
Digging Inside the VxWorks OS and Firmware

The Holistic Security

Aditya K Sood (0kn0ck)
SecNiche Security Labs (http://www.secniche.org)

Email: adi ks [at] secniche.org

1

Contents

1 Acknowledgement 3

2 Abstract 4

3 Introduction 5

4 Architectural Overview 6

5 Fault Management 7
5.1 Protection Domains, Sybsystems and Isolation 7
5.2 Understanding OMS and AMS 7

6 Virtualization - Embedded Hypervisor 8
6.1 Hypervisor and Virtual Board Security 8

7 VxWorks OS Security Model and Fallacies 9
7.1 Stack Overflow Detection and Protection 9
7.2 VxWorks Network Stack . 9
7.3 VxWorks and The SSL Game . 10
7.4 Firewalling VxWorks . 10
7.5 VxWorks Debugging Interface . 11
7.6 Weak Password Encryption Algorithm 13
7.7 NDP Information Disclosure . 13

8 Design of VxWork 5.x - Firmware 13
8.1 VxWorks Firmware Generic Structure 14

9 VxWorks Firmware Security Analysis 15
9.1 Hacking Boot Sequence Program (BSP) 15
9.2 VxWorks Firmware Killer . 16
9.3 Services and Port Layout . 18
9.4 Factory Default Passwords . 18
9.5 Config.bin - Inappropriate Encryption 19

10 Embedded Devices - Truth about Security 20
10.1 Embedded Private Keys - HTTPS Communication 20
10.2 Firmware Checksum Algorithms 20
10.3 Insecure Web Interfaces . 20
10.4 Unpatched Firmware and Obsolete Versions 20

11 Future Work 21

12 Conclusion 21

13 References 22

2

1 Acknowledgement

I sincerely thank my friends and security researchers for sharing thoughts over
the VxWorks.

• Jeremy Collake (Bitsum)

• Edgar Barbosa (COSEINC)

• Luciano Natafrancesco (Netifera)

In addition, I would also like to thank HD Moore for finding vulnerabilities in
VxWorks OS. A sincere gratitude to all the researchers who are engaged in con-
structive research for the security community. I am also grateful to Dr. Richard
J Enbody for supporting me in work related to computer security.

Lastly, I sincerely want to thank CIGTIAL Inc. and my security group at
SecNiche Security Labs for supporting me in doing continuous security research.
Nonetheless, all the conference organizers who invited me to deliver talks and
have shown faith in me.

3

2 Abstract

VxWorks is one of the most widely accepted embedded OS. In this paper, we
have conducted a detailed study of the security model of VxWorks OS and
firmware in order to understand the potential impact of security vulnerabilities
on its functioning.

4

3 Introduction

VxWorks is a real-time portable operating system interface developed by Wind
River Systems.VxWorks can be optimized to run under three different configu-
rations. VxWorks has been successfully used in military and civilian avionics,
including Boeing 787, 747-8 and Airbus A400M. It is also used in onground
avionic systems such as civilian and military radar stations. VxWorks also finds
its usage in non-safety-critical applications where performance is at premium.
Linksys wireless routers also rely on VxWorks OS as a part of running firmware.
Basically, different configurations enable the developers to take control of the
application by effective debugging and fault handling mechanisms. VxWorks
has a standard development suite called as Wind River Workbench which is a
JAVA Eclipse platform. This IDE (Integrated Development Environment) is
used as development suite for code compiling, analysis, editing, and debugging.
First, VxWorks can be optimized to run as a closed system having a protec-
tion between processes running in kernel and user mode with effective error
management. Second, VxWorks OS can be optimized to run as a networking
platform having similar functionalities of a network OS such as firewalls and
security protocols. Third, VxWorks can be implemented as a safety critical sys-
tem or hard real-time system that meets the highest levels of safety and security
requirements.

OS security is very critical because it is the base software that supports
different applications. Vulnerabilities present in the operating systems can have
a dramatic impact on the running applications. If a system is compromised by
OS level vulnerabilities such as kernel compromise, an attacker can completely
take over the system by installing malicious programs or backdoors. As a result
of this, OS can be used for nefarious purposes such as stealing sensitive data from
the machines and executing remote commands. Attacker can exploit the system
access rights and cause the applications to execute maliciously. Thus, analysis
of OS security benchmarks provides better insight about the robustness of the
operating system and helps to understand the serious repercussions of persistent
vulnerabilities.

