementation needs to take into account the fact that callers of the API

may come from different Class Loader namespaces and that they may request access to

classes and members they should not be allowed to. This in particular includes access to

classes and methods from restricted packages.

For security purposes, all Reflection API calls take the immediate caller’s class loader into

account prior to the dispatching of a given call. This is illustrated in Fig. 9.

Figure 9. Sample use of a caller Class Loader in Reflection API methods.

What can be seen from the figure, the code of sample getMethods() method invokes

security check implemented by checkMemberAccess() method. Class Loader of a caller

class is provided as an argument to this call. The Class Loader is retrieved by the means of

getCallerClassLoader() method of java.lang.ClassLoader class. This method

obtains the Class from a fixed call stack location (at index 3) and returns its defining Class

Loader object. For those who wonder about the value of the index, the following call stack

outline as seen by Reflection.getCallerClass() method should be helpful:

 IDX 0 Reflection.getCallerClass()

 IDX 1 ClassLoader.getCallerClassLoader()

 IDX 2 Class.getMethods()

 IDX 3 Caller Class

Security check implemented by checkMemberAccess() method is illustrated on Fig. 10.

This check takes place only in Java VM environments with Security Manager enabled (non-

null value returned by System.getSecurityManager() call). What’s crucial with respect

to the implementation of checkMemberAccess() method is the fact that a security check

verifying access to restricted packages is skipped if a caller’s Class Loader value comes from

a NULL class loader namespace. This means that Reflection API calls made from system

classes are never subject to this check.

Figure 10. Implementation of checkMemberAccess() method.

Taking into account the nature of the security check relying on a caller class of the

Reflection API call, it’s risky to assume that a caller would be always trusted. There are

dozens of system classes that make use of Reflection API calls, which naturally creates a

potential for the security abuse.

2.3 CORE API ABUSES

Reflection API calls used by system classes take arguments, which in many cases can be

controlled by the user. One can think of at least the following user input forms that might

influence the target reflective method invocation:

 direct user input,

 indirect user input by the means of Java trickery (inheritance / overloading),

 indirection through Reflection API calls such as Method.invoke().

By controlling the arguments to Reflection API calls used by system classes, one can actually

impersonate the trusted caller (system class from NULL Class Loader namespace) of these

invocations. This can further lead to the following abuse scenarios:

 access to restricted classes, fields and methods can be gained,

 restricted objects can be created,

 restricted methods can be invoked.

The generic requirement is that the arguments to the target Reflection API call can be

controlled and that any result values returned by the call are also available to the attacker.

For calls returning new object instances it is also important that their return type is

java.lang.Object class and not any other type as this implicates the use of a cast type

operation potentially detecting the abuse of the newInstance() call.

The idea behind the abuse of Reflection API calls used by system classes is illustrated on

Fig. 11. The assumption is that attacker provided Exploit class calls a functionality of some

Vulnerable system class. The Vulnerable class invokes Reflection API, which can be

potentially abused by the means of its arguments. One can imagine, a condition where the

abuse leads to the invocation of java.lang.Class methods with user provided

arguments. Instead of forName argument denoting some Beans class, an attacker might be

able to trick the call and provide it with an argument denoting a class from a restricted

package such as sun.misc.Unsafe. The Vulnerable class will proceed with the call and as

a trusted caller will successfully obtain the requested class. It will be further returned to the

Exploit caller through the Vulnerable class.

Figure 11. Generic idea behind the abuse of Reflection API calls used by system classes.

In general, all Reflection API calls presented earlier in this document are subject to the

potential abuse. Below, we provide a brief summary of them in the context of their

usefulness for achieving specific security bypass conditions.

2.3.1 Class.forName(String)

This is the most desired form to load arbitrary class from within a system code. Since, the

caller of the class is a system class, any abuse of the call will result in a direct access to

restricted classes.

2.3.2 Class.forName(String,Boolean,ClassLoader)

This form is frequently present in system code. The Class Loader provided as an argument

to the call usually designates current Thread’s context CL (the value returned by

Thread.currentThread().getContextClassLoader() call). This form can be still

abused provided that one of the following conditions is true:

 ClassLoader argument is NULL,

 ClassLoader is an instance of the class that does not verify for package access in its

loadClass() method.

2.3.3 Class.getSuperclass() / Object.getClass()

Some objects available to untrusted Java code are already instances of or inherit from

restricted classes. In such a case, the reference to the restricted class can be easily obtained

by the means of a call to getClass() method of java.lang.Object class. A real-life

example of such a condition, which was present in Java SE code is illustrated on Fig. 12.

Figure 12. Obtaining restricted Class through getClass() method call.

2.3.4 Field.getType()

Some field objects declared by system classes are already instances of restricted classes

such as sun.misc.Unsafe. Sample classes that declare static instance of Unsafe class

include java.nio.Bits and java.util.concurrent.atomic.AtomicBoolean.

Since the fields declared by these classes are private, the only way to obtain their reflective

instances is by the means of some security vulnerability. Assuming, there is a way to obtain

declared Field object of arbitrary classes, the abuse scenario illustrated on Fig. 13 can be

used to obtain access to restricted classes with the use of a getType() method call

invoked for a target Field object.

Figure 13. Obtaining restricted Class through getType() method call.

2.3.5 Class.getComponentType()

Past Class Loader implementations didn’t take into account internal, Java VM representation

of class names. This created a possibility to issue a request to Class Loader instance to load

an array of classes, instead of a single Class object. Although, this abuse scenario should not

be valid any more for current Java SE implementations, it’s still interesting to mention.

Sample abuse demonstrating code sequence loading an array of restricted classes is

illustrated on Fig. 14.

Figure 14 Obtaining restricted Class through getComponentType() method call.

2.3.6 Class.getField(),Class.getFields()

Public fields are quite rare, therefore it’s difficult to speak about abuses in that context.

There are however some interesting field instances that can be found in restricted

interfaces. One of them is a public REFLECTION field of

com.sun.xml.internal.bind.v2.model.nav.Navigator interface. By default, it

holds a reference to the instance of

com.sun.xml.internal.bind.v2.model.nav.ReflectionNavigator class that

itself is quite interesting from an attacker point of view (it implements a functionality to

obtain information about declared fields and methods of a given class).

2.3.7 Class.getDeclaredField(),Class.getDeclaredFields()

Access to declared fields can be abused to obtain references to restricted classes as in the

case of previously described getType() method call. There is however one more scenario

for the abuse of access to declared fields. It might be possible to set arbitrary values of

private fields if declared field access is combined with another vulnerability. More

specifically, this scenario can take place if override value for a reflective Field object can

be set to true. This usually requires insecure invocation of setAccessible method of

AccessibleObject class conducted inside a privilege code block.

