
Software Realities
Editor: James Bach, Reliable Software Technologies, 21515 Ridgetop Circle, Suite 250, Sterling, VA, 20166; j.bach@computer.org

Software Assurance
for Security

Gary McGraw
Reliable Software Technologies

Computer security is taking on new importance as electronic commerce metamorphoses from hype to reality. Large and
small businesses alike are reinventing themselves as e-commerce players. The implications for computer security
practice are immense. When bits count as money, protecting bits becomes as important as any other aspect of running a
successful business.

One essential element shared by every modern information system is the software that determines how the system
behaves. Today’s software problems lead to spectacular real world failures of many different kinds, including security
problems, reliability problems, and safety problems. It is probably only a matter of time before software causes the
demise of a large company.

What can we do to combat software bugs lying at the root of these problems, especially in light of the rush to
embrace e-commerce and the intense pressure of Internet time? How can we avoid treating security as an add-on
feature, when, like dependability, security is really a property of a complete system? This column discusses an
approach to security analysis that we have applied successfully over the last several years at Reliable Software
Technologies. Our approach is no magic bullet, but it offers a reasoned methodology that has proven to be useful in the
trenches.

A VIEW FROM 50,000 FEET
Our methodology, like many useful things, is a mix of art and engineering. The idea is straightforward: Design a

system with security in mind, analyze the system in light of known and anticipated risks, rank the risks according to
their severity, test to the risks, and cycle broken systems back through the design process.

The process outlined above has one essential underlying goal: avoiding the unfortunately pervasive penetrate-and-
patch approach to computer security— that is, avoiding the problem of desperately trying to come up with a fix to a
problem that is being actively exploited by attackers. In simple economic terms, finding and removing bugs in a
software system before its release is orders of magnitude cheaper and more effective that trying to fix systems after
release. The many problems inherent in the penetrate-and-patch approach have been discussed elsewhere, but the main
concerns are:

• Patches are rarely applied by overworked system administrators who would rather not tweak their functioning
systems;

• patches are rushed out under immense pressure from the market and often introduce new problems of their own;
and

• patches are superficial solutions that do not get at the heart of software problems.

Designing a system for security, and testing the system extensively before release, presents a much better alternative.

RISK ASSESSMENT
There is no such thing as 100 percent security. In fact, there is a fundamental tension inherent in today’s technology

between functionality (an essential property of any working system) and security (also essential in many cases). A
common joke goes that the most secure computer in the world is one that has its disk wiped, is turned off, and is buried
in a ten foot hole filled with concrete. Of course, a machine that secure also turns out to be useless. In the end, the



security question boils down to how much risk a given enterprise is willing to take on in order to solve the problem at
hand effectively. Security is really a question of risk management.

The key to an effective risk assessment is expert knowledge of security. Being able to recognize situations where
common attacks can be applied is half the battle. The first step in any analysis is recognizing the risks. This step is most
effectively applied to a system’s specification.

Once risks have been identified, the next step is ranking the risks in order of severity. Any such ranking is a context-
sensitive undertaking that depends on the needs and goals of the system at hand. Some risks may not be worth
mitigating, depending, for example, on how expensive carrying out a successful attack might be. Ranking risks is
essential to allocating testing and analysis resources further down the line. Since resource allocation is a business
problem, making good business decisions regarding such allocation requires sound data.

Given a ranked set of potential risks in a system, testing for security is possible. Testing requires a live system and is
an empirical activity requiring close observation of the system under test. Security tests often do not result in clear-cut
results like obvious system penetrations, though sometimes they do. More often a system will behave in a strange or
curious fashion that tips off an analyst that something interesting is afoot. These sorts of hunches can be further
explored.

SOUND SOFTWARE ENGINEERING
One premise of our methodology is the use of sound software engineering practices. Process is a good thing, in

moderation. Any system that is designed according to well-understood requirements will be better than a system
thrown together arbitrarily. An apt example of a security-related requirement is a requirement that states that some data
must be protected against eavesdropping since it is particularly sensitive information.

From a set of requirements, a system specification can be created. The importance of solid system specification
cannot be overemphasized. After all, without a specification, a system cannot be wrong, it can only be surprising! And
when it comes to running a business, security surprises are not something we want.

A solid specification draws a coherent big-picture view of what the system does and why the system does it.
Specifications should be as formal as possible, without becoming overly arcane. Formality is extremely powerful, but it
too is no silver bullet. Remember that the essential raison d’etre for a specification is understanding. The clearer and
easier to understand a specification is, the better the resulting system will be.

THE IMPORTANCE OF EXTERNAL ANALYSIS
Nobody designs or develops systems poorly on purpose. Developers are a proud lot, and for the most part they work

hard to create solid working systems. This is precisely why a security risk analysis team should not include anyone
from the design and development team. One essential way in which security testing differs from standard testing is in
the importance of preserving a completely independent view of the system, divorced from design influences. In general
testing, one person can play dual roles; a design team testing expert to improve testability early on, and an independent
tester later in the process. In security testing there is a much greater risk of tunnel vision.

Putting together an external team is important for two main reasons:

• To avoid tunnel vision. Designers and developers are often too close to their systems and are skeptical that their
system may have flaws.

• To validate design document integrity. The requirements and specifications that the designers and developers use
should be clear enough that an external team can completely understand the system.

Another reason warranting the use of external teams is the expertise issue. Being an excellent programmer and
understanding security problems are not the same thing.