In this paper , an extensive study on fault management and security model
of VxWorks has been conducted encompassing following topics

• A detailed analysis will leverage the extensive details about the protection
mechanisms and vulnerabilities that result in rooting the VxWorks. A
3COM SIPX phone running VxWorks have been used for this analysis.

• Discussion in detail about the security model of VxWorks OS firmware
running on Linksys router WRT54GS v6.

• Analysis of the potential attacks on VxWorks based on existing security
vulnerabilities.

5

4 Architectural Overview

VxWorks is built around a highly advanced real-time kernel which is compati-
ble on Multicore architectures. A broad comparison to the requirements of high
availability systems[1,2]yields that VxWorks is capable of executing multitasking
processes based on symmetric multiprocessing. Multi cores help in sharing seg-
ments across the main memory through preemptive and round robin scheduling
algorithm including fast interrupt responses. In general, deadlocks are avoided
by ensuring appropriate bounds on the priority inheritance protocols and shared
resources are managed using mutual exclusion semaphores and binary counting.
POSIX real-time threads API have been fully implemented which is crucial for
the robust performance and memory protection. In VxWorks, user applications
run in their own isolated program space and do not come in conflict with the
kernels. VxWorks inherits interprocess communication, including support for
the Transparent Inter-Process Communication (TIPC) protocol and distributed
message queuing. Priority inheritance in VxWorks is performed by the mutex
[14]. VxWorks is fully ANSI C compliant with extended C++ features such
as exception handling and template support. Additional several mechanisms
for handling system errors and facilitating system error recovery are present
to ensure robust crush free operation. VxWorks also maintains a robust file
system. Development in VxWorks and image modification is performed using
Tornado [18]. Wind River systems provides core API which is shared between
the certified and non-certified versions of the OS. VxWorks application booting
sequence is presented in Figure 1.

Figure 1: VxWorks Application Boot Sequence

6

5 Fault Management

In VxWorks, faults are handled at a global level which are undertaken by special
components explicitly designed for handling faults. The components do not al-
low faults to propagate by executing appropriate remedial measures. Handling
faults in a centralized manner results in consistent fault management system
throughout the system. Further, this process helps in making the debugging
process easier. VxWorks FMS (Failover Management System) uses the mech-
anism to monitor the status of various hardware devices. VxWorks does not
have built-in message passing capabilities. However, VxWorks is considered as
a function call based operating system. Basically, VxWorks is explicitly based
on the system call exception procedure because it results in the highest possible
performance. In contrary to this, message passing is considered as slow because
the degree of separation is increased among the processes.

5.1 Protection Domains, Sybsystems and Isolation

VxWorks implements the concept of ”protection domains” which is explicitly
required to develop a hardware-enforced protection model. This is done to en-
hance the protection model by inserting protection boundaries in the program
for strong system partitioning thereby showing unacceptance to legacy protec-
tion models such as trap-based system calls or intra-system message passing. It
is possible now to separate applications, shared libraries, shared data and sys-
tem software to varying degrees in order to attain the desired level of isolation
and protection

VxWorks uses inbuilt extensions which comprise of a number of subsystems
that are arranged in layers around the RTOS (Real Time Operating System)
core. These subsystems are not isolated and possess dependencies among differ-
ent software components. VxWorks OS is designed as a layer model. VxWorks
can be made extensible by using run time extension called as VxFusion which
allows interprocessor communication for distributed working across the network.
Apart from this, system resources are assigned to protection domains for con-
trolled execution as per the requirements. VxWorks manages these explicit
associations of different resources among the protection domains.

5.2 Understanding OMS and AMS

VxWorks AE (OS based on VxWorks 5.x) also has a Foundation HA extension
which takes care of the high level availability services such as fault detection and
hot swapping. The HA package actually consists of AMS (Alarm Management
System) and OMS (Object Management System) as a part of the fault manage-
ment framework. OMS basically presents the hardware and software objects in
an abstract way thereby representing them in a tree hierarchical model showing
the dependencies among them.

