
 

 

 

 

 

 

 

Security Vulnerabilities in Java SE 

Technical Report 

Ver. 1.0.2 

SE-2012-01 Project 

  



 

 

DISCLAIMER 

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT 

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT 

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR 

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR 

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES 

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE 

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, 

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY 

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE 

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE. 

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE 

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION, 

USE, AND RESULTS OBTAINED FROM IT. 

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL 

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR 

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF 

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY, 

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL, 

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR 

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER 

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE 

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN 

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGES. 

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL 

ERRORS. 

  



 

 

INTRODUCTION 

Java has been within our interest for nearly a decade. We've been breaking it with successes 

since 2002 and are truly passionate about it. Regardless of the many changes that had 

occurred in the Rich Internet Application's1 space, Java is still present in the vast number of 

desktop computers. According to some published data2, Java is installed on 1.1 billion 

desktops and there are 930 million Java Runtime Environment downloads each year. These 

numbers speak for themselves and it's actually hard to ignore Java when it comes to the 

security of PC computers these days. 

Java is also one of the most exciting and difficult to break technologies we have ever met 

with. Contrary to the common belief, it is not so easy to break Java. For a reliable, non 

memory corruption based exploit codes, usually more than one issue needs to be combined 

together to achieve a full JVM sandbox compromise. This alone is both challenging and 

demanding as it usually requires a deep knowledge of a Java VM implementation and the 

tricks that can be used to break its security. 

The primary goal of this paper is to present the results of a security research project 

(codenamed SE-2012-013) that aimed to verify the state of Java SE security in 2012. 

Although, it includes information about new vulnerabilities and exploitation techniques, it 

relies on the results obtained and reported to the vendor4 back in 2005. The techniques and 

exploitation scenarios discovered seven years ago are still valid for Java. What’s even more 

surprising is that multiple new instances of certain type of vulnerabilities could be found in 

the latest 7th incarnation of Java SE software. 

The other goal of this paper is to educate users, developers and possibly vendors about 

security risks associated with certain Java APIs. We also want to show the tricky nature of 

Java security. 

In the first part of this paper, quick introduction to Java VM security architecture and model 

will be made. It will be followed by a brief description of Reflection API, its implementation 

and shortcomings being the result of certain design / implementation choices. We will 

discuss in a detail the possibilities for abuse Reflection API creates. 

The second part of the paper will present exploitation techniques and vulnerabilities found 

during SE-2012-01 project. We will show how single and quite innocent looking Java security 

breaches can lead to serious, full-blown compromises of a Java security sandbox. Technical 

details of sample (most interesting) vulnerabilities that were found during SE-2012-01 

research project will be also presented. The paper will wrap up with a few summary words 

regarding security of Java technology and its future.  

                                                           
1 Rich Internet application http://en.wikipedia.org/wiki/Rich_Internet_application 
2 Learn About Java Technology http://www.java.com/en/about/ 
3 SE-2012-01 Security Vulnerabilities In Java SE http://www.security-explorations.com/en/SE-2012-01.html 
4 In 2005, this was Sun Microsystems which was acquired by Oracle corporation in 2010 

http://en.wikipedia.org/wiki/Rich_Internet_application
http://www.java.com/en/about/
http://www.security-explorations.com/en/SE-2012-01.html


 

 

1. JAVA SECURITY ARCHITECTURE 

Java language was invented over 20 years5. What’s interesting and worth mentioning is that 

it was originally designed with a security in mind. The goal of Java was to provide an 

ubiquitous programming and secure execution environment for running untrusted, mobile 

code (Java programs). Below, we summarize the most important security features of the 

language. 

1.1 JAVA SECURITY FEATURES 

Java is an object oriented programming language. Java classes can form hierarchies by the 

means of inheritance. Contrary to the generic class inheritance model, in Java a given class 

can inherit from only one class (it can have only one superclass). The class can however 

implement multiple interfaces. 

Classes and interfaces define fields and methods. Access to them is maintained with the use 

of access scope modifiers. These modifiers allow defining the security and visibility of code 

and data with respect to other classes. 

There are four possible access modifiers that allow configuring access security in Java. 

These are private, protected, public and default (package) access scope modifiers. They can 

be applied at classes, methods and fields level. 

Access security is not what decides about the strength of Java security. Java is a type-safe 

language and it follows strict rules when it comes to operations on objects of different types. 

The goal of this is to implement a fundamental security property of Java, which is a 

memory-safety. No Java program can be considered secure without making sure that illegal 

memory accesses are not allowed in it. Programs that are not memory-safe can easily lead 

to security violation of Java access scope modifiers. Such programs can access fields and 

methods of arbitrary classes regardless of their defined access. All that is required for an 

attacker to break Java memory safety is to accomplish a forbidden cast operation, let’s say 

from a TrustedClass to some EvilClass: If TrustedClass hides some secrets in a form of fields 

or methods with a private access scope modifier, all that is required to gain access to them 

is to clone the layout of these methods and fields in the EvilClass: After successful cast, 

during runtime, access to protected fields and methods of TustedClass will be done. The 

reason for it is because Java runtime usually accesses methods and fields of arbitrary object 

instances by the means of methods table indices or fields offsets corresponding to a given 

target type and with respect to current object instance (this reference). 

Garbage Collection is the other feature of Java that helps maintain memory safety of its 

programs. In Java, programmers deal with abstract references denoting objects instances of 

arbitrary classes instead of pointers. Direct operations on memory pointers are forbidden. 

This is the Java runtime that transforms object operations to memory pointer operations. 

This includes object access operations, but also memory allocation and freeing. In Java, 

while there exists a primitive to allocate an object instance by the means of new bytecode 

instruction (opcode 0xbb), there is no direct way for the user to conduct a corresponding 

                                                           
5 Java (programming language) http://en.wikipedia.org/wiki/Java_%28programming_language%29 

http://en.wikipedia.org/wiki/Java_%28programming_language%29


 

 

free operation6. This does not mean that a memory for objects that were allocated and are 

not used any more cannot be reclaimed. The proper memory reclaiming is done by the 

Garbage Collector, but its actual work is not visible to the user. Garbage Collector keeps 

tracks of all Java objects that are allocated and in use by a Java program. Those that are 

not in use any more are simply disposed. Garbage Collector prevents from insecure memory 

related operations that could lead to the abuse of Java memory safety property. This in 

particular includes all vulnerabilities that could lead to arbitrary sharing of memory between 

the objects of two different (incompatible) types. 

It should be also mentioned that in Java strings are immutable. This means that once a 

string object is created its content cannot be changed any more. Strings are quite important 

in Java – they can represent the names of resources and URLs in particular. One can 

imagine an attack where a content of a given string passes a security check and is later 

modified by an attacker, so that access to a completely different resource could be gained 

(time of check, time of use attack). 

Internal representation of Java strings also prevents from the risks associated with string 

related operations known from the world of the C language. In Java, strings do not end with 

the infamous 0x00 ASCII character. They are always encoded with the use UTF-8 coding 

scheme and the length of the string is part of the internal string representation. 

Finally, in Java all array accesses are subject to several runtime checks. One of them verifies 

the type of the object to be stored into the given Java array. Other runtime checks always 

detects whether the target index to store a given element at is within the allowed range of 

indices (no underflow / overflow). 

1.2 JAVA VM COMPONENTS 

Java runtime has a form of an abstract Java Virtual Machine of which goal is to provide a 

secure execution environment for Java programs. Java Virtual Machine is composed of 

several components as illustrated in Fig. 1. Those of a critical nature to the security of a Java 

VM environment are denoted below: 

 Class Loaders 

 Bytecode Verifier 

 Security Manager 

 JVM Runtime 

- Execution engine 

- Classes definition (Java / native code) 

 OSR compiler 

 Garbage Collector 

We briefly describe only selected components, which are crucial for better understanding of 

the attacks outlined further in this paper. 

1.2.1 Class loaders 

                                                           
6 Users can still force Garbage Collector work by the means of calls to runFinalization method of 

java.lang.Runtime class or gc method of java.lang.System class. 



 

 

Class Loaders are special Java objects that always inherit from java.lang.ClassLoader 

class or its subclass. They provide Java Virtual Machine with Java programs to execute. 

These programs have a form of Class files, which may come from arbitrary locations such as 

remote hosts or local file system. Class Loader location denoting a base source of classes is 

called a codebase. 

 

Figure 1. Java Virtual Machine security architecture. 

Multiple Class files being part of a given Java application can be packaged in a form of ZIP 

or JAR files. They can be also cryptographically signed in order to verify the authenticity of 

the application and its provider. 

Class Loader objects implements several security critical methods. This includes the 

following: 

- protected Class findClass(String name) 

This method is invoked whenever a definition of a target class name is not found in 

the Java VM and when an attempt is made to load it from some external location. 

- public Class loadClass(String name) 

protected Class loadClass(String name, boolean resolve) 

This are the base methods that allows to load a given class (denoted by the name 

argument) to VM. The returned object is the instance of java.lang.Class class, 

which is a Java representation of VM classes. The second form of loadClass 

method contains additional argument that specifies whether class resolving (linking) 

should take place. 

- protected final Class defineClass(String name, byte body[], 

int off, int size, ProtectionDomain protectiondomain) 

This method is invoked whenever a given class (denoted by the name argument) is 

to be defined in the VM. The body argument holds the Class bytes to define. The 

protectiondomain argument will be discussed further in this document. It is sufficient 

to say that it denotes the permissions of a defined class. 



 

 

The abovementioned methods are not accessible to untrusted code, except one argument 

loadClass() method. 

Class Loader objects are quite powerful. They provide class definitions to the VM. They can 

specify permissions for loaded classes. Finally, they can also load native libraries into Java 

VM. These are just a few of the many reasons behind the requirement for the possession of 

a proper security privilege designating Class Loader creation. The checks for this privilege 

are implemented in ClassLoader instance initialization method (<init>). 

Class Loaders provide the means to dynamically resolve unknown classes. With respect to 

this, their role in Java VM is similar to dynamic linkers’ role in Unix. 