The good news is that an external team need not be made up of high-priced external experts. Often it is good enough
to have a team from your own organization made up of security experts who were not involved in design decisions. The
bad news is that security expertise seems to be a rare commodity these days. Determining whether or not to seek help
outside of your organization will depend on what the system you are designing is meant to do and what happens if it is
broken by attackers. If you are betting your business on a piece of code, it had better not fail unexpectedly.

An experienced team of external analysts considers myriad scenarios during the course of an analysis. Examples of
scenarios include decompilation risks in mobile code systems, eavesdropping attacks, playback attacks, and denial of
service attacks. Testing is most effective when it is directed instead of random. The upshot is that scenarios can lead
directly to very relevant security tests.

SECURITY GUIDELINES
Security is risk management. The risks to be managed take on different levels of urgency and importance in different



situations. For example, denial of service may not be of major concern for a client machine, but denial of service on a
commercial Web server could be disastrous. Given the context-sensitive nature of risks, how can we compare and
contrast different systems in terms of security?

Unfortunately, there is no golden metric. But we have found in practice that the use of a standardized set of security
analysis guidelines is very useful. Our most successful client makes excellent use of security guidelines in their risk
management and security group.

 The most important feature of any set of guidelines is that they create a framework for consistency of analysis. Such
a framework allows any number of systems to be compared and contrasted in interesting ways.

Guidelines consist of both an explanation of how to do a security analysis in general, and what kinds of risks to
consider. No such list can be absolute or complete, but common criteria for analysis— such as the Department of
Defense’s Trusted Computing Systems Evaluation Criteria, commonly called the Orange Book— can be of help.

A COMMON MISTAKE
Much of today’s software is developed incredibly quickly under immense market pressure. Internet time now rivals

dog years in duration, approaching a 7:1 ratio with regular time. Often the first thing to go under pressure from the
market is software quality (of any sort). Security is an afterthought at best, and is often forgotten.

Bolting security onto an existing system is simply a bad idea. Security is not a simple feature you can add to a
system at any time. Security is like fault tolerance, a system-wide emergent property that requires much advance
planning and careful design.

We have come across many real-world systems (designed for use over protected proprietary networks) that were
being reworked for use over the Internet. In every one of these cases, Internet-specific risks caused the systems to lose
all their security properties. Some people refer to this problem as an environment problem, where a system that is
secure enough in one environment is completely insecure when placed in another. As the world becomes more
interconnected via the Internet, the environment most machines find themselves in is at times less than friendly.

It is always better to design for security from scratch than to try to add security to an existing design. Reuse is an
admirable goal, but the environment in which a system will be used is so integral to security that any change of
environment is likely to cause all sorts of trouble— so much trouble that well-tested and well-understood things fall to
pieces.

SECURITY TESTING VERSUS FUNCTIONAL TESTING
Functional testing dynamically probes a system to determine whether the system does what it is supposed to do

under normal circumstances. Security testing is different. Security testing probes a system in ways that an attacker
might probe it, looking for weaknesses to exploit. In this sense, advanced testing methodologies like software fault
injection can be used to probe security properties of systems. An active attack is an anomalous circumstance that not
many designers consider.

Security testing is most effective when it is directed by system risks that are unearthed during a risk analysis. This
implies that security testing is a fundamentally creative form of testing that is only as strong as the risk analysis it is
based on. Security testing is by its nature bounded by identified risks (and the security expertise of the tester).

Code coverage has been shown to be a good metric for understanding how good a particular set of tests is at
uncovering faults. It is always a good idea to use code coverage as a metric for measuring the effectiveness of
functional testing. In terms of security testing, code coverage plays an even more critical role. Simply put, if there are
areas of a program that have never been exercised during testing (either functional or security), these areas should be
immediately suspect in terms of security. One obvious risk is that unexercised code will include trojan-horse
functionality whereby seemingly innocuous code carries out an attack. Less obvious (but more pervasive) is the risk
that unexercised code has serious bugs that can be leveraged into a successful attack.

Dynamic security testing can help ensure that such risks don’t come back to bite you. Static analysis is useful as
well. Many of today’s security problems are echoes of well-understood old problems that can come around again. The
fact that 80 percent of 1998’s CERT alerts involved buffer overflow problems emphasizes the point. There is no reason
that any code today should be susceptible to buffer overflow problems, yet they remain the biggest source-code security
risk today.

It is possible to scan security-critical source code for known problems, fixing any problems encountered. Current
research is exploring the utility of static source-code scanning. The key to any such approach is a deep knowledge of
potential problems.

There are many areas today in which software must behave itself. Good software assurance practices can help ensure
that software behaves properly. Safety-critical and high assurance systems have always taken great pains to analyze and
track software behavior. With software finding its way into every aspect of our lives, the importance of software



assurance will only grow. We can avoid the band-aid-like penetrate-and-patch approach to security only by considering
security as a crucial system property and not as a simple add-on feature.

Computer security is becoming more important because the world is becoming highly interconnected and the
network is being used to carry out critical transactions. The environment that machines must survive in has changed
radically. Deciding to connect a LAN to the Internet is a security-critical decision. The root of most security problems
is software that fails in unexpected ways. Though software assurance has much maturing to do, it has much to offer to
those practitioners interested in striking at the heart of security problems. v

Gary McGraw, Ph.D. is Vice President of Reliable Software Technologies and co-author of Securing Java (1999) and
Software Fault Injection (1998). Contact him at gem@rstcorp.com.