2.3.8 Method.invoke()

Insecure use of the invoke method of the Method class is the crème of the crème when it

comes to Reflection API vulnerabilities. Arbitrary method invocation from a system class

allows for virtually anything. Thus, invoke is the most desired form of Reflection API use

by system code.

There is no security check prior to the invocation for public methods. Sole possession of the

restricted Method object is sufficient to actually invoke it. The assumption is that proper

security check had been already made at the time of acquiring the Method object. This

explains why unsafe calls to Reflection API acquiring Method objects should be treated as a

security risk.

The most helpful methods that may be called by insecure invoke call are those obtaining

access to declared fields or methods of arbitrary classes.

Some invoke calls present in system classes may have a fixed value of a target object

provided as an argument to the call. This is an obstacle eliminating the possibility of

arbitrary virtual method invocations. However, if target object is not under attacker’s

control, static method invocations are still possible. This is illustrated on Fig. 15.

Figure 15. Invoke primitive and static method invocations.

The problems stems from the fact that invoke called for a static Method object simply

ignores the value of a target object to which the call is to be applied (invokestatic bytecode

instruction does not have this argument). Static method invocations should not be

underestimated. There are many interesting static methods that can either lead to security

bypass condition or can facilitate the exploitation process of Reflection API flaws. Just to

mention forName() method of java.lang.Class class.

Private methods may be called only with a combination of some other issue such as the one

overriding standard Java access scope modifiers (insecure use of

AccessibleObject.setAccessible(true) inside a privileged code block).

2.3.9 Class.getConstructor() / Class.getDeclaredConstructor()

Access to Constructor objects can be abused for the creation of instances of arbitrary classes

such as those from restricted packages. Creation of arbitrary object instances requires that

newInstance() method is called for a target Constructor object.

In some cases, Constructor object with a fixed parameter types can be only obtained. Such

a condition still requires attention as even Constructors with one java.lang.String

argument can be abused for the instantiation of PrivilegedAction objects that may be

instances of restricted classes.

2.3.10 Class.newInstance()

No argument call to the newInstance method of java.lang.Class class might not

seem to be interesting from a security point of view. It can be used to create object

instances of public classes from restricted packages. In some circumstances, single

newInstance() method invocation can also facilitate some other attacks. For example,

newInstance() invoked within a privileged code block can help bypass security checks

implemented in static class initializers (<clinit> methods). In some other cases, such

invocations may lead to the recreation of certain security sensitive object instances

(sun.misc.Launcher).

2. 4 NEW API

Java SE 7 introduced support for dynamic code execution and scripting in the form of a new

invokedynamic VM bytecode instruction. Along with that, new Reflection API was also added

to the software. This API is implemented by the classes from java.lang.invoke package.

The new API introduced a concept of method handles implemented by the MethodHandle

class. A method handle is a more generic concept than java.lang.reflect.Method

object known from the Core Reflection API. Method handle designates a typed, directly

executable reference to an underlying method, constructor or field. Method handle is not

distinguished by the name or the defining class of their underlying methods, but rather by a

type descriptor associated with it. This type descriptor is an instance of MethodType class

and it denotes a series of classes, one of which is the return type of the method.

Method handles can be used to access methods, constructors and fields. They provide

means for optional arguments or return values transformations.

Method handles can be created with the use of a functionality of MethodHandles.Lookup

class. A summary of the methods supported by this class is presented in a table below.

Method name Description
MethodHandle findConstructor(Class c,MethodType t) Produces a method handle

which creates an object and
initializes it, using the
constructor of the specified type

MethodHandle findGetter(Class c,String name, MethodType t) Produces a method handle giving
read access to a non-static field

MethodHandle findSetter(Class c,String name, MethodType t) Produces a method handle giving
write access to a non-static field

MethodHandle findSpecial(Class c,String name, MethodType
t,Class caller)

Produces an early-bound
method handle for a virtual
method, as if called from an
invokespecial instruction
from caller

MethodHandle findStatic(Class c,String name, MethodType t) Produces a method handle for a
static method

MethodHandle findStaticGetter(Class c,String name,

MethodType t)
Produces a method handle giving
read access to a static field

MethodHandle findStaticSetter(Class c,String name,
MethodType t)

Produces a method handle giving
write access to a static field

MethodHandle findVirtual(Class c,String name, MethodType t) Produces a method handle for a
virtual method

In the new API, all reflective accesses to methods, constructors and fields are done with

respect to the special lookup object, which is the instance of MethodHandles.Lookup

class. This lookup object denotes the class with respect to which all method handle lookup

operations are conducted. By default, this is the caller class of

MethodHandles.Lookup()that is used as a lookup class.

Figure 16. Differences between the Core and New Java 7 Reflection APIs.

Method handles can be called with the use of special invoker methods such as

invokeExact and invoke.

Fig. 16 contains a sample code illustrating the differences between the Core and new

Reflection API.

New Reflection API seems to provide less security by design than the Core Reflection API.

The reason for it is that method handles do not perform access checks when they are called,

but rather when they are created. This explains why method handles to non-public methods,

or to methods in non-public classes, should generally be kept secret.

2.5 NEW API ABUSES

All abuses that may occur with respect to the new Java 7 Reflection API are connected to

the lookup class. The idea behind a lookup object is to have it act as the class on behalf of

which reflective access is made prior to obtaining a method handle. A system class from

NULL class loader namespace used as a lookup class is sufficient for gaining reflective

access to restricted classes as illustrated on Fig. 17.

Figure 17. Lookup object and reflective access to restricted classes.

The reason for it is caused by the nature of a security check conducted in

MethodHandles.Lookup class prior to any method handle creation. This check allows for

access to arbitrary members (methods, constructors and fields) of restricted classes if the

lookup object and a target class are from the same class loader namespace.

Figure 18. Creation of the lookup object with a system class.

Due to the above and the fact that by default, a lookup object instance uses a caller of the

MethodHandles.Lookup() method as a lookup class, all one needs to do is to call this

method from a system code to create a lookup object with a system class. This is illustrated

on Fig. 18. A system lookup object may be created by the means of an insecure static

method invocation conducted from a system class. Such a call would allow impersonating of

a system class.

This should be sufficient for further abuse of the trust that lookup objects put into the

callers that created them.

3. EXPLOITATION TECHNIQUES

Reflection API abuses look quite innocent when considered separately. Obtaining access to

the restricted class does not pose a serious threat to the security of Java VM. The reason for

it is that one needs to have access to the methods of a restricted class to actually be able to

conduct any potentially dangerous action. Similarly, the ability to enumerate and acquire

methods of arbitrary classes does not seem to raise any alarm as access to a restricted class

is needed prior to be able to obtain its methods.