In order to understand the class resolving process in Java VM, one needs to be aware that 

Class Loaders can form complex hierarchies too. They can delegate a Class loading process 

to the so called parent Class Loader. What this means is that a caller of the loadClass() 

method does not necessarily be the same as the caller of defineClass() method. This is 

how we come to the concept of defining class loader. The Class Loader calling 

defineClass method is a given class’ defining class loader. Whenever there is a need to 

resolve (load) an unknown class referenced from let’s say class A, this is the loadClass() 

method of class A’s defining class loader that will be called for assistance. The assumption is 

that any class referenced by a given class is likely to come from the same location as the 

class that refers it. 

Classes defined by a given Class Loader instance denote its namespace. Since, multiple 

Class Loader instances can coexist in one Java VM, this implicates the existence of multiple 

Class Loader namespaces. This also creates a risk of a class spoofing attack relying on the 

possibility to define a Class with the same name in two different Class Loader namespaces. 

Class Loader constraints detect conflicts (spoofed classes) between classes defined in two 

different namespaces. They are enforced during field / method resolution occurring across 

different Class Loader namespaces. 

What’s important for further topics discussed in this paper is that a NULL Class Loader value 

designates a trusted, bootstrap class loader. All system classes, such as those coming from 

rt.jar file are defined in this namespace. 

Also, a package (default) based access to classes, fields and methods is guarded at the class 

loader namespace level. In order to gain access to a class with default (package) access, the 

following two conditions need to be fulfilled: 

- the package name of a requesting class needs to be the same as the package name 

of a target class, 

- both classes need to be defined in the same Class Loader namespace. 

The above makes package based access one of the strongest among Java access scope 

modifiers. In order to beat it, an attacker needs to achieve a compromise through Class 

Loader or Class Loader constraints. In our opinion, that is sufficiently challenging itself. 

1.2.2 Bytecode Verifier 



 

 

Bytecode Verifier is the primary gatekeeper of Java VM security. This component is called 

during class loading process. It makes sure that a given sequence of bytes provided to the 

defineClass() method of Class Loader conforms to the Class file format. It also verifies 

the integrity and safety of bytecode instruction streams embedded in a Class definition. 

Bytecode Verifier works in multiple passes during which it verifies VM constraints defined in 

Java Virtual Machine Specification. This is the Bytecode Verifier that verifies the type-safety 

of a target Java code. Any attempt to conduct an illegal type-cast from integer to object or 

vice-versa should be detected by this VM component. 

Bytecode Verifier conducts a static analysis of a target bytecode instruction stream. It does 

this work by emulating the effect of a target instruction to the content of Java VM state, but 

solely with respect to the type information held in registers and on the stack. In the past, 

Bytecode Verifier algorithm inferenced all type information during the analysis of bytecode 

instruction flow. 

Starting, from Java SE 6 and above, there is a new rewritten implementation of Bytecode 

Verifier that uses a split bytecode verification process upon Eva Rose’s Lightweight Bytecode 

Verification thesis. 

1.2.3 Security Manager 

Security Manager verifies and authorizes all security sensitive operations in a given VM 

environment. Security Manager objects are instances of java.lang.SecurityManager 

class or its subclass. There is one special object in each Java VM environment that denotes 

the Security Manager. A reference to it can be obtained by calling 

getSecurityManager() method of java.lang.System class. This is the reference 

that’s stored in a private static security field of this class. 

Security Manager implements security checks verifying for the permissions required prior to 

conducting a given security sensitive operation. Its sample invocation is illustrated by Fig. 2.  

 

Figure 2. Sample invocation of Security Manager’s check. 

The absence of Security Manager is indicated by its null value. In such a case, no security 

checks are in place and Java program can run without any restrictions in a target Java VM 

environment. 

The possibility to create an instance of a Security Manager does not lead to a direct 

compromise of VM security. The reason for it is that this is the security field of 

java.lang.System class that matters - it holds a reference to the Security Manager, 

which is in use by the environment. 



 

 

Security Manager verifies whether a target class has specific permissions required for a 

given security sensitive operation. Java permissions are instances of 

java.security.Permission class or its subclasses. 

Java SE has dedicated permissions for specific operations, such as network access, file 

system access, native library loading, specific API access, restricted package access, 

program execution, etc. There is also one special permission object that denotes ROOT 

privileges in Java. This is AllPermission permission.  

It should be noted that many single permissions can be easily elevated to AllPermission. 

This includes, but is not limited to the following permissions: createClassLoader, 

accessClassInPackage.sun, setSecurityManager, suppressAccessChecks.  

It was already mentioned that defineClass() method of ClassLoader class can be 

used to provide Java VM with both Class definition and its permissions. The permissions that 

are used for the call are not provided in a direct form, but are encapsulated inside a 

Protection Domain object. The reason for it is because each class loaded into VM is defined 

in a specific Protection Domain (instance of java.security.ProtectionDomain class). 

Same Protection Domain (PD) is assigned to classes that come from the same location 

(CodeSource) and that share both a Class loader instance and a set of Permissions  

(permissions assigned to classes by this PD). Sample protection domain is illustrated on Fig. 

3. 

 

Figure 3. Sample Protection Domain of untrusted Java Applet application. 

As this was the case for Class Loaders, null value of Protection Domain also has a special 

meaning. It indicates a privileged, system code (the one coming from a bootstrap 

classpath). 

1.3 JAVA SECURITY MODEL 

Oracle’s Java SE implementation is based on a security model utilizing stack inspection with 

scopes described in Understanding Java Stack Inspection paper by Dan S. Wallach and 

Edward W. Felten. This security model was first introduced to Netscape 4.x web browsers. 



 

 

Although, Java stack inspection used in Netscape was completely broken7, the idea still 

deserves a credit as being extremely clever and powerful. 

In short, Java stack inspection is a mechanism that allows either verifying or enabling class’ 

permissions. In this model, permissions granted to the class are not in effect till proper 

construct is used that actually enables them. Granted permissions can be enabled only for a 

specific, implicitly denoted code scope. This code scope has a form of a stack frame. 

Enabling class permissions requires proper marking of a privileged code scope (its start) on 

a call stack. In case of Java SE, a call to the doPrivileged method of  

java.security.AccessController class is responsible for doing this. This call asserts 

a special, privileged frame into a call stack and executes run() method of the 

PrivilegedAction (or PrivilegedExceptionAction) object provided as an 

argument to the doPrivileged method call. This mechanism is illustrated on Fig. 4. 

 

Figure 4. Example privileged operation in Java. 

Java stack inspection mechanism makes it impossible to abuse target system’s security by 

the means of arbitrary injection of a stack frame belonging to untrusted code inside a 

privileged code block (scope). The reason for it is simple. Security Manager’s check methods 

verify permissions of all the classes from a current scope (call stack). Stack frames are 

inspected until either the end of a call stack or a special (privileged) frame is reached. The 

permission check will succeed only if all classes from a current code scope have a given 

permission granted. In the case of encountering an unprivileged stack frame, security 

exception is thrown. The operation of this mechanism is illustrated on Fig. 5. 

 

                                                           
7 Full sandbox bypass exploit for all Netscape 4.x versions was developed in 2002, though it was never 
published. 



 

 

Figure 5. Java stack inspection in action. 

The implementation of Java stack inspection requires that during runtime, it is possible to 

identify permissions of a given stack frame. This is accomplished by inspecting permissions 

of a class declaring a called method. In a case when an unprivileged class inherits from a 

privileged one and the class does not overload the method that is to be called and that is 

pushed onto the call stack, this will be the privileged class that will be the subject of a 

permission check, not the untrusted class. 

1. 4 PACKAGE ACCESS RESTRICTIONS 

Oracle Java SE security model implements additional isolation of classes at the package 

level. There are many runtime classes that implement potentially dangerous functionality 

related to security, reflection, deployment and instrumentation in particular. Granting access 

to these packages might result in a Java VM compromise. 

Oracle Java SE implements and enforces package access restriction in various runtime 

locations. This includes Class Loaders and Security Manager in particular. 

Security Manager contains checkPackageAccess method verifying whether a given 

package name is on the list of restricted packages. The list of restricted packages is defined 

in java.security file as package.access property. Some of restricted packages 

include:  sun, com.sun.xml.internal.ws, com.sun.xml.internal.bind and 

com.sun.imageio. 

Many Class Loaders contain proper checks verifying access to restricted packages in their 

loadClass() methods. This check usually has the form similar to the one denoted on Fig. 

6. 

 

Figure 6. Most common implementation of a check for access to a restricted class. 

What’s worth mentioning is that in the past, many Class Loaders could be tricked into 

loading restricted classes. All that was required to accomplish that was a class name 

denoting an array of classes and using internal Java VM representation such as 

[Lsun.misc.Unsafe; (array of sun.misc.Unsafe class). 

One of the most interesting locations where a security check for package access is enforced 

is the checkPackageAccess method of java.lang.ClassLoader class. This method is 

called internally by the Java VM at the time of class linking, such as the one occurring 

between a class and its superclass. The actual call does not take place every time, but only 



 

 

when VM detects that a linking is conducted between classes coming from a non-system and 

a system class loader namespaces. This corresponds to the scenario when a user class 

inherits from or refers to the class from a restricted package defined in a NULL Class Loader 

namespace. 

2. REFLECTION API 

Java Reflection API provides a functionality for dynamic loading of classes, inspection and 

use of their members (fields, methods and constructors). The API can be extremely useful 

and powerful, especially for a code requiring more dynamic capabilities such as the one of 

which execution is driven by input data. 

Reflection API allows to deal with references to methods and fields in a similar way this is 

done in C/C++ languages. Field values can be queried or modified by the means of 

corresponding set and get operations. Similarly, methods can be invoked by the means of 

the invocation operation. 

This chapter provides brief introduction to both old (Core) and new Reflection APIs, which 

are implemented by latest version of Java SE 7 software. 

2.1 CORE API 

The Core Java Reflection API is implemented by java.lang.Class and the classes from 

the java.lang.reflect package. The API allows examining or modifying the runtime 

behavior of applications running in Java VM. This includes the following functionality: 

 obtaining Class objects, 

 examining properties of a class (fields, methods, constructors), 

 setting and getting field values, 

 invoking methods, 

 creating new instances of objects. 

Reflection API is implemented by several classes that correspond directly to Java classes and 

their members. 

The table below provides a summary of the functionality provided by the 

java.lang.Class class representing classes and interfaces in a running Java application. 