OMS can initiate the alarm but the alarm handler operations are restricted
by the relationship tree. AIL (Alarm Injection Layer) is considered as the EP

7

(Entry Point) into AMS. Alarm handler actually resides at the top of the tree
and the resultant alarm propagates from bottom to top in the relationship tree.
The mapping between alarm handler and sources can be either one to many
or many to one.The resultant actions of faults are defined by the developer
himself. However, if no alarm handler is associated with the alarm source, the
event is not considered to be a fault and AMS does not control it. Components
that detect the presence of faults and generate alarms are termed as hardened
objects. These objects are defined in an appropriate way in the system having
generic timeout, exit and error handling procedures for every service in order to
prevent locking of the whole system. For example:- device drivers are considered
as hardened objects. AMS provides more robust way of handling and dealing
with faults which in turn improves the reliability and working functionality of
the system.

6 Virtualization - Embedded Hypervisor

With the advent of virtualization, VxWorks guest OS has already been intro-
duced that works perfectly fine with the support of hypervisors. VxWorks works
in similar fashion as VxWorks native OS. This step enhances the functionality
and help the developers to design centralized systems by replacing multiple CPU
boards with a single board. Figure 2 shows the high level view of hypervisor
support in VxWorks guest OS.

Figure 2: VxWorks Hypervisor in Action

6.1 Hypervisor and Virtual Board Security

One of the basic security issue in implementing hypervisor is the appropriate
configuration of the virtual boards on which the application is going to be exe-
cuted. VxWorks hypervisor support wrload utility which can be used to perform
non legitimate operations. Wrload (supported only for 32 bit OS right now) is
capable enough to load any ELF image on to the any other virtual board on
the system. It is also possible to change the contents of any virtual board dy-
namically. Another security challenge is the fact that, wrload requires debug

8

privileges in order to perform operations. By default, VxWorks systems have de-
bug mode enabled. Misconfigured parameters and insufficient permissions may
result in exploitation of virtual boards and hypervisor through debug privileges.

7 VxWorks OS Security Model and Fallacies

As discussed earlier, VxWorks implements the concept of protection domains in
order to separate different software components.The protection domain inher-
its individual MMU (Memory Management Unit) and private address spaces.
MMU is responsible for checking validity of addresses in protection domains.
However, VxWorks design is flexible as design engineers can specify the usage
of different objects in the software components by defining execution bound-
aries during the runtime. This simply states that the developer is equipped
enough to create OEP (Object Entry Point) in the kernel domain according to
the requirements. In general, this design is not robust from the security point
of view.

7.1 Stack Overflow Detection and Protection

In general, when tasks are spawned in VxWorks, by default the stack is filled
with a special value (0xeeeeeeee). The memory model of various applications
designed for VxWorks requires careful decisions. VxWorks provides certain
inbuilt functions to detect the memory usage of various tasks in the application.
The function CheckStack () [10] raises a warning if any procedural task exceeds
the memory limit i.e. stack allocation. CheckStack () works appropriately when
tasks are running in a mode where VX NO STACK FILL macro is not defined.

In the advanced versions such as VxWorks AE, all the non kernel tasks
are protected under the guard pages. If stack overflow occurs inadvertently,
the task tries to enter the space of guard pages, MMU exception occurs which
notifies the stack overflow. However, this protection is not stringent enough
because guard pages are only of the size 4KB. In contrast, VxWorks provides
TASK EXTRA GUARD PAGES configuration parameter to extend the guard
page limit.

7.2 VxWorks Network Stack

VxWorks implements BSD 4.4-compliant TCP/IP stack. It inherits complete
routing support enabled to build IP routing and network devices using VxWorks
as a base system. VxWorks also provides the MUX interface to support inde-
pendence between the network protocol layer and the data link layer. To use a
driver in the data link layer, the network protocol calls the appropriate MUX
routine, when a driver is initialized in the data link layer. Applications can use
the socket interface to access features of the Internet Protocol (IP) suite but Vx-
Works does not have the support for signal functionality for sockets. VxWorks
also implements the ZBUF (set of socket calls based on a data abstraction)

9

that allows sharing of data buffers across different software modules. However,
there is a compatibility issue with the standard BSD code as compared to the
normal datagram (UDP) and stream (TCP) sockets which are fully compatible
with UNIX BSD 4.4.