That sort of thinking is not that uncommon among software vendors8. Unfortunately, it is

wrong. In this chapter, we will present exploitation techniques that can be successfully

applied for Reflection API based abuses in order to achieve a full-blown compromise of Java

VM security sandbox.

3.1 GENERIC SCENARIOS

General idea behind exploitation of Reflection API issues is based on the use of reflective

calls made by system code for the following purposes:

 loading of restricted classes,

 obtaining references to constructors, methods or fields of a restricted class,

 creation of new object instances, methods invocation, getting or setting field values

of a restricted class.

The goal is to access security sensitive objects and their functionality in a way that would

compromise VM security. Such objects are common in restricted packages.

Below, we present several scenarios for turning Reflection API weaknesses into complete

Java security sandbox compromises.

3.1.1 Full sandbox bypass attack scenario #1

The precondition to this scenario is a combination of vulnerabilities that allow obtaining

restricted classes and their methods. The goal is to exploit reflective access to restricted

classes in such a way, so that a custom, attacker provided class could be defined in a

privileged class loader namespace. Figure 19 shows a sample class that could be used for

that purpose.

8 We received an inquiry from a software company that tried to address a 0-day Java attack code from Aug 2012
in an open source Java SE implementation. The company asked whether a fix for a bug allowing to obtain access
to restricted classes should be a priority and whether it could be addressed at some later time.

Attacker’s class can have a form of a PrivilegedAction instance. The action

implemented by its run method can be triggered from within a privileged code block by the

means of a doPrivileged method invocation.

Figure 19. Sample class facilitating Java VM security sandbox bypass.

The privileged action from Fig. 19 invokes setSecurityManager method of

java.lang.System class with a NULL argument. Such an invocation, results in a disabling

of Security Manager in a target Java VM environment provided that a call is made by a

privileged code.

Upon definition of the HelperClass in a NULL Class Loader namespace, all that is required to

achieve a complete Java security sandbox compromise is this class instantiation with the use

of newInstance method call. As part of its implementation, newInstance triggers

execution of the class instance initialization method (constructor) which further leads to the

execution of a privileged action as well.

3.1.2 Full sandbox bypass attack scenario #2

The precondition to this scenario is a vulnerability allowing changing the accessible state of

a private java.lang.reflect.Method object. Such a condition may occur as a result of

insecure call to setAccessible method of AccessibleObject class.

The goal is to use the accessible (usually private) methods in a way that would result in

scenario #1. The following methods could be used for that purpose:

 forName0 method of java.lang.Class class

 privateGetPublicMethods method of java.lang.Class class

The first method allows obtaining a reference to the restricted class, the other to obtain

methods of arbitrary class.

3.1.3 Partial sandbox bypass scenario

The precondition to this scenario is a vulnerability allowing creating instances of

PrivilegedAction or PrivilegedExceptionAction interfaces from a restricted

sun.security.action package. Sample instances of the action classes contained in this

package include OpenFileInputStreamAction, GetPropertyAction and

LoadLibraryAction.

The goal is to use a valid privileged action object defined by a system code as an argument

to the doPrivilegedWithCombiner method of java.security.AccessController

class. Since doPrivilegedWithCombiner is a wrapper method for the actual call to

doPrivileged method, it assert additional stack frame from NULL Class Loader

namespace into the call stack prior to doPrivileged method invocation. This frame makes

it possible to actually use arbitrary instances of PrivilegedAction objects. Their use with

the doPrivileged method call would lead to the security exception. The reason for it is

the implementation of Java VM permission check routine. During permission check, this

routine also checks the caller class of a doPrivileged method call for proper permissions.

The described sandbox bypass scenario is only partial as all that can be achieved with the

use of it is arbitrary file read access (OpenFileInputStreamAction) or Java properties

access (GetPropertyAction).

LoadLibraryAction although with a high potential for code execution through the library

initialization code sequence is useless for the presented exploitation scenario. The reason for

it is the fact that a library name provided as an argument to the action object cannot denote

an absolute path such as UNC share. If this is the case, library loading operation is not

performed.

3.1.4 An attack scenario to keep in mind

Reflection API risks are not only about accessing classes and objects from restricted

packages such as sun. There are many implementations of PrivilegedAction or

PrivilegedExceptionAction interfaces in unrestricted packages.

The default access of any PrivilegedAction class and its constructor is package scoped.

There might however be a situation when reflection API could be abused to create instances

of such objects. This in particular includes the system code making use of the reflection API

and residing in the same package as the target privileged action class.

A proper combination of getDeclaredConstructor() / newInstance() is required to

be present in a system class in order to be able to create arbitrary instances of privileged

action objects defined in the same package.

In the past, we found one instance of this attack scenario that relied on a combination of

getConstructor() / newInstance() method calls. It is illustrated on Fig. 20. The

attack exploited the sequence of Reflection API calls implemented by

javax.swing.UIDefaults$ProxyLazyValue class. Its createValue method used

the three argument forName call to java.lang.Class class. It was difficult to abuse it

for arbitrary loading of a restricted class as the Class Loader instance provided as a third

argument pointed to the value of current user Thread’s context Class Loader. However, any

other class, such as the class from the same package could be successfully loaded by this

call. The reason for it is that forName method does not validate whether the caller class

has access to the requested class9 (requested class can have private or package access).

Figure 20. Sample abuse of Reflection API for the creation of package scoped privileged action object.

The remaining Reflection API call used by createValue method was aimed at obtaining

the Constructor object of the loaded class and calling newInstance on it. Since, this was

the getConstructor method that was used to query for constructor value, only classes

with public constructors could be successfully retrieved. Class

javax.swing.JOptionPane$ModalPrivilegedAction was one of them. It was in the

same package as javax.swing.UIDefaults$ProxyLazyValue class. It had a public

constructor and was also implementing the PrivilegedAction interface. It was a perfect

candidate for arbitrary instantiation by the means of Reflection API abuse. What’s interesting

is that a final call to newInstance invoked from within createValue method was

successful regardless of the fact that ModalPrivilegedAction class was declared as

private. The reason for it is that private for inner classes actually means package scope.

Thus, newInstance called from within the same package could succeed (instantiation of

the class in the same package / same Class Loader namespace).

The result of the described attack was a complete Java security sandbox compromise.

Instantiation of arbitrary ModalPrivilegedAction could be exploited to change the

override value of any declared method (denoted by a name and it declaring class) to true.

This could be directly exploited by the means of Full sandbox bypass attack scenario #2

described above.