Method name Description 
Class forName(String name) Returns the Class object associated with 

the class or interface with the given string 
name 

Class forName(String name,boolean b,ClassLoader cl) Returns the Class object associated with 
the class or interface with the given string 
name, using the given class loader 

Method[] getMethods() Returns an array containing Method objects 
reflecting all the public member methods of 
the class or interface represented by this 
Class object, including those declared by 
the class or interface and those inherited 



 

 

from superclasses and superinterfaces 
Method[] getDeclaredMethods() Returns an array of Method objects 

reflecting all the methods declared by the 
class or interface represented by this Class 
object 

Method getMethod(String name,Class[] desc) Returns a Method object that reflects the 
specified public member method of the class 
or interface represented by this Class 
object 

Method getDeclaredMethod(String name,Class[] desc) Returns a Method object that reflects the 
specified declared method of the class or 
interface represented by this Class object. 

Constructor[] getConstructors() Returns an array containing Constructor 
objects reflecting all the public constructors 
of the class represented by this Class object 

Constructor[] getDeclaredConstructors() Returns an array of Constructor objects 
reflecting all the constructors declared by 
the class represented by this Class object 

Constructor getConstructor(Class[] desc) Returns a Constructor object that reflects 
the specified public constructor of the class 
represented by this Class object 

Constructor getDeclaredConstructor(Class[] desc) Returns a Constructor object that reflects 
the specified constructor of the class or 
interface represented by this Class object 

Field[] getFields() Returns an array containing Field objects 
reflecting all the accessible public fields of 
the class or interface represented by this 
Class object 

Field[] getDeclaredFields() Returns an array of Field objects reflecting 
all the fields declared by the class or 
interface represented by this Class object 

Field getField(String name) Returns a Field object that reflects the 
specified public member field of the class or 
interface represented by this Class object 

Field getDeclaredField(String name) Returns a Field object that reflects the 
specified declared field of the class or 
interface represented by this Class object 

 

Methods of java.lang.Class class can be used to obtain detailed information about 

fields, methods and constructors of a given Java class or interface. This includes information 

about both public and declared members. 

Method objects can be used for arbitrary method invocations. The invoke method 

implemented by java.lang.reflect.Method class can be used for that purpose. Its 

syntax is presented in a table below. 

Method name Description 

Object invoke(Object obj,Object[] args) Invokes the underlying method represented by 
this Method object, on the specified object with 



 

 

the specified parameters 

 

Field objects can be used to get or set the value of arbitrary fields. The table below provides 

a summary of the functionality provided by the java.lang.reflect.Field class that 

represents fields of Java classes or interfaces. 

Method name Description 

Object get(Object obj) Returns the value of the field represented by this 
Field, on the specified object 

void set(Object obj,Object val) Sets the field represented by this Field object 
on the specified object argument to the specified 
new value 

boolean getBoolean(Object obj) Gets the value of a static or instance boolean 
field 

void setBoolean(Object obj,Object val) Sets the value of a field as a boolean on the 
specified object 

byte getByte(Object obj) Gets the value of a static or instance byte field. 
void setByte(Object obj,byte val) Sets the value of a field as a byte on the 

specified object. 
char getChar(Object obj) Gets the value of a static or instance field of type 

char or of another primitive type convertible to 
type char via a widening conversion 

void setChar(Object obj,char val) Sets the value of a field as a char on the 
specified object 

int getInt(Object obj) Gets the value of a static or instance field of type 
int or of another primitive type convertible to 
type int via a widening conversion 

void setInt(Object obj,int val) Sets the value of a field as an int on the 
specified object 

long getLong(Object obj) Gets the value of a static or instance field of type 
long or of another primitive type convertible to 
type long via a widening conversion 

void setLong(Object obj,long val) Sets the value of a field as a long on the 
specified object 

 

Constructor objects can be used to create new instances of Java classes. The newInstance 

method of java.lang.reflect.Constructor class corresponding to class constructor 

can be used for the creation of arbitrary object instances. Its syntax is presented in a table 

below. 

Method name Description 

Object newInstance(Object[] args) Uses the constructor represented by this 
Constructor object to create and initialize a 
new instance of the constructor's declaring class, 
with the specified initialization parameters 

 



 

 

Field, Method and Constructor classes inherit from 

java.lang.reflect.AccessibleObject class. This class provides a functionality to 

override standard Java access scope modifiers by the means of its private field called 

override. If the value of this field is set to true operations on class or interface members 

are allowed regardless of their Java security protections (access). This is illustrated in Fig. 7. 

 

Figure 7. Override field and its impact to access security checks. 

In case of the invoke method implementation, true value of override leads to the bypass 

of security check verifying whether a caller class of the method is allowed to access it. 

The only way to change the value of the override field is through the invocation of 

setAccessible method done inside a privileged code block. 

 

Figure 8. Type confusion condition with the use of Reflection API. 

Core Reflection API can be also abused to break memory safety. This can be accomplished 

with the use of a type field value of a reflective Field object. It denotes the type (Java 

Class) of the underlying field. Proper change to this value may allow setting the value of a 

target field to the value of incompatible type. One can imagine a situation where the type of 



 

 

the field denoting java.lang.Object value is changed to int. In such a case, access to 

fields of the object may lead to memory accesses from the base pointer denoted by the 

integer value as it will be confused with the object reference. This condition is illustrated in 

Fig. 8.  

2.2 IMPLEMENTATION 

Reflection API implementation needs to take into account the fact that callers of the API 

may come from different Class Loader namespaces and that they may request access to 

classes and members they should not be allowed to. This in particular includes access to 

classes and methods from restricted packages. 

For security purposes, all Reflection API calls take the immediate caller’s class loader into 

account prior to the dispatching of a given call. This is illustrated in Fig. 9. 

 

Figure 9. Sample use of a caller Class Loader in Reflection API methods. 

What can be seen from the figure, the code of sample getMethods() method invokes 

security check implemented by checkMemberAccess() method. Class Loader of a caller 

class is provided as an argument to this call. The Class Loader is retrieved by the means of 

getCallerClassLoader() method of java.lang.ClassLoader class. This method 

obtains the Class from a fixed call stack location (at index 3) and returns its defining Class 

Loader object. For those who wonder about the value of the index, the following call stack 

outline as seen by Reflection.getCallerClass() method should be helpful: 

 IDX 0  Reflection.getCallerClass() 

 IDX 1  ClassLoader.getCallerClassLoader() 

 IDX 2  Class.getMethods() 

 IDX 3  Caller Class 

Security check implemented by checkMemberAccess() method is illustrated on Fig. 10. 

This check takes place only in Java VM environments with Security Manager enabled (non-

null value returned by System.getSecurityManager() call). What’s crucial with respect 

to the implementation of checkMemberAccess() method is the fact that a security check 

verifying access to restricted packages is skipped if a caller’s Class Loader value comes from 

a NULL class loader namespace. This means that Reflection API calls made from system 

classes are never subject to this check. 



 

 

 

Figure 10. Implementation of checkMemberAccess() method. 

Taking into account the nature of the security check relying on a caller class of the 

Reflection API call, it’s risky to assume that a caller would be always trusted. There are 

dozens of system classes that make use of Reflection API calls, which naturally creates a 

potential for the security abuse. 

2.3 CORE API ABUSES 

Reflection API calls used by system classes take arguments, which in many cases can be 

controlled by the user. One can think of at least the following user input forms that might 

influence the target reflective method invocation: 

 direct user input, 

 indirect user input by the means of Java trickery (inheritance / overloading), 

 indirection through Reflection API calls such as Method.invoke(). 

By controlling the arguments to Reflection API calls used by system classes, one can actually 

impersonate the trusted caller (system class from NULL Class Loader namespace) of these 

invocations. This can further lead to the following abuse scenarios: 

 access to restricted classes, fields and methods can be gained, 

 restricted objects can be created, 

 restricted methods can be invoked. 

The generic requirement is that the arguments to the target Reflection API call can be 

controlled and that any result values returned by the call are also available to the attacker. 

For calls returning new object instances it is also important that their return type is 

java.lang.Object class and not any other type as this implicates the use of a cast type 

operation potentially detecting the abuse of the newInstance() call. 

The idea behind the abuse of Reflection API calls used by system classes is illustrated on 

Fig. 11. The assumption is that attacker provided Exploit class calls a functionality of some 

Vulnerable system class. The Vulnerable class invokes Reflection API, which can be 

potentially abused by the means of its arguments. One can imagine, a condition where the 

abuse leads to the invocation of java.lang.Class methods with user provided 



 

 

arguments. Instead of forName argument denoting some Beans class, an attacker might be 

able to trick the call and provide it with an argument denoting a class from a restricted 

package such as sun.misc.Unsafe. The Vulnerable class will proceed with the call and as 

a trusted caller will successfully obtain the requested class. It will be further returned to the 

Exploit caller through the Vulnerable class. 

 

Figure 11. Generic idea behind the abuse of Reflection API calls used by system classes. 

In general, all Reflection API calls presented earlier in this document are subject to the 

potential abuse. Below, we provide a brief summary of them in the context of their 

usefulness for achieving specific security bypass conditions. 

2.3.1 Class.forName(String) 

This is the most desired form to load arbitrary class from within a system code. Since, the 

caller of the class is a system class, any abuse of the call will result in a direct access to 

restricted classes. 

2.3.2 Class.forName(String,Boolean,ClassLoader) 

This form is frequently present in system code. The Class Loader provided as an argument 

to the call usually designates current Thread’s context CL (the value returned by 

Thread.currentThread().getContextClassLoader() call). This form can be still 

abused provided that one of the following conditions is true: 

 ClassLoader argument is NULL, 

 ClassLoader  is an instance of the class that does not verify for package access in its 

loadClass() method. 

2.3.3 Class.getSuperclass() / Object.getClass() 

Some objects available to untrusted Java code are already instances of or inherit from 

restricted classes. In such a case, the reference to the restricted class can be easily obtained 

by the means of a call to getClass() method of java.lang.Object class. A real-life 

example of such a condition, which was present in Java SE code is illustrated on Fig. 12. 



 

 

 

Figure 12. Obtaining restricted Class through getClass() method call. 