STATUS etherInputHookAdd ()
(FUNCPTR inputHook ,

Char∗ pName , /∗Name of dev i ce ∗/
Int u int /∗ uni t o f dev i ce ∗/)

BOOL IpFi l te rHook (
s t r u c t i f n e t ∗pI f ,
s t r u c t mbuf ∗∗pPtrMbuf ,
s t r u c t ip ∗∗pPtrIpHdr ,
i n t ipHdrLen)

BOOL inputHook (
s t r u c t i f n e t pI f ,
char ∗ bu f f e r , /∗ r ece i v ed packet ∗/
i n t l ength)

BOOL outputHook
(s t r u c t i f n e t pI f ,

char ∗ bu f f e r ,
i n t l ength)

STATUS ipFilterHookAdd (FUNCPTR IpFi l te rHook)
STATUS etherOutputHookAdd (FUNCPTR outputHook)

Listing 1: VxWorks Network Stack - Hook Functions

The hook functions as presented in listing 1 can be used to design a packet
dissection module for monitoring the traffic running to and fro from the Vx-
Works network stack.

7.3 VxWorks and The SSL Game

SSL is always required to encrypt data in the transport layer. However, due
to small memory size of the devices build on VxWorks using ARM processors,
the complete implementation of OpenSSL [17] library is a very hard job. A
complete rebuild of OpenSSL libraries is required to work appropriately with
VxWorks. In addition, there is a need to remove a certain set of ciphers from
the libraries to make them compact and downloadable. Cryptlib [21] can be
used effectively for implementing required cryptographic modules in VxWorks
in order to incorporate SSL protocol. Generally, there are modifications required
in makefiles used for ”libssl.a” and ”libcrypt.a” in OpenSSL package (not all
packages are compatible with VxWorks).

7.4 Firewalling VxWorks

VxWorks itself does not have an inbuilt firewall in general. However, VxWorks is
perfectly designed to incorporate the third party firewall for security purposes.
Firefly [22] is the firewall that is used to configure the VxWorks for network

10

security. Firefly is a packet filtering firewall which performs stateful inspec-
tion dynamically on the inbound traffic. This firewall is defined specifically for
embedded devices and works as per the configured policies.

In fact, VxWorks actually holds a Achilles certification [19,20] which com-
prises of a number of tests to detect the robustness of the network stack in
filtering of the bad and malformed packets. This shows the effectiveness of
VxWorks in detecting intrusion. As a matter of fact, VxWorks lacks NAT capa-
bilities that could also be added using network level hooks, as discussed earlier.

7.5 VxWorks Debugging Interface

VxWorks executes thread with the priorities and follows the process of pre-
emptive scheduling. VxWorks basically implements an information bus (shared
memory area) for passing critical information among the different running com-
ponents. All the operations in the bus execute according to the priority of the
tasks. The access restrictions are synchronized with mutual exclusion locks. In
order to avoid problems like mutex blocking etc, an active debugging interface
exists. VxWorks runs a very well designed debugging interface on UDP port
17185. This port runs active WDB agent which is a system level debugging ser-
vice provided by the VxWorks. However, this debugging service provides access
to the memory and one can read, write to memory locations efficiently. The
debugging service is structured over Sun RPC protocol. Since it is on UDP, it
does not have any standard authentication procedure [6]. If the port is open,
one can access the debugging interface directly. The 3COM SIP Phone uses
VxWorks as base OS. A typical scan presented in listing 2 shows the presence
of wdbrpc on port 17185. A list of devices that are vulnerable to debugging
interface security flaw is presented here [11].

SIP /2 .0 404 Not Found
From : ” d e f au l t ”<s i p : default@12 .238 .71 .115 > ;
tag=30636565343737333

To : ” d e f au l t ”<s i p : default@12 .238.71 .115>
Call−Id : 258013114488933368019998
Cseq : 1 OPTIONS
Via : SIP /2 .0/UDP 78 . 1 2 3 . 1 6 5 . 1 1 9 : 5 0 60 ;
branch=z9hG