3.2 COUNTERMEASURES

Reflection API abuses reported to Sun Microsystems in 2005 needed to be addressed in

some way. The company had come up with various solutions that include introduction of

additional security checks (sometimes new privileges), replacing vulnerable Reflection API

methods with their secure replacements and also Reflection API filtering. Below, a brief

summary of the latter two countermeasures is provided.

9 This is a known weakness of forName method implementation. It was first signaled to Sun

Microsystems after successful attack against J2ME implementation in 2004.

3.2.1 Replacement methods

This countermeasure is based on the idea of replacing vulnerable instances of various

Reflection API invocations with corresponding, secure replacement calls.

A table below shows a mapping between core Reflection API calls and their replacement

methods, all defined by helper classes from the sun.reflect.misc package.

Core Reflection API call Replacement
Class.forName(String s) ReflectUtil.forName(String s)

Class.newInstance() ReflectUtil. newInstance(Class clazz)
Method.invoke(Object obj, Object args[]) MethotUtil.invoke(Method m, Object obj, Object

args[])
Class.getMethod(String s, Class aclass[]) MethotUtil.getMethod(Class clazz, String s, Class

aclass[])
Class.getMethods() MethotUtil.getMethods(Class clazz)
Class.getField(String s) FieldUtil.getField(Class clazz, String s)
Class.getFields() FieldUtil.getFields(Class clazz)
Class.getDeclaredFields() FieldUtil.getDeclaredFields(Class clazz)
Class.getConstructor(Class aclass[]) ConstructorUtil.getConstructor(Class clazz, Class

aclass[])

The implementation of most of the replacement calls relies on the additional security check

that verifies for package access to a given class, provided as an argument to the call.

The replacement for the invoke call of java.lang.reflect.Method class has more

complex implementation. It is illustrated on Fig. 21.

Figure 21. Implementation of MethodUtil class as a replacement for reflective invoke call.

This replacement is implemented by MethodUtil class. MethodUtil class is also a Class

Loader as it is a subclass of SecureClassLoader.

MethodUtil invokes arbitrary methods through a trampoline object called bounce, which

is defined in a separate Class Loader namespace. More specifically, MethodUtil

namespace. Such a construction of arbitrary method invocation allows to inserts additional,

non-NULL Class Loader stack frame into the call stack just before the target method

invocation. Reflection API calls made across different namespaces always trigger a security

check verifying for package access. This is also the case for MethodUtil trampoline

invocation.

3.2.2 Reflection API filter

There is also one additional countermeasure implemented in Java SE code that has its origin

in the Reflection API based attacks. This is the Reflection API filter guarding access to

security sensitive members of certain classes. Reflection API filter is implemented by

sun.reflect.Reflection class. It is integrated with Field and Method lookup operations

of java.lang.Class class. The goal of the API was to address certain popular

exploitation vectors that relied on the possibility to access specific methods or fields of

certain classes. This in particular includes the following members, which have been in use by

various Proof of Concept codes exploiting Reflection API vulnerabilities in the past:

 getUnsafe method of sun.misc.Unsafe class

 security field of java.lang.System class

Unfortunately, Reflection API filter has multiple deficiencies, which make it possible to

bypass it with the use of any of the following scenarios:

 access to sun.misc.Unsafe instance can be gained by the means of reflective

field access (theUnsafe field),

 disabling Security Manager can take place by invoking setSecurityManager

method of java.lang.System class (NULL argument),

 other exploit vectors (exploit classes and their methods) exist and are not taken into

account by the filter,

 Reflection API filtering is implemented for the Core Reflection API only, but not the

new Reflection API.

3.3 SAMPLE EXPLOIT VECTORS

For the purpose of illustrating the severity of the vulnerabilities found during this research,

28 different Proof of Concept codes has been developed that allow to achieve a complete

compromise of Java security sandbox10. These Proof of Concept codes exploit Reflection API

vulnerabilities with the use of specific security sensitive classes (exploit vectors).

Each exploit vector relies on a carefully crafted sequence of Reflection API calls implemented

by one publicly available class (denoting the primary vector issue) and at least one class

from a restricted package (usually sun). The goal of a publicly available class is to either

obtain a constructor or a method object of the restricted class, so that its instance could be

created or a method called. Exploitation scenario is usually the same with respect to the

Reflection API sequence making use of restricted classes. In some cases exploit vectors

need to be combined together to achieve a desired goal.

10 The 28 Proof of Concept Codes divide as following: 17 affect Oracle Java SE, 1 affects Apple Quicktime for
Java and 10 affect IBM Java.

Below, information about selected, most interesting exploit vectors making use of the

functionality of restricted classes is presented in a more detail.

3.3.1 sun.awt.SunToolkit

Vector prerequisite:

 access to restricted public classes and their public methods

A common exploitation scenario proceeded11 in the following way:

 a call to getField method of sun.awt.SunToolkit class was made in order

to obtain a privileged instance of unsafe field object of

java.util.concurrent.atomic.AtomicBoolean class,

 a call to getMethod method of sun.awt.SunToolkit class was made in order

to obtain a privileged instance of defineClass method object of

sun.misc.Unsafe class,

 the actual value held by a static unsafe field object was obtained (instance of

sun.misc.Unsafe class),

 static defineClass method was invoked on the obtained instance of

sun.misc.Unsafe class. As a result, custom Helper class was defined in a

system (null) class loader’s namespace and in a system (null) protection

domain. As a result, Helper class was fully privileged and could for example

make a successful call to setSecurityManager method of

java.lang.System class and switch off the security manager completely (all in

a proper doPrivileged block).

3.3.2 sun.org.mozilla.javascript.internal.DefiningClassLoader

Vector prerequisite:

 access to restricted public classes and their public methods

A common exploitation scenario proceeded in the following way:

 an instance of Context class was obtained by calling static enter method of

sun.org.mozilla.javascript.internal.Context class

 DefiningClassLoader instance was obtained by calling

createClassLoader method on the Context instance obtained

 defineClass method of DefiningClassLoader instance was invoked. As a result,

custom Helper class was defined in a system (null) class loader’s namespace

and in a system (null) protection domain. As a result, Helper class was fully

privileged and could for example make a successful call to

setSecurityManager method of java.lang.System class and switch off

the security manager completely (all in a proper doPrivileged block).

11 This exploit vector was addressed by Oracle’s out-of-band Java security update from Aug 30, 2012.

3.3.3 MethodHandles.Lookup

Prerequisites:

 arbitrary static method invocation from a system class (NULL Class Loader

namespace)

A common exploitation scenario proceeded in the following way:

 A call to java.lang.invoke.MethodHandles.Lookup class and its lookup

method was made in order to create a lookup object with a system class. Such a

lookup object allowed obtaining and calling arbitrary methods of any restricted

class. The above was sufficient to achieve a complete compromise of JVM

security sandbox. There is no check for access to members from restricted

packages prior to method handle lookup and invocation. This stems from the fact

that method handle lookup and access operations are conducted on behalf of the

lookup class (a class from NULL Class Loader namespace).