2.3.4 Field.getType() 

Some field objects declared by system classes are already instances of restricted classes 

such as sun.misc.Unsafe. Sample classes that declare static instance of Unsafe class 

include java.nio.Bits and java.util.concurrent.atomic.AtomicBoolean. 

Since the fields declared by these classes are private, the only way to obtain their reflective 

instances is by the means of some security vulnerability. Assuming, there is a way to obtain 

declared Field object of arbitrary classes, the abuse scenario illustrated on Fig. 13 can be 

used to obtain access to restricted classes with the use of a getType() method call 

invoked for a target Field object. 

 

Figure 13. Obtaining restricted Class through getType() method call. 

2.3.5 Class.getComponentType() 

Past Class Loader implementations didn’t take into account internal, Java VM representation 

of class names. This created a possibility to issue a request to Class Loader instance to load 

an array of classes, instead of a single Class object. Although, this abuse scenario should not 

be valid any more for current Java SE implementations, it’s still interesting to mention. 

Sample abuse demonstrating code sequence loading an array of restricted classes is 

illustrated on Fig. 14. 

 

Figure 14 Obtaining restricted Class through getComponentType() method call. 

2.3.6 Class.getField(),Class.getFields() 

Public fields are quite rare, therefore it’s difficult to speak about abuses in that context. 

There are however some interesting field instances that can be found in restricted 

interfaces. One of them is a public REFLECTION field of  

com.sun.xml.internal.bind.v2.model.nav.Navigator interface. By default, it 

holds a reference to the instance of 



 

 

com.sun.xml.internal.bind.v2.model.nav.ReflectionNavigator class that 

itself is quite interesting from an attacker point of view (it implements a functionality to 

obtain information about declared fields and methods of a given class). 

2.3.7 Class.getDeclaredField(),Class.getDeclaredFields() 

Access to declared fields can be abused to obtain references to restricted classes as in the 

case of previously described getType() method call. There is however one more scenario 

for the abuse of access to declared fields. It might be possible to set arbitrary values of 

private fields if declared field access is combined with another vulnerability. More 

specifically, this scenario can take place if override value for a reflective Field object can 

be set to true. This usually requires insecure invocation of setAccessible method of 

AccessibleObject class conducted inside a privilege code block. 

2.3.8 Method.invoke() 

Insecure use of the invoke method of the Method class is the crème of the crème when it 

comes to Reflection API vulnerabilities. Arbitrary method invocation from a system class 

allows for virtually anything. Thus, invoke is the most desired form of Reflection API use 

by system code. 

There is no security check prior to the invocation for public methods. Sole possession of the 

restricted Method object is sufficient to actually invoke it. The assumption is that proper 

security check had been already made at the time of acquiring the Method object. This 

explains why unsafe calls to Reflection API acquiring Method objects should be treated as a 

security risk. 

The most helpful methods that may be called by insecure invoke call are those obtaining 

access to declared fields or methods of arbitrary classes.  

Some invoke calls present in system classes may have a fixed value of a target object 

provided as an argument to the call. This is an obstacle eliminating the possibility of 

arbitrary virtual method invocations. However, if target object is not under attacker’s 

control, static method invocations are still possible. This is illustrated on Fig. 15. 

 

Figure 15. Invoke primitive and static method invocations. 



 

 

The problems stems from the fact that invoke called for a static Method object simply 

ignores the value of a target object to which the call is to be applied (invokestatic bytecode 

instruction does not have this argument). Static method invocations should not be 

underestimated. There are many interesting static methods that can either lead to security 

bypass condition or can facilitate the exploitation process of Reflection API flaws. Just to 

mention forName() method of java.lang.Class class. 

Private methods may be called only with a combination of some other issue such as the one 

overriding standard Java access scope modifiers (insecure use of 

AccessibleObject.setAccessible(true) inside a privileged code block). 

2.3.9 Class.getConstructor() / Class.getDeclaredConstructor() 

Access to Constructor objects can be abused for the creation of instances of arbitrary classes 

such as those from restricted packages. Creation of arbitrary object instances requires that 

newInstance() method is called for a target Constructor object. 

In some cases, Constructor object with a fixed parameter types can be only obtained. Such 

a condition still requires attention as even Constructors with one java.lang.String 

argument can be abused for the instantiation of PrivilegedAction objects that may be 

instances of restricted classes. 

2.3.10 Class.newInstance() 

No argument call to the newInstance method of java.lang.Class class might not 

seem to be interesting from a security point of view. It can be used to create object 

instances of public classes from restricted packages. In some circumstances, single 

newInstance() method invocation can also facilitate some other attacks. For example, 

newInstance() invoked within a privileged code block can help bypass security checks 

implemented in static class initializers (<clinit> methods). In some other cases, such 

invocations may lead to the recreation of certain security sensitive object instances 

(sun.misc.Launcher). 

2. 4 NEW API 

Java SE 7 introduced support for dynamic code execution and scripting in the form of a new 

invokedynamic VM bytecode instruction. Along with that, new Reflection API was also added 

to the software. This API is implemented by the classes from java.lang.invoke package. 

The new API introduced a concept of method handles implemented by the MethodHandle 

class. A method handle is a more generic concept than java.lang.reflect.Method 

object known from the Core Reflection API. Method handle designates a typed, directly 

executable reference to an underlying method, constructor or field. Method handle is not 

distinguished by the name or the defining class of their underlying methods, but rather by a 

type descriptor associated with it. This type descriptor is an instance of MethodType class 

and it denotes a series of classes, one of which is the return type of the method. 



 

 

Method handles can be used to access methods, constructors and fields. They provide 

means for optional arguments or return values transformations. 

Method handles can be created with the use of a functionality of MethodHandles.Lookup 

class. A summary of the methods supported by this class is presented in a table below. 

Method name Description 
MethodHandle findConstructor(Class c,MethodType t) Produces a method handle 

which creates an object and 
initializes it, using the 
constructor of the specified type 

MethodHandle findGetter(Class c,String name, MethodType t) Produces a method handle giving 
read access to a non-static field 

MethodHandle findSetter(Class c,String name, MethodType t) Produces a method handle giving 
write access to a non-static field 

MethodHandle findSpecial(Class c,String name, MethodType 
t,Class caller) 

Produces an early-bound 
method handle for a virtual 
method, as if called from an 
invokespecial instruction 
from caller 

MethodHandle findStatic(Class c,String name, MethodType t) Produces a method handle for a 
static method 

MethodHandle findStaticGetter(Class c,String name, 

MethodType t) 
Produces a method handle giving 
read access to a static field 

MethodHandle findStaticSetter(Class c,String name, 
MethodType t) 

Produces a method handle giving 
write access to a static field 

MethodHandle findVirtual(Class c,String name, MethodType t) Produces a method handle for a 
virtual method 

 

In the new API, all reflective accesses to methods, constructors and fields are done with 

respect to the special lookup object, which is the instance of MethodHandles.Lookup 

class. This lookup object denotes the class with respect to which all method handle lookup 

operations are conducted. By default, this is the caller class of 

MethodHandles.Lookup()that is used as a lookup class. 

 

Figure 16. Differences between the Core and New Java 7 Reflection APIs. 



 

 

Method handles can be called with the use of special invoker methods such as 

invokeExact and invoke. 

Fig. 16 contains a sample code illustrating the differences between the Core and new 

Reflection API. 

New Reflection API seems to provide less security by design than the Core Reflection API. 

The reason for it is that method handles do not perform access checks when they are called, 

but rather when they are created. This explains why method handles to non-public methods, 

or to methods in non-public classes, should generally be kept secret. 

2.5 NEW API ABUSES 

All abuses that may occur with respect to the new Java 7 Reflection API are connected to 

the lookup class. The idea behind a lookup object is to have it act as the class on behalf of 

which reflective access is made prior to obtaining a method handle. A system class from 

NULL class loader namespace used as a lookup class is sufficient for gaining reflective 

access to restricted classes as illustrated on Fig. 17. 

 

Figure 17. Lookup object and reflective access to restricted classes. 

The reason for it is caused by the nature of a security check conducted in 

MethodHandles.Lookup class prior to any method handle creation. This check allows for 

access to arbitrary members (methods, constructors and fields) of restricted classes if the 

lookup object and a target class are from the same class loader namespace. 

 

Figure 18. Creation of the lookup object with a system class. 

Due to the above and the fact that by default, a lookup object instance uses a caller of the 

MethodHandles.Lookup()  method as a lookup class,  all one needs to do is to call this 



 

 

method from a system code to create a lookup object with a system class. This is illustrated 

on Fig. 18. A system lookup object may be created by the means of an insecure static 

method invocation conducted from a system class. Such a call would allow impersonating of 

a system class. 

This should be sufficient for further abuse of the trust that lookup objects put into the 

callers that created them. 

3. EXPLOITATION TECHNIQUES 

Reflection API abuses look quite innocent when considered separately. Obtaining access to 

the restricted class does not pose a serious threat to the security of Java VM. The reason for 

it is that one needs to have access to the methods of a restricted class to actually be able to 

conduct any potentially dangerous action. Similarly, the ability to enumerate and acquire 

methods of arbitrary classes does not seem to raise any alarm as access to a restricted class 

is needed prior to be able to obtain its methods. 

That sort of thinking is not that uncommon among software vendors8. Unfortunately, it is 

wrong. In this chapter, we will present exploitation techniques that can be successfully 

applied for Reflection API based abuses in order to achieve a full-blown compromise of Java 

VM security sandbox. 

3.1 GENERIC SCENARIOS 

General idea behind exploitation of Reflection API issues is based on the use of reflective 

calls made by system code for the following purposes: 

 loading of restricted classes, 

 obtaining references to constructors, methods or fields of a restricted class, 

 creation of new object instances, methods invocation, getting or setting field values 

of a restricted class. 

The goal is to access security sensitive objects and their functionality in a way that would 

compromise VM security. Such objects are common in restricted packages. 

Below, we present several scenarios for turning Reflection API weaknesses into complete 

Java security sandbox compromises. 

3.1.1 Full sandbox bypass attack scenario #1 

The precondition to this scenario is a combination of vulnerabilities that allow obtaining 

restricted classes and their methods. The goal is to exploit reflective access to restricted 

classes in such a way, so that a custom, attacker provided class could be defined in a 

privileged class loader namespace. Figure 19 shows a sample class that could be used for 

that purpose. 