 Further exploitation proceeded as in exploit vectors 3.3.1 or 3.3.2.

3. 4 REMOTE, SERVER-SIDE CODE EXECUTION

Vulnerabilities in Java are usually associated with the risk they pose to users of various web

browsers. That’s completely natural taking into account the widespread use of Java Plugin

software. There are however some other exploitation scenarios that are worth mentioning.

This in particular concerns the possibility to exploit Java security issues on servers. Below,

we present the idea behind two such scenarios that could facilitate the attack against server

side Java software.

3.4.1 RMI protocol attack

RMI protocol12 is the base protocol used for communication between clients and servers

during Java Remote Method Invocation13.

RMI protocol implementation supports the concept of user provided codebases. A codebase

is the URL value pointing to the remote resource where remote RMI server should look for

unknown (non-system) classes. What’s interesting is that Codebase URL can be provided by

the RMI client as part of the RMI call. It will be taken into account by the RMI server if

java.rmi.server.useCodebaseOnly property is set to true. If true, RMI server will

create RMIClassLoader instance with user provided Codebase URL. It will be further used

as a base class loader during object deserialization by a MarshalInputStream.

RMI implementation does not verify whether a deserialized object is type compatible with

the input argument of a target method call. RMI server reads and instantiates object

provided as an argument to the call with the use of RMIClassLoader. If the object to read

is of an unknown class, an attempt will be made to fetch class data from the Codebase URL

provided by the user. That alone creates a possibility for remote loading and execution of

12 RMI Wire Protocol http://docs.oracle.com/javase/1.5.0/docs/guide/rmi/spec/rmi-protocol.html
13 Remote Method Invocation http://docs.oracle.com/javase/1.5.0/docs/guide/rmi/spec/rmiTOC.html

http://docs.oracle.com/javase/1.5.0/docs/guide/rmi/spec/rmi-protocol.html
http://docs.oracle.com/javase/1.5.0/docs/guide/rmi/spec/rmiTOC.html

user provided Java code. Fig. 22 shows a fragment of the code that exploits insecure

configuration of a remote RMI server.

Figure 22. Fragment of the code exploiting insecure configuration of RMI services.

The code loads and executes a user provided Java exploit class from a given Codebase

argument. It connects to the specified RMI server endpoint identified by an IP address and a

TCP port.

RMI issue is a less known vector for exploiting Java SE vulnerabilities. It was originally found

in 2005. Metasploit framework added it to its exploit database in 201114, while Oracle did

some RMI patching in Oct 2011. Regardless of the patching done, RMI issue was verified to

still work15 against the following RMI server instances:

 RMIRegistry from JDK version 1.7.0_06-b24 (target RMI server at TCP port 1099)

 GlassFish Server Open Source Edition 3.1.2 (build 23) with security manager enabled

(target RMI server at TCP port 8686)

3.4.2 XML Beans decoder

There is one more potential exploit vector that deserves attention. Some of the

vulnerabilities discovered as part of SE-2012-01 project affected XML Beans decoder

implementation used in Java 7. We found out that a specially crafted XML file fed as the

input to java.beans.XMLDecoder object instance could lead to arbitrary injection

14 Java RMI Server Insecure Default Configuration Java Code Execution
http://www.metasploit.com/modules/exploit/multi/misc/java_rmi_server
15 During tests, attacker provided Java class exploiting full sandbox bypass vulnerability was loaded and executed
on the remote RMI server

http://www.metasploit.com/modules/exploit/multi/misc/java_rmi_server

(definition) of a user provided class into NULL Class Loader namespace, therefore breaking

security of a target Java VM environment. The content of the XML message that could

accomplish this is illustrated on Fig. 23.

Figure 23. XML Message breaking Java 7 security sandbox.

Although vulnerabilities in XML Beans decoder has been already addressed, the exploit

vector seems to be quite interesting and with a potential to affect some remote server

instances deserializing Beans from XML data with the use of a standard, Java 7 XML decoder

implementation.

4. VULNERABILITIES

SE-2012-01 project resulted in a discovery of 50 security vulnerabilities in Java SE

implementations coming from Oracle, Apple and IBM. While it is not our intention to

describe in a detail each of the issues found, we would like to present some of them that are

representative enough for the illustration of various types of the weaknesses found.

Brief summary of almost all16 identified vulnerabilities can be found in Appendix A at the end

of this paper.

4.1 SAMPLE VULNERABILITIES

4.1.1 Issues 1-7

These issues were caused by insecure use of the invoke method of

java.lang.reflect.Method class. All of the issues were located in classes from the

16 Except Issues 29 and 50, which have not been yet addressed by Oracle.

com.sun.org.glassfish.external.statistics.impl package, which was

introduced to Java 7. An illustration of the vulnerabilities cause is shown on Fig. 24.

Figure 24. Illustration of the cause for vulnerabilities 1-7.

4.1.2 Issue 8

In 2.3.2, a possibility to exploit a three argument Class.forName() method call relying

on current Thread’s context Class Loader value was mentioned. Issue 8 exploits this

condition. More specifically, it allows obtaining a reference to the restricted class by the

means of a more privileged Class Loader instance, which is set as current Thread’s context

Class Loader as illustrated on Fig. 25. The unwrap method of RMIConnectionImpl class

deserializes a user provided object in a code window between two calls setting current

Thread’s context Class Loader value. This code window is privileged because the first call

sets this value to OrderClassLoaders instance, which is a Class Loader subclass that

does not contain any security checks in its loadClass method.

Figure 25. Illustration of Issue 8.

4.1.3 Issue 10

New Bytecode Verifier introduced to Java 7 did not properly verify the bytecode instruction

stream for the invokespecial bytecode instruction. Specially crafted instance initialization

method could conduct the invokespecial call to any superclass of the current class instead of

the current class or its direct superclass as specified in the spec. As a result, a key Java VM

constraint could be violated and security checks implemented in superclass constructors

could be bypassed. This is illustrated in Fig. 26.

One of the obvious targets for exploitation of this type of the flaw is

java.lang.ClassLoader class. The creation of Class Loader objects requires proper

privileges and Issue 10 could be used to bypass constructor security checks and create a

partially initialized instance of a Class Loader object. Due to the fact that this object was not

properly initialized, it was not possible to invoke its defineClass method for the purpose

of defining arbitrary class in a NULL Protection Domain. The issue could be however still

exploited to obtain a reference to restricted classes by the means of its loadClass

method.

Figure 26. Illustration of Bytecode Verifier vulnerability.

4.1.4 Issues 11, 16, 17 and 28

These issues are caused by the following classes from com.sun.beans.decoder

package:

 ClassFinder

 MethodFinder

 ConstructorFinder

 FieldFinder

All of them provide support for Beans decoder implementation in Java 7 environment. The

vulnerabilities causes are tied to the name of the class and they correspond to the ability to

obtain references to restricted Classes, Methods, Constructors and Fields.

The 0-day attack code found in the wild in Aug 2012 relied on two first issues (the ability to

load restricted classed and obtain their methods).

Buggy implementation of Beans decoder support classes was introduced in Java 7. Java 6

was not vulnerable to the described issues as it relied on a completely different

implementation.

4.1.5 Issues 13, 21 and 26

All of these issues were related to the implementation of new Reflection API introduced in

Java 7. Issue 13 was due to the lack of a security check in the in method of the

MethodHandle.Lookup class. The functionality of this method allowed for a change of the

base lookup class of an existing Lookup object instance to any other class (including a

system one).

Issue 21 was about a default public Lookup object instance based on a system class

available to any caller. All that was required to obtain access to such a Lookup object

instance was to call a static publicLookup method of

java.lang.invoke.MethodHandles class.

Finally, Issue 26 exploited the possibility to gain access to inner classes to which the creator

of the lookup object had no access to. The implementation of the Lookup class allowed for

arbitrary access to classes protected with a default (package) access modifier. This was

possible because, all access checks were implemented against the base lookup class, not the

caller of a target method. This could be abused to implement the attack scenario described

in 3.1.4.

4.1.6 Issue 32

This issue was found shortly after Oracle’ out-of-band patch was released on Aug 30, 2012.

After finding out that sun.awt.SunToolkit exploitation vector was blocked by the

company, we decided to have yet another look into Java in order to find out if the

remaining, not yet addressed issues could be still exploited. Issues 1-7 were still available,

though all other issues allowing to obtain references to restricted methods were patched.

Our Proof of Concept codes for Issue 1-7 relied on the exploit vector using

MethodHandles.Lookup class. This turned our attention to the new Reflection API and

we started to look into the code of the classes from java.lang.invoke package. We

noticed that a call to the native invokeExact method of the MethodHandle class was

used from a wrapper invokeWithArguments method as illustrated on Fig. 27.

Figure 27. The use of invokeExact from a wrapper system class.

That call looked similar to the problem related to Core Reflection API and the invoke

method in particular. Quick tests confirmed our observation – it turned out that arbitrary

methods of arbitrary classes could be called with a system class from NULL Class Loader

namespace as their caller. This condition was immediately abused to achieve access to the

methods of restricted classes and to successfully exploit Issues 1-7 again17.

Further tests proved that Issue 32 could be used alone to achieve a complete compromise

of a target Java 7 environment.

4.1.7 Issue 33 and 34

Both issues are specific to IBM SDK software, which is Java SE implementation coming from

IBM corporation. These issues are quite simple. Both allow for arbitrary method invocation

conducted inside a doPrivileged method block.

Exploit codes for these issues are also one of the simplest that were developed as part of

SE-2012-01 project. Proof of Concept code exploiting Issue 33 is illustrated on Fig. 28. This

code calls setSecurityManager method of java.lang.System class with a NULL

argument. IBM’s own implementation of com.ibm.rmi.util.ProxyUtil class is used as

a dispatcher for the call.

Most of other IBM Java issues are also very simple instances of Reflection API weaknesses.

Their presence indicates potential lack of awareness on the vendor side regarding

insecurities related to these types of flaws.

Figure 28. Proof of Concept code for Issue 33.

4.1.8 Issue 15 and 31

These issues are caused by the lack of a proper type check in the code prior to creating an

instance of a given class. Both issues are instances of the flaws that invoke newInstance

method of java.lang.Class class inside the doPrivileged method block.

These issues can facilitate certain attacks as illustrated on Fig. 29.

17 to turn them into the complete JVM sandbox escape exploits again.

Figure 29. Illustration of Issue 15 and its impact to security of 3
rd

 party software.

For example, Issue 15 can be used to gain access to security sensitive classes guarded by a

security check in a static class initializer (<clinit> method). Apple QuickTime for Java

software contains multiple security checks in static class initializers that verify whether a

given code is privileged enough prior to finalizing its class linking process. The problem with

that approach is that <clinit> method is called only once in a class lifetime, during class

loading and linking. Issue 15 can be used to load and instantiate any system class of

attacker’s choice. By exploiting it with the class that would trigger the initialization of

quicktime.QTSession class, one can successfully bypass all security checks contained in

its <clinit> method as they would be processed inside a privileged code scope. As a

result, attacker may gain access to certain security sensitive classes or proceed with further

attacks against a target 3rd party software.

4.1.9 Issue 22

Issue 22 is a security vulnerability in Apple QuickTime for Java software. When combined
with Issue 15 described above, it could be used to successfully bypass all JVM security
restrictions on a target system with both Java and Apple QuickTime software installed.

Issue 15 can provide access to quicktime.util.QTByteObject class in particular. This

class is security sensitive as its instances can be used to gain read and write access to
process heap memory18. There are multiple security checks in the code preventing
instantiation of this class by unprivileged Java application. Some of them are the result of

the following past bugs that could be used to create arbitrary instances of QTByteObject

class:

 QTByteObject class instantiation with the use of finalize method,

 QTByteObject class instantiation by the means of serialization and readObject

method.

Unfortunately, the two abovementioned security vulnerabilities were not addressed correctly
by Apple. The problem was caused by the fact that Apple fixes addressed the bugs
separately and did not take into account the possibility to combine both bugs together. This
is explained in a more detail in a short technical write-up available at the following address:
http://www.security-explorations.com/materials/se-2012-01-22.pdf

18 More specifically, to memory locations past the bounds of Java object instances.

4.1.10 Issue 50

This issue is a not-yet patched vulnerability affecting all Java SE versions released over the

last 10 years. It was verified to be present in Java SE versions 1.4, 5, 6, 7 and 8.

Issue 50 allows for a reliable and complete Java security sandbox compromise. Regardless

of its impact, Oracle corporation plans to wait with addressing of the issue for additional four

months time (till Feb 2013).

It was empirically verified19 that a fix for Issue 50 can be implemented in less than 30

minutes time. The fix requires 25 characters in total to be changed in a source code. Due to

the construction of the fix, it does not need to go through any integration tests.