                                                           
8 We received an inquiry from a software company that tried to address a 0-day Java attack code from Aug 2012 
in an open source Java SE implementation. The company asked whether a fix for a bug allowing to obtain access 
to restricted classes should be a priority and whether it could be addressed at some later time. 



 

 

Attacker’s class can have a form of a PrivilegedAction instance. The action 

implemented by its run method can be triggered from within a privileged code block by the 

means of a doPrivileged method invocation. 

 

Figure 19. Sample class facilitating Java VM security sandbox bypass. 

The privileged action from Fig. 19 invokes setSecurityManager method of 

java.lang.System class with a NULL argument. Such an invocation, results in a disabling 

of Security Manager in a target Java VM environment provided that a call is made by a 

privileged code. 

Upon definition of the HelperClass in a NULL Class Loader namespace, all that is required to 

achieve a complete Java security sandbox compromise is this class instantiation with the use 

of newInstance method call. As part of its implementation, newInstance triggers 

execution of the class instance initialization method (constructor) which further leads to the 

execution of a privileged action as well. 

3.1.2 Full sandbox bypass attack scenario #2 

The precondition to this scenario is a vulnerability allowing changing the accessible state of 

a private java.lang.reflect.Method object. Such a condition may occur as a result of 

insecure call to setAccessible method of AccessibleObject class. 

The goal is to use the accessible (usually private) methods in a way that would result in 

scenario #1. The following methods could be used for that purpose: 

 forName0 method of java.lang.Class class 

 privateGetPublicMethods method of java.lang.Class class 

The first method allows obtaining a reference to the restricted class, the other to obtain 

methods of arbitrary class. 

3.1.3 Partial sandbox bypass scenario 

The precondition to this scenario is a vulnerability allowing creating instances of 

PrivilegedAction or PrivilegedExceptionAction interfaces from a restricted 

sun.security.action package. Sample instances of the action classes contained in this 

package include OpenFileInputStreamAction, GetPropertyAction and 

LoadLibraryAction. 



 

 

The goal is to use a valid privileged action object defined by a system code as an argument 

to the doPrivilegedWithCombiner method of java.security.AccessController 

class. Since doPrivilegedWithCombiner is a wrapper method for the actual call to 

doPrivileged method, it assert additional stack frame from NULL Class Loader 

namespace into the call stack prior to doPrivileged method invocation. This frame makes 

it possible to actually use arbitrary instances of PrivilegedAction objects. Their use with 

the doPrivileged method call would lead to the security exception. The reason for it is 

the implementation of Java VM permission check routine. During permission check, this 

routine also checks the caller class of a doPrivileged method call for proper permissions. 

The described sandbox bypass scenario is only partial as all that can be achieved with the 

use of it is arbitrary file read access (OpenFileInputStreamAction) or Java properties 

access (GetPropertyAction). 

LoadLibraryAction although with a high potential for code execution through the library 

initialization code sequence is useless for the presented exploitation scenario. The reason for 

it is the fact that a library name provided as an argument to the action object cannot denote 

an absolute path such as UNC share. If this is the case, library loading operation is not 

performed. 

3.1.4 An attack scenario to keep in mind 

Reflection API risks are not only about accessing classes and objects from restricted 

packages such as sun. There are many implementations of PrivilegedAction or 

PrivilegedExceptionAction interfaces in unrestricted packages. 

The default access of any PrivilegedAction class and its constructor is package scoped. 

There might however be a situation when reflection API could be abused to create instances 

of such objects. This in particular includes the system code making use of the reflection API 

and residing in the same package as the target privileged action class. 

A proper combination of getDeclaredConstructor() / newInstance() is required to 

be present in a system class in order to be able to create arbitrary instances of privileged 

action objects defined in the same package. 

In the past, we found one instance of this attack scenario that relied on a combination of 

getConstructor() / newInstance() method calls. It is illustrated on Fig. 20. The 

attack exploited the sequence of Reflection API calls implemented by 

javax.swing.UIDefaults$ProxyLazyValue class. Its createValue method used 

the three argument forName call to java.lang.Class class. It was difficult to abuse it 

for arbitrary loading of a restricted class as the Class Loader instance provided as a third 

argument pointed to the value of current user Thread’s context Class Loader. However, any 

other class, such as the class from the same package could be successfully loaded by this 



 

 

call. The reason for it is that forName method does not validate whether the caller class 

has access to the requested class9 (requested class can have private or package access).  

 

Figure 20. Sample abuse of Reflection API for the creation of package scoped privileged action object. 

The remaining Reflection API call used by createValue method was aimed at obtaining 

the Constructor object of the loaded class and calling newInstance on it. Since, this was 

the getConstructor method that was used to query for constructor value, only classes 

with public constructors could be successfully retrieved. Class 

javax.swing.JOptionPane$ModalPrivilegedAction was one of them. It was in the 

same package as javax.swing.UIDefaults$ProxyLazyValue class. It had a public 

constructor and was also implementing the PrivilegedAction interface. It was a perfect 

candidate for arbitrary instantiation by the means of Reflection API abuse. What’s interesting 

is that a final call to newInstance invoked from within createValue method was 

successful regardless of the fact that ModalPrivilegedAction class was declared as 

private. The reason for it is that private for inner classes actually means package scope. 

Thus, newInstance called from within the same package could succeed (instantiation of 

the class in the same package / same Class Loader namespace). 

The result of the described attack was a complete Java security sandbox compromise. 

Instantiation of arbitrary ModalPrivilegedAction could be exploited to change the 

override value of any declared method (denoted by a name and it declaring class) to true. 

This could be directly exploited by the means of Full sandbox bypass attack scenario #2 

described above. 

3.2 COUNTERMEASURES 

Reflection API abuses reported to Sun Microsystems in 2005 needed to be addressed in 

some way. The company had come up with various solutions that include introduction of 

additional security checks (sometimes new privileges), replacing vulnerable Reflection API 

methods with their secure replacements and also Reflection API filtering. Below, a brief 

summary of the latter two countermeasures is provided. 

                                                           
9 This is a known weakness of forName method implementation. It was first signaled to Sun 

Microsystems after successful attack against J2ME implementation in 2004. 



 

 

3.2.1 Replacement methods 

This countermeasure is based on the idea of replacing vulnerable instances of various 

Reflection API invocations with corresponding, secure replacement calls. 

A table below shows a mapping between core Reflection API calls and their replacement 

methods, all defined by helper classes from the sun.reflect.misc package. 

Core Reflection API call Replacement 
Class.forName(String s) ReflectUtil.forName(String s) 

Class.newInstance() ReflectUtil. newInstance(Class clazz) 
Method.invoke(Object obj, Object args[]) MethotUtil.invoke(Method m, Object obj, Object 

args[]) 
Class.getMethod(String s, Class aclass[]) MethotUtil.getMethod(Class clazz, String s, Class 

aclass[]) 
Class.getMethods() MethotUtil.getMethods(Class clazz) 
Class.getField(String s) FieldUtil.getField(Class clazz, String s) 
Class.getFields() FieldUtil.getFields(Class clazz) 
Class.getDeclaredFields() FieldUtil.getDeclaredFields(Class clazz) 
Class.getConstructor(Class aclass[]) ConstructorUtil.getConstructor(Class clazz, Class 

aclass[]) 

 

The implementation of most of the replacement calls relies on the additional security check 

that verifies for package access to a given class, provided as an argument to the call. 

The replacement for the invoke call of java.lang.reflect.Method class has more 

complex implementation. It is illustrated on Fig. 21. 

 

Figure 21. Implementation of MethodUtil class as a replacement for reflective invoke call. 

This replacement is implemented by MethodUtil class. MethodUtil class is also a Class 

Loader as it is a subclass of SecureClassLoader. 

MethodUtil invokes arbitrary methods through a trampoline object called bounce, which 

is defined in a separate Class Loader namespace. More specifically, MethodUtil 

namespace. Such a construction of arbitrary method invocation allows to inserts additional, 

non-NULL Class Loader stack frame into the call stack just before the target method 

invocation. Reflection API calls made across different namespaces always trigger a security 



 

 

check verifying for package access. This is also the case for MethodUtil trampoline 

invocation. 

3.2.2 Reflection API filter 

There is also one additional countermeasure implemented in Java SE code that has its origin 

in the Reflection API based attacks. This is the Reflection API filter guarding access to 

security sensitive members of certain classes. Reflection API filter is implemented  by 

sun.reflect.Reflection class. It is integrated with Field and Method lookup operations 

of java.lang.Class class. The goal of the API was to address certain popular 

exploitation vectors that relied on the possibility to access specific methods or fields of 

certain classes. This in particular includes the following members, which have been in use by 

various Proof of Concept codes exploiting Reflection API vulnerabilities in the past: 

 getUnsafe method of sun.misc.Unsafe class 

 security field of java.lang.System class 

Unfortunately, Reflection API filter has multiple deficiencies, which make it possible to 

bypass it with the use of any of the following scenarios: 

 access to sun.misc.Unsafe instance can be gained by the means of reflective 

field access (theUnsafe field), 

 disabling Security Manager can take place by invoking setSecurityManager 

method of java.lang.System class (NULL argument), 

 other exploit vectors (exploit classes and their methods) exist and are not taken into 

account by the filter, 

 Reflection API filtering is implemented for the Core Reflection API only, but not the 

new Reflection API. 

3.3 SAMPLE EXPLOIT VECTORS 

For the purpose of illustrating the severity of the vulnerabilities found during this research, 

28 different Proof of Concept codes has been developed that allow to achieve a complete 

compromise of Java security sandbox10. These Proof of Concept codes exploit Reflection API 

vulnerabilities with the use of specific security sensitive classes (exploit vectors). 

Each exploit vector relies on a carefully crafted sequence of Reflection API calls implemented 

by one publicly available class (denoting the primary vector issue) and at least one class 

from a restricted package (usually sun). The goal of a publicly available class is to either 

obtain a constructor or a method object of the restricted class, so that its instance could be 

created or a method called. Exploitation scenario is usually the same with respect to the 

Reflection API sequence making use of restricted classes. In some cases exploit vectors 

need to be combined together to achieve a desired goal. 

                                                           
10 The 28 Proof of Concept Codes divide as following: 17 affect Oracle Java SE, 1 affects Apple Quicktime for 
Java and 10 affect IBM Java. 



 

 

Below, information about selected, most interesting exploit vectors making use of the 

functionality of restricted classes is presented in a more detail. 

3.3.1 sun.awt.SunToolkit 

Vector prerequisite: 

 access to restricted public classes and their public methods 

A common exploitation scenario proceeded11 in the following way: 

 a call to getField method of sun.awt.SunToolkit class was made in order 

to obtain a privileged instance of unsafe field object of 

java.util.concurrent.atomic.AtomicBoolean class,  

 a call to getMethod method of sun.awt.SunToolkit class was made in order 

to obtain a privileged instance of defineClass method object of 

sun.misc.Unsafe class, 

 the actual value held by a static unsafe field object was obtained (instance of 

sun.misc.Unsafe class), 

 static defineClass method was invoked on the obtained instance of 

sun.misc.Unsafe class. As a result, custom Helper class was defined in a 

system (null) class loader’s namespace and in a system (null) protection 

domain. As a result, Helper class was fully privileged and could for example 

make a successful call to setSecurityManager method of 

java.lang.System class and switch off the security manager completely (all in 

a proper doPrivileged block). 

3.3.2 sun.org.mozilla.javascript.internal.DefiningClassLoader 

Vector prerequisite: 

 access to restricted public classes and their public methods 

A common exploitation scenario proceeded in the following way: 

 an instance of Context class was obtained by calling static enter method of 

sun.org.mozilla.javascript.internal.Context class 

 DefiningClassLoader instance was obtained by calling 

createClassLoader method on the Context instance obtained 

 defineClass method of DefiningClassLoader instance was invoked. As a result, 

custom Helper class was defined in a system (null) class loader’s namespace 

and in a system (null) protection domain. As a result, Helper class was fully 

privileged and could for example make a successful call to 

setSecurityManager method of java.lang.System class and switch off 

the security manager completely (all in a proper doPrivileged block). 

                                                           
11 This exploit vector was addressed by Oracle’s out-of-band Java security update from Aug 30, 2012. 



 

 

3.3.3 MethodHandles.Lookup 

Prerequisites:  

 arbitrary static method invocation from a system class (NULL Class Loader 

namespace) 

A common exploitation scenario proceeded in the following way: 

 A call to java.lang.invoke.MethodHandles.Lookup class and its lookup 

method was made in order to create a lookup object with a system class. Such a 

lookup object allowed obtaining and calling arbitrary methods of any restricted 

class. The above was sufficient to achieve a complete compromise of JVM 

security sandbox. There is no check for access to members from restricted 

packages prior to method handle lookup and invocation. This stems from the fact 

that method handle lookup and access operations are conducted on behalf of the 

lookup class (a class from NULL Class Loader namespace). 

 Further exploitation proceeded as in exploit vectors 3.3.1 or 3.3.2. 

3. 4 REMOTE, SERVER-SIDE CODE EXECUTION 

Vulnerabilities in Java are usually associated with the risk they pose to users of various web 

browsers. That’s completely natural taking into account the widespread use of Java Plugin 

software. There are however some other exploitation scenarios that are worth mentioning. 

This in particular concerns the possibility to exploit Java security issues on servers. Below, 

we present the idea behind two such scenarios that could facilitate the attack against server 

side Java software. 

3.4.1 RMI protocol attack 

RMI protocol12 is the base protocol used for communication between clients and servers 

during Java Remote Method Invocation13. 

RMI protocol implementation supports the concept of user provided codebases. A codebase 

is the URL value pointing to the remote resource where remote RMI server should look for 

unknown (non-system) classes. What’s interesting is that Codebase URL can be provided by 

the RMI client as part of the RMI call. It will be taken into account by the RMI server if 

java.rmi.server.useCodebaseOnly property is set to true. If true, RMI server will 

create RMIClassLoader instance with user provided Codebase URL. It will be further used 

as a base class loader during object deserialization by a MarshalInputStream. 

RMI implementation does not verify whether a deserialized object is type compatible with 

the input argument of a target method call. RMI server reads and instantiates object 

provided as an argument to the call with the use of RMIClassLoader. If the object to read 

is of an unknown class, an attempt will be made to fetch class data from the Codebase URL 

provided by the user. That alone creates a possibility for remote loading and execution of 

                                                           
12 RMI Wire Protocol http://docs.oracle.com/javase/1.5.0/docs/guide/rmi/spec/rmi-protocol.html 
13 Remote Method Invocation http://docs.oracle.com/javase/1.5.0/docs/guide/rmi/spec/rmiTOC.html 

http://docs.oracle.com/javase/1.5.0/docs/guide/rmi/spec/rmi-protocol.html
http://docs.oracle.com/javase/1.5.0/docs/guide/rmi/spec/rmiTOC.html


 

 

user provided Java code. Fig. 22 shows a fragment of the code that exploits insecure 

configuration of a remote RMI server. 

 

Figure 22. Fragment of the code exploiting insecure configuration of RMI services. 

The code loads and executes a user provided Java exploit class from a given Codebase 

argument. It connects to the specified RMI server endpoint identified by an IP address and a 

TCP port. 

RMI issue is a less known vector for exploiting Java SE vulnerabilities. It was originally found 

in 2005. Metasploit framework added it to its exploit database in 201114, while Oracle did 

some RMI patching in Oct 2011. Regardless of the patching done, RMI issue was verified to 

still work15 against the following RMI server instances: 

 RMIRegistry from JDK version 1.7.0_06-b24  (target RMI server at TCP port 1099) 

 GlassFish Server Open Source Edition 3.1.2 (build 23) with security manager enabled 

(target RMI server at TCP port 8686) 

3.4.2 XML Beans decoder 

There is one more potential exploit vector that deserves attention. Some of the 

vulnerabilities discovered as part of SE-2012-01 project affected XML Beans decoder 

implementation used in Java 7. We found out that a specially crafted XML file fed as the 

input to java.beans.XMLDecoder object instance could lead to arbitrary injection  

                                                           
14 Java RMI Server Insecure Default Configuration Java Code Execution 
http://www.metasploit.com/modules/exploit/multi/misc/java_rmi_server 
15 During tests, attacker provided Java class exploiting full sandbox bypass vulnerability was loaded and executed 
on the remote RMI server 

http://www.metasploit.com/modules/exploit/multi/misc/java_rmi_server


 

 

(definition) of a user provided class into NULL Class Loader namespace, therefore breaking 

security of a target Java VM environment. The content of the XML message that could 

accomplish this is illustrated on Fig. 23.  

 

Figure 23. XML Message breaking Java 7 security sandbox. 

Although vulnerabilities in XML Beans decoder has been already addressed, the exploit 

vector seems to be quite interesting and with a potential to affect some remote server 

instances deserializing Beans from XML data with the use of a standard, Java 7 XML decoder 

implementation. 

4. VULNERABILITIES 

SE-2012-01 project resulted in a discovery of 50 security vulnerabilities in Java SE 

implementations coming from Oracle, Apple and IBM. While it is not our intention to 

describe in a detail each of the issues found, we would like to present some of them that are 

representative enough for the illustration of various types of the weaknesses found. 

Brief summary of almost all16 identified vulnerabilities can be found in Appendix A at the end 

of this paper. 

4.1 SAMPLE VULNERABILITIES 

4.1.1 Issues 1-7 

These issues were caused by insecure use of the invoke method of 

java.lang.reflect.Method class.  All of the issues were located in classes from the 

                                                           
16 Except Issues 29 and 50, which have not been yet addressed by Oracle. 



 

 

com.sun.org.glassfish.external.statistics.impl package, which was 

introduced to Java 7. An illustration of the vulnerabilities cause is shown on Fig. 24. 

 

Figure 24. Illustration of the cause for vulnerabilities 1-7. 

4.1.2 Issue 8 

In 2.3.2, a possibility to exploit a three argument Class.forName() method call relying 

on current Thread’s context Class Loader value was mentioned. Issue 8 exploits this 

condition. More specifically, it allows obtaining a reference to the restricted class by the 

means of a more privileged Class Loader instance, which is set as current Thread’s context 

Class Loader as illustrated on Fig. 25. The unwrap method of RMIConnectionImpl class 

deserializes a user provided object in a code window between two calls setting current 

Thread’s context Class Loader value. This code window is privileged because the first call 

sets this value to OrderClassLoaders instance, which is a Class Loader subclass that 

does not contain any security checks in its loadClass method. 

 

Figure 25. Illustration of Issue 8. 

4.1.3 Issue 10 



 

 

New Bytecode Verifier introduced to Java 7 did not properly verify the bytecode instruction 

stream for the invokespecial bytecode instruction. Specially crafted instance initialization 

method could conduct the invokespecial call to any superclass of the current class instead of 

the current class or its direct superclass as specified in the spec. As a result, a key Java VM 

constraint could be violated and security checks implemented in superclass constructors 

could be bypassed. This is illustrated in Fig. 26. 

One of the obvious targets for exploitation of this type of the flaw is 

java.lang.ClassLoader class. The creation of Class Loader objects requires proper 

privileges and Issue 10 could be used to bypass constructor security checks and create a 

partially initialized instance of a Class Loader object. Due to the fact that this object was not 

properly initialized, it was not possible to invoke its defineClass method for the purpose 

of defining arbitrary class in a NULL Protection Domain. The issue could be however still 

exploited to obtain a reference to restricted classes by the means of its loadClass 

method. 

 

Figure 26. Illustration of Bytecode Verifier vulnerability. 

4.1.4 Issues 11, 16, 17 and 28 

These issues are caused by the following classes from com.sun.beans.decoder 

package:  

 ClassFinder 

 MethodFinder 

 ConstructorFinder 

 FieldFinder 

All of them provide support for Beans decoder implementation in Java 7 environment. The 

vulnerabilities causes are tied to the name of the class and they correspond to the ability to 

obtain references to restricted Classes, Methods, Constructors and Fields. 

The 0-day attack code found in the wild in Aug 2012 relied on two first issues (the ability to 

load restricted classed and obtain their methods). 

Buggy implementation of Beans decoder support classes was introduced in Java 7. Java 6 

was not vulnerable to the described issues as it relied on a completely different 

implementation. 