The existence of Issue 50 tells a lot about the quality of Oracle’s vulnerability evaluation /

patch testing processes. Issue 50 is a bug in the code addressed not so long ago by the

company. The lack of any response from Oracle20 to the results of a Vulnerability Fix

Experiment only confirms our analysis (the bug can be fixed quickly and without the need

for any integration tests).

4.2 IMPACT

The most serious issues found during SE-2012-01 Java security research could lead to the

complete compromise of a Java security sandbox. Malicious Java applet or application

exploiting one of them could run unrestricted in the context of a target Java process such as

a web browser application. An attacker could then install programs, view, change, or delete

data with the privileges of a logged-on user.

It was verified that as a result of a successful attack, arbitrary files could be created or

programs executed in the environment of the affected Java SE software.

In the most common web browser attack scenario, an attacker could host a specially crafted
website with a malicious Java application exploiting one of the vulnerabilities found. Upon
convincing the user to visit such a website, typically by getting them to click a link in an
email or in an Instant Messenger message, malicious web content could be delivered to
affected systems. It could also be possible to display specially crafted web content by using
banner advertisements or by using other methods to deliver web content to vulnerable
systems.

The most serious vulnerabilities were specific to Java 7 environment only. Issue 50 is unique
as it is present in all Java SE versions 1.4.x, 5, 6, 7 and 8. It affects an estimate number of

1.1 billion users (java.com data) of desktop Java software.

A summary of complete Java security sandbox bypass issues found in Oracle Java SE
implementation is illustrated on Fig. 30.

19 This was done by the means of the so called Vulnerability Fix Experiment.
20 “Someone will respond as soon as possible” response was never received.

Figure 30. Summary of complete security bypass issues found In Oracle Java SE software.

Although users of web browsers with Java Plugin software were at most risk, some

additional attack scenarios such as those relying on RMI / XML Beans based deserialization

should be also taken into account.

SUMMARY

The goal of SE-2012-01 security research project was to verify the state of Java SE security

in 2012. Although, the research was limited to only a few areas that were crucial to Java VM

security (Reflection API and Class Loaders in particular), it has lead to the discovery of 50

security vulnerabilities in Java implementations coming from Oracle, Apple and IBM. Taking

into account that a majority of the issues were related to Reflection API, it is clear that this

API should be perceived in terms of a serious security risk to the target Java VM

environment.

Reflection API implementation allows for the violation of key Java security constraints such

as data access protection and type safety. Insecure use of its functions conducted from

within a system code can also easily lead to the compromise of a Java security model.

Security vulnerabilities related to Reflection API are a good example of how certain design /

implementation choices can affect security of a technology for years and lead to dozens of

bugs. The number of issues that were due to insecure use of Reflection API and that were

addressed in Java SE code over the recent years seem to be speaking for itself21.

Small, potentially unimportant security bugs do matter in Java. They illustrates a common

trend in attacks against technologies such as Java VM where more than one, partial security

bypass issue usually needs to be combined together to achieve a complete security

compromise.

21

 Just to mention 19 MethodUtil.invoke calls, 11 ReflectUtil.checkPackageAccess calls, 4

ReflectUtil.ensureMemberAccess calls, 1 ConstructorUtil.getConstructor call, 5

ReflectUtil.isPackageAccessible calls, a couple of new permissions / permissions checks introduced as

well as the replacements of NULL class loader with a system Class Loader instance.

Breaking technologies such as Java should focus on advantages and specifics of the

technology in the first place. Memory corruption vulnerabilities should become a priority only

if everything else fails. We don’t want to downplay the importance of Java memory

corruption vulnerabilities here, however the truth is that these issues are far less desired

when it comes to reliable and truly platform independent exploitation of Java security

weaknesses.

Although Java was designed with a security in mind, the last decade has shown that it is not

necessarily secure by implementation. Java VM implementation has become inherently

complex to make the technology secure. There is also insufficient knowledge about the

tricks and techniques used to attack Java both in a public domain and on the vendors’ side.

Vendors not following their own Java Secure Coding Guidelines22 and not learning from past

mistakes do not give a bright prospect for the future of the technology either.

In longer term, publication of vulnerabilities and attack techniques details can make the

technology more secure. People will be more aware of the various pitfalls they should avoid

and know what to look for during either code development or security review efforts. In

Java case, this especially includes, but is not limited to all sorts of trickery related to

overloading, inheritance, Reflection API, stack inspection, bytecode verification, members’

access, serialization and class loaders.

22 Secure Coding Guidelines for the Java Programming Language, Version 4.0
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

http://www.oracle.com/technetwork/java/seccodeguide-139067.html

APPENDIX A

SUMMARY OF THE VULNERABILITIES

ISSUE

TECHNICAL DETAILS

1 origin com.sun.org.glassfish.external.statistics.impl.AverageRang

eStatisticImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

2 origin com.sun.org.glassfish.external.statistics.impl.BoundarySta

tisticImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

3 origin com.sun.org.glassfish.external.statistics.impl.BoundedRang

eStatisticImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

4 origin com.sun.org.glassfish.external.statistics.impl.CountStatis

ticImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

5 origin com.sun.org.glassfish.external.statistics.impl.RangeStatis

ticImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

6 origin com.sun.org.glassfish.external.statistics.impl.StringStati

sticImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

7 origin com.sun.org.glassfish.external.statistics.impl.TimeStatist

icImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

8 origin javax.management.remote.rmi.RMIConnectionImpl class

cause the use of OrderClassLoaders as Thread’s contextClassLoader

impact arbitrary access to restricted classes

type partial security bypass vulnerability

9 origin javax.management.remote.rmi.RMIConnectionImpl class

cause the use of null class loader as Thread’s contextClassLoader

impact arbitrary access to restricted classes

type partial security bypass vulnerability

10 origin bytecode verifier for Java SE 7

cause wrong check for a target of invokespecial bytecode (it is not limited to

this and super classes in case of an <init> method)

impact ability to create object instances without the need to call superclass’ initializer,
arbitrary access to restricted classes via custom class loader objects, further

impact not yet evaluated

type partial security bypass vulnerability

11 origin com.sun.beans.finder.ClassFinder class

cause Insecure use of forName() method of java.lang.Class class

impact arbitrary access to restricted classes

type partial security bypass vulnerability

12 origin difficult to classify

cause unrestricted getClass method call

impact arbitrary access to restricted classes

type partial security bypass vulnerability

13 origin java.lang.invoke.MethodHandles.Lookup class

cause no security check in the in method

impact the ability to create java.lang.invoke.MethodTypes.Lookup object with

a system lookupClass, this allows to obtain method handles from restricted

classes and to issue calls on them

type partial security bypass vulnerability

14 origin com.sun.jmx.mbeanserver.GetPropertyAction class

cause public class

impact arbitrary access to Java system properties

type partial security bypass vulnerability

15 origin java.util.logging.LogManager class

cause lack of a type check of a logger handler prior to creating its instance

impact the ability to bypass security checks implemented in static class initializers of a
3rd party software