 

 

4.1.5 Issues 13, 21 and 26 

All of these issues were related to the implementation of new Reflection API introduced in 

Java 7. Issue 13 was due to the lack of a security check in the in method of the 

MethodHandle.Lookup class. The functionality of this method allowed for a change of the 

base lookup class of an existing Lookup object instance to any other class (including a 

system one). 

Issue 21 was about a default public Lookup object instance based on a system class 

available to any caller. All that was required to obtain access to such a Lookup object 

instance was to call a static publicLookup method of 

java.lang.invoke.MethodHandles class. 

Finally, Issue 26 exploited the possibility to gain access to inner classes to which the creator 

of the lookup object had no access to. The implementation of the Lookup class allowed for 

arbitrary access to classes protected with a default (package) access modifier. This was 

possible because, all access checks were implemented against the base lookup class, not the 

caller of a target method. This could be abused to implement the attack scenario described 

in 3.1.4. 

4.1.6 Issue 32 

This issue was found shortly after Oracle’ out-of-band patch was released on Aug 30, 2012. 

After finding out that sun.awt.SunToolkit exploitation vector was blocked by the 

company, we decided to have yet another look into Java in order to find out if the 

remaining, not yet addressed issues could be still exploited. Issues 1-7 were still available, 

though all other issues allowing to obtain references to restricted methods were patched. 

Our Proof of Concept codes for Issue 1-7 relied on the exploit vector using 

MethodHandles.Lookup class. This turned our attention to the new Reflection API and 

we started to look into the code of the classes from java.lang.invoke package. We 

noticed that a call to the native invokeExact method of the MethodHandle class was 

used from a wrapper invokeWithArguments method as illustrated on Fig. 27.  

 

Figure 27. The use of invokeExact from a wrapper system class. 



 

 

That call looked similar to the problem related to Core Reflection API and the invoke 

method in particular. Quick tests confirmed our observation – it turned out that arbitrary 

methods of arbitrary classes could be called with a system class from NULL Class Loader 

namespace as their caller. This condition was immediately abused to achieve access to the 

methods of restricted classes and to successfully exploit Issues 1-7 again17. 

Further tests proved that Issue 32 could be used alone to achieve a complete compromise 

of a target Java 7 environment. 

4.1.7 Issue 33 and 34 

Both issues are specific to IBM SDK software, which is Java SE implementation coming from 

IBM corporation. These issues are quite simple. Both allow for arbitrary method invocation 

conducted inside a doPrivileged method block. 

Exploit codes for these issues are also one of the simplest that were developed as part of 

SE-2012-01 project. Proof of Concept code exploiting Issue 33 is illustrated on Fig. 28. This 

code calls setSecurityManager method of java.lang.System class with a NULL 

argument. IBM’s own implementation of com.ibm.rmi.util.ProxyUtil class is used as 

a dispatcher for the call. 

Most of other IBM Java issues are also very simple instances of Reflection API weaknesses. 

Their presence indicates potential lack of awareness on the vendor side regarding 

insecurities related to these types of flaws. 

 

Figure 28. Proof of Concept code for Issue 33. 

4.1.8 Issue 15 and 31 

These issues are caused by the lack of a proper type check in the code prior to creating an 

instance of a given class. Both issues are instances of the flaws that invoke  newInstance 

method of java.lang.Class class inside the doPrivileged method block. 

These issues can facilitate certain attacks as illustrated on Fig. 29. 

                                                           
17 to turn them into the complete JVM sandbox escape exploits again. 



 

 

 

Figure 29. Illustration of Issue 15 and its impact to security of 3
rd

 party software. 

For example, Issue 15 can be used to gain access to security sensitive classes guarded by a 

security check in a static class initializer (<clinit> method). Apple QuickTime for Java 

software contains multiple security checks in static class initializers that verify whether a 

given code is privileged enough prior to finalizing its class linking process. The problem with 

that approach is that <clinit> method is called only once in a class lifetime, during class 

loading and linking. Issue 15 can be used to load and instantiate any system class of 

attacker’s choice. By exploiting it with the class that would trigger the initialization of 

quicktime.QTSession class, one can successfully bypass all security checks contained in 

its <clinit> method as they would be processed inside a privileged code scope. As a 

result, attacker may gain access to certain security sensitive classes or proceed with further 

attacks against a target 3rd party software. 

4.1.9 Issue 22 

Issue 22 is a security vulnerability in Apple QuickTime for Java software. When combined 
with Issue 15 described above, it could be used to successfully bypass all JVM security 
restrictions on a target system with both Java and Apple QuickTime software installed. 
 

Issue 15 can provide access to quicktime.util.QTByteObject class in particular. This 

class is security sensitive as its instances can be used to gain read and write access to 
process heap memory18. There are multiple security checks in the code preventing 
instantiation of this class by unprivileged Java application. Some of them are the result of 

the following past bugs that could be used to create arbitrary instances of QTByteObject 

class: 

 QTByteObject class instantiation with the use of finalize method, 

 QTByteObject class instantiation by the means of serialization and readObject 

method. 

Unfortunately, the two abovementioned security vulnerabilities were not addressed correctly 
by Apple. The problem was caused by the fact that Apple fixes addressed the bugs 
separately and did not take into account the possibility to combine both bugs together. This 
is explained in a more detail in a short technical write-up available at the following address: 
http://www.security-explorations.com/materials/se-2012-01-22.pdf 
 

                                                           
18 More specifically, to memory locations past the bounds of Java object instances. 



 

 

4.1.10 Issue 50 

This issue is a not-yet patched vulnerability affecting all Java SE versions released over the 

last 10 years. It was verified to be present in Java SE versions 1.4, 5, 6, 7 and 8. 

Issue 50 allows for a reliable and complete Java security sandbox compromise. Regardless 

of its impact, Oracle corporation plans to wait with addressing of the issue for additional four 

months time (till Feb 2013). 

It was empirically verified19 that a fix for Issue 50 can be implemented in less than 30 

minutes time. The fix requires 25 characters in total to be changed in a source code. Due to 

the construction of the fix, it does not need to go through any integration tests. 

The existence of Issue 50 tells a lot about the quality of Oracle’s vulnerability evaluation / 

patch testing processes. Issue 50 is a bug in the code addressed not so long ago by the 

company. The lack of any response from Oracle20 to the results of a Vulnerability Fix 

Experiment only confirms our analysis (the bug can be fixed quickly and without the need 

for any integration tests). 

4.2 IMPACT 

The most serious issues found during SE-2012-01 Java security research could lead to the 

complete compromise of a Java security sandbox. Malicious Java applet or application 

exploiting one of them could run unrestricted in the context of a target Java process such as 

a web browser application. An attacker could then install programs, view, change, or delete 

data with the privileges of a logged-on user. 

It was verified that as a result of a successful attack, arbitrary files could be created or 

programs executed in the environment of the affected Java SE software. 

In the most common web browser attack scenario, an attacker could host a specially crafted 
website with a malicious Java application exploiting one of the vulnerabilities found. Upon 
convincing the user to visit such a website, typically by getting them to click a link in an 
email or in an Instant Messenger message, malicious web content could be delivered to 
affected systems. It could also be possible to display specially crafted web content by using 
banner advertisements or by using other methods to deliver web content to vulnerable 
systems. 
 
The most serious vulnerabilities were specific to Java 7 environment only. Issue 50 is unique 
as it is present in all Java SE versions 1.4.x, 5, 6, 7 and 8. It affects an estimate number of 

1.1 billion users (java.com data) of desktop Java software. 

 
A summary of complete Java security sandbox bypass issues found in Oracle Java SE 
implementation is illustrated on Fig. 30. 
 

                                                           
19  This was done by the means of the so called Vulnerability Fix Experiment. 
20 “Someone will respond as soon as possible” response was never received. 



 

 

 

Figure 30. Summary of complete security bypass issues found In Oracle Java SE software. 

Although users of web browsers with Java Plugin software were at most risk, some 

additional attack scenarios such as those relying on RMI / XML Beans based deserialization  

should be also taken into account. 

SUMMARY 

The goal of SE-2012-01 security research project was to verify the state of Java SE security 

in 2012. Although, the research was limited to only a few areas that were crucial to Java VM 

security (Reflection API and Class Loaders in particular), it has lead to the discovery of 50 

security vulnerabilities in Java implementations coming from Oracle, Apple and IBM. Taking 

into account that a majority of the issues were related to Reflection API, it is clear that this 

API should be perceived in terms of a serious security risk to the target Java VM 

environment. 

Reflection API implementation allows for the violation of key Java security constraints such 

as data access protection and type safety. Insecure use of its functions conducted from 

within a system code can also easily lead to the compromise of a Java security model. 

Security vulnerabilities related to Reflection API are a good example of how certain design / 

implementation choices can affect security of a technology for years and lead to dozens of 

bugs. The number of issues that were due to insecure use of Reflection API and that were 

addressed in Java SE code over the recent years seem to be speaking for itself21. 

Small, potentially unimportant security bugs do matter in Java. They illustrates a common 

trend in attacks against technologies such as Java VM where more than one, partial security 

bypass issue usually needs to be combined together to achieve a complete security 

compromise. 
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 Just to mention 19 MethodUtil.invoke calls, 11 ReflectUtil.checkPackageAccess calls, 4 

ReflectUtil.ensureMemberAccess calls, 1 ConstructorUtil.getConstructor call, 5 

ReflectUtil.isPackageAccessible calls, a couple of new permissions / permissions checks introduced as 

well as the replacements of NULL class loader with a system Class Loader instance. 



 

 

Breaking technologies such as Java should focus on advantages and specifics of the 

technology in the first place. Memory corruption vulnerabilities should become a priority only 

if everything else fails. We don’t want to downplay the importance of Java memory 

corruption vulnerabilities here, however the truth is that these issues are far less desired 

when it comes to reliable and truly platform independent exploitation of Java security 

weaknesses. 

Although Java was designed with a security in mind, the last decade has shown that it is not 

necessarily secure by implementation. Java VM implementation has become inherently 

complex to make the technology secure. There is also insufficient knowledge about the 

tricks and techniques used to attack Java both in a public domain and on the vendors’ side. 

Vendors not following their own Java Secure Coding Guidelines22 and not learning from past 

mistakes do not give a bright prospect for the future of the technology either. 

In longer term, publication of vulnerabilities and attack techniques details can make the 

technology more secure. People will be more aware of the various pitfalls they should avoid 

and know what to look for during either code development or security review efforts. In 

Java case, this especially includes, but is not limited to all sorts of trickery related to 

overloading, inheritance, Reflection API, stack inspection, bytecode verification, members’ 

access, serialization and class loaders. 

                                                           
22 Secure Coding Guidelines for the Java Programming Language, Version 4.0 
http://www.oracle.com/technetwork/java/seccodeguide-139067.html 

http://www.oracle.com/technetwork/java/seccodeguide-139067.html


 

 

APPENDIX A 

SUMMARY OF THE VULNERABILITIES 

ISSUE 

# 

TECHNICAL DETAILS  

1 origin com.sun.org.glassfish.external.statistics.impl.AverageRang

eStatisticImpl class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary invocation of static methods with user provided arguments 

type complete security bypass vulnerability 

2 origin com.sun.org.glassfish.external.statistics.impl.BoundarySta

tisticImpl class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary invocation of static methods with user provided arguments 

type complete security bypass vulnerability 

3 origin com.sun.org.glassfish.external.statistics.impl.BoundedRang

eStatisticImpl class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary invocation of static methods with user provided arguments 

type complete security bypass vulnerability 

4 origin com.sun.org.glassfish.external.statistics.impl.CountStatis

ticImpl class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary invocation of static methods with user provided arguments 

type complete security bypass vulnerability 

5 origin com.sun.org.glassfish.external.statistics.impl.RangeStatis

ticImpl class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary invocation of static methods with user provided arguments 

type complete security bypass vulnerability 

6 origin com.sun.org.glassfish.external.statistics.impl.StringStati

sticImpl class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary invocation of static methods with user provided arguments 

type complete security bypass vulnerability 

7 origin com.sun.org.glassfish.external.statistics.impl.TimeStatist

icImpl class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary invocation of static methods with user provided arguments 

type complete security bypass vulnerability 

8 origin javax.management.remote.rmi.RMIConnectionImpl class 

cause the use of OrderClassLoaders as Thread’s contextClassLoader 

impact arbitrary access to restricted classes 

type partial security bypass vulnerability 

9 origin javax.management.remote.rmi.RMIConnectionImpl class 

cause the use of null class loader as Thread’s contextClassLoader 

impact arbitrary access to restricted classes 

type partial security bypass vulnerability 

10 origin bytecode verifier for Java SE 7 

cause wrong check for a target of invokespecial bytecode (it is not limited to 

this and super classes in case of an <init> method) 

impact ability to create object instances without the need to call superclass’ initializer, 
arbitrary access to restricted classes via custom class loader objects, further 



 

 

impact not yet evaluated 

type partial security bypass vulnerability 

11 origin com.sun.beans.finder.ClassFinder class 

cause Insecure use of forName() method of java.lang.Class class 

impact arbitrary access to restricted classes 

type partial security bypass vulnerability 

12 origin difficult to classify 

cause unrestricted getClass method call 

impact arbitrary access to restricted classes 

type partial security bypass vulnerability 

13 origin java.lang.invoke.MethodHandles.Lookup class 

cause no security check in the in method 

impact the ability to create java.lang.invoke.MethodTypes.Lookup object with 

a system lookupClass, this allows to obtain method handles from restricted 

classes and to issue calls on them 

type partial security bypass vulnerability 

14 origin com.sun.jmx.mbeanserver.GetPropertyAction class 

cause public class 

impact arbitrary access to Java system properties 

type partial security bypass vulnerability 

15 origin java.util.logging.LogManager class 

cause lack of a type check of a logger handler prior to creating its instance 

impact the ability to bypass security checks implemented in static class initializers of a 
3rd party software 

type partial security bypass vulnerability 

16 origin com.sun.beans.finder.MethodFinder class 

cause insecure use of getMethod method of java.lang.Class class 

impact access to method objects of restricted classes 

type partial security bypass vulnerability 

17 origin com.sun.beans.finder.ConstructorFinder class 

cause insecure use of getConstructors method of java.lang.Class class 

impact arbitrary access to constructors of restricted classes, creation of restricted 
public classes 

type partial security bypass vulnerability 

18 origin com.sun.org.glassfish.gmbal.util.GenericConstructor class 

cause insecure use of getDeclaredConstructors and newInstance methods 

of java.lang.Class class 

impact creation of restricted public classes 

type partial security bypass vulnerability 

19 origin com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory 

class 

cause insecure use of getDeclaredMethod method of java.lang.Class class 

impact access to method objects of restricted classes 

type partial security bypass vulnerability 

20 origin com.sun.beans.decoder.MethodElementHandler class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary invocation of methods with user provided arguments 

type partial security bypass vulnerability 

21 origin java.lang.invoke.MethodHandles class 

cause public Lookup based on a system class available to any caller 

impact the ability to obtain java.lang.invoke.MethodHandles.Lookup object 

with a system lookupClass, this allows to obtain method handles from 

restricted classes and to issue calls on them 

type partial security bypass vulnerability 



 

 

23 origin javax.management.modelmbean.DescriptorSupport class 

cause insecure use of getConstructor and newInstance methods of 

java.lang.Class class 

impact creation of restricted public classes (scope limited to the classes with the 

instance initialization method denoting one java.lang.String argument) 

Type partial security bypass vulnerability 

24 origin javax.media.jai.OperationRegistry class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary invocation of methods with user provided arguments 

Type partial security bypass vulnerability 

25 origin javax.swing.text.DefaultFormatter class 

cause insecure use of getConstructor and newInstance methods of 

java.lang.Class class 

impact creation of restricted public classes (scope limited to the classes with the 

instance initialization method denoting one java.lang.String argument) 

type partial security bypass vulnerability 

26 origin java.lang.invoke.MethodHandles.Lookup class 

cause access to package scoped classes via a specially chosen system class as 

lookupClass value 

impact obtaining access to inner classes to which a caller of the Lookup object has no 

access 

type complete security bypass vulnerability 

27 origin sun.plugin2.applet.JNLP2ClassLoader class 

cause no security check upon loading of a class from a restricted package 

impact arbitrary access to restricted classes (JavaFX environment only) 

type partial security bypass vulnerability 

28 origin com.sun.beans.finder.FieldFinder class 

cause insecure use of getFields method of java.lang.Class class 

impact access to field objects from restricted classes and interfaces 

type partial security bypass vulnerability 

30 origin com.sun.corba.se.impl.orbutil.GetPropertyAction class 

cause public class 

impact arbitrary access to Java system properties 

type partial security bypass vulnerability 

31 origin sun.misc.Service class 

cause lack of a type check of a script engine class prior to creating its instance 

impact the ability to bypass security checks implemented in static class initializers of a 
3rd party software 

type partial security bypass vulnerability 

32 origin java.lang.invoke.MethodHandle 

cause the possibility to call invokeExact from a system wrapper method 

impact bypass of security checks based on the immediate caller 

type complete security bypass vulnerability 

33 origin com.ibm.rmi.util.ProxyUtil class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary method invocation inside AccessController's doPrivileged 

block 

type complete security bypass vulnerability 

34 origin com.ibm.rmi.util.ProxyUtil class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary method invocation inside AccessController's doPrivileged 

block 

type complete security bypass vulnerability 



 

 

35 origin com.ibm.xtq.xslt.runtime.extensions.JavaExtensionUtils class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact restricted package bypass via arbitrary method invocation 

type complete security bypass vulnerability 

36 origin com.ibm.xylem.instructions.StaticMethodInvocationInstructi

on class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact restricted package bypass via arbitrary method invocation 

type complete security bypass vulnerability 

37 origin com.ibm.xylem.instructions.JavaMethodInvocationInstruction 

class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact restricted package bypass via arbitrary method invocation 

type complete security bypass vulnerability 

38 origin com.ibm.rmi.io.ObjectStreamClass class 

cause insecure use of getDeclaredMethods method of java.lang.Class class 

impact access to declared methods of arbitrary classes 

type partial security bypass vulnerability 

39 origin com.ibm.rmi.io.ObjectStreamClass class 

cause insecure use of setAccessible method of 

java.lang.reflect.AccessibleObject class 

impact overriding standard access permissions of Reflection API object instances 

type partial security bypass vulnerability 

40 origin com.ibm.lang.management.ManagementUtils class 

cause insecure use of forName method of java.lang.Class class 

impact access to restricted classes 

type partial security bypass vulnerability 

41 origin com.ibm.xylem.interpreter.InterpreterUtilities class 

cause insecure use of getMethods method of java.lang.Class class 

impact access to methods of restricted classes 

type partial security bypass vulnerability 

42 origin com.ibm.xylem.interpreter.InterpreterUtilities class 

cause insecure use of getConstructors method of java.lang.Class class 

impact access to constructors of restricted classes 

type partial security bypass vulnerability 

43 origin com.ibm.rmi.corba.DynamicAny.DynValueCommonImpl class 

cause insecure use of forName method of java.lang.Class class 

impact access to restricted classes 

type partial security bypass vulnerability 

44 origin com.ibm.xtq.xslt.runtime.JavaMethodResolver class 

cause insecure use of getMethods method of java.lang.Class class 

impact access to methods of restricted classes 

type partial security bypass vulnerability 

45 origin com.ibm.xtq.xslt.runtime.JavaMethodResolver class 

cause insecure use of getConstructors method of java.lang.Class class 

impact access to constructors of restricted classes 

type partial security bypass vulnerability 

46 origin com.ibm.rmi.util.ClassCache class 

cause insecure use of forName method of java.lang.Class class 

impact access to restricted classes 

type partial security bypass vulnerability 

47 origin com.ibm.xtq.xslt.translator.XSLTCHelper class 

cause insecure use of getMethods method of java.lang.Class class 



 

 

impact access to methods of restricted classes 

type partial security bypass vulnerability 

48 origin com.ibm.xtq.xslt.translator.XSLTCHelper class 

cause insecure use of getConstructors method of java.lang.Class class 

impact access to constructors of restricted classes 

type partial security bypass vulnerability 

49 origin com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl class 

cause insecure use of defineClass method of java.lang.ClassLoder class 

impact arbitrary class definition in a privileged classloader namespace 

type complete security bypass vulnerability 
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