type partial security bypass vulnerability

16 origin com.sun.beans.finder.MethodFinder class

cause insecure use of getMethod method of java.lang.Class class

impact access to method objects of restricted classes

type partial security bypass vulnerability

17 origin com.sun.beans.finder.ConstructorFinder class

cause insecure use of getConstructors method of java.lang.Class class

impact arbitrary access to constructors of restricted classes, creation of restricted
public classes

type partial security bypass vulnerability

18 origin com.sun.org.glassfish.gmbal.util.GenericConstructor class

cause insecure use of getDeclaredConstructors and newInstance methods

of java.lang.Class class

impact creation of restricted public classes

type partial security bypass vulnerability

19 origin com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory

class

cause insecure use of getDeclaredMethod method of java.lang.Class class

impact access to method objects of restricted classes

type partial security bypass vulnerability

20 origin com.sun.beans.decoder.MethodElementHandler class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of methods with user provided arguments

type partial security bypass vulnerability

21 origin java.lang.invoke.MethodHandles class

cause public Lookup based on a system class available to any caller

impact the ability to obtain java.lang.invoke.MethodHandles.Lookup object

with a system lookupClass, this allows to obtain method handles from

restricted classes and to issue calls on them

type partial security bypass vulnerability

23 origin javax.management.modelmbean.DescriptorSupport class

cause insecure use of getConstructor and newInstance methods of

java.lang.Class class

impact creation of restricted public classes (scope limited to the classes with the

instance initialization method denoting one java.lang.String argument)

Type partial security bypass vulnerability

24 origin javax.media.jai.OperationRegistry class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of methods with user provided arguments

Type partial security bypass vulnerability

25 origin javax.swing.text.DefaultFormatter class

cause insecure use of getConstructor and newInstance methods of

java.lang.Class class

impact creation of restricted public classes (scope limited to the classes with the

instance initialization method denoting one java.lang.String argument)

type partial security bypass vulnerability

26 origin java.lang.invoke.MethodHandles.Lookup class

cause access to package scoped classes via a specially chosen system class as

lookupClass value

impact obtaining access to inner classes to which a caller of the Lookup object has no

access

type complete security bypass vulnerability

27 origin sun.plugin2.applet.JNLP2ClassLoader class

cause no security check upon loading of a class from a restricted package

impact arbitrary access to restricted classes (JavaFX environment only)

type partial security bypass vulnerability

28 origin com.sun.beans.finder.FieldFinder class

cause insecure use of getFields method of java.lang.Class class

impact access to field objects from restricted classes and interfaces

type partial security bypass vulnerability

30 origin com.sun.corba.se.impl.orbutil.GetPropertyAction class

cause public class

impact arbitrary access to Java system properties

type partial security bypass vulnerability

31 origin sun.misc.Service class

cause lack of a type check of a script engine class prior to creating its instance

impact the ability to bypass security checks implemented in static class initializers of a
3rd party software

type partial security bypass vulnerability

32 origin java.lang.invoke.MethodHandle

cause the possibility to call invokeExact from a system wrapper method

impact bypass of security checks based on the immediate caller

type complete security bypass vulnerability

33 origin com.ibm.rmi.util.ProxyUtil class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary method invocation inside AccessController's doPrivileged

block

type complete security bypass vulnerability

34 origin com.ibm.rmi.util.ProxyUtil class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary method invocation inside AccessController's doPrivileged

block

type complete security bypass vulnerability

35 origin com.ibm.xtq.xslt.runtime.extensions.JavaExtensionUtils class

cause insecure use of invoke method of java.lang.reflect.Method class

impact restricted package bypass via arbitrary method invocation

type complete security bypass vulnerability

36 origin com.ibm.xylem.instructions.StaticMethodInvocationInstructi

on class

cause insecure use of invoke method of java.lang.reflect.Method class

impact restricted package bypass via arbitrary method invocation

type complete security bypass vulnerability

37 origin com.ibm.xylem.instructions.JavaMethodInvocationInstruction

class

cause insecure use of invoke method of java.lang.reflect.Method class

impact restricted package bypass via arbitrary method invocation

type complete security bypass vulnerability

38 origin com.ibm.rmi.io.ObjectStreamClass class

cause insecure use of getDeclaredMethods method of java.lang.Class class

impact access to declared methods of arbitrary classes

type partial security bypass vulnerability

39 origin com.ibm.rmi.io.ObjectStreamClass class

cause insecure use of setAccessible method of

java.lang.reflect.AccessibleObject class

impact overriding standard access permissions of Reflection API object instances

type partial security bypass vulnerability

40 origin com.ibm.lang.management.ManagementUtils class

cause insecure use of forName method of java.lang.Class class

impact access to restricted classes

type partial security bypass vulnerability

41 origin com.ibm.xylem.interpreter.InterpreterUtilities class

cause insecure use of getMethods method of java.lang.Class class

impact access to methods of restricted classes

type partial security bypass vulnerability

42 origin com.ibm.xylem.interpreter.InterpreterUtilities class

cause insecure use of getConstructors method of java.lang.Class class

impact access to constructors of restricted classes

type partial security bypass vulnerability

43 origin com.ibm.rmi.corba.DynamicAny.DynValueCommonImpl class

cause insecure use of forName method of java.lang.Class class

impact access to restricted classes

type partial security bypass vulnerability

44 origin com.ibm.xtq.xslt.runtime.JavaMethodResolver class

cause insecure use of getMethods method of java.lang.Class class

impact access to methods of restricted classes

type partial security bypass vulnerability

45 origin com.ibm.xtq.xslt.runtime.JavaMethodResolver class

cause insecure use of getConstructors method of java.lang.Class class

impact access to constructors of restricted classes

type partial security bypass vulnerability

46 origin com.ibm.rmi.util.ClassCache class

cause insecure use of forName method of java.lang.Class class

impact access to restricted classes

type partial security bypass vulnerability

47 origin com.ibm.xtq.xslt.translator.XSLTCHelper class

cause insecure use of getMethods method of java.lang.Class class

impact access to methods of restricted classes

type partial security bypass vulnerability

48 origin com.ibm.xtq.xslt.translator.XSLTCHelper class

cause insecure use of getConstructors method of java.lang.Class class

impact access to constructors of restricted classes

type partial security bypass vulnerability

49 origin com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl class

cause insecure use of defineClass method of java.lang.ClassLoder class

impact arbitrary class definition in a privileged classloader namespace

type complete security bypass vulnerability

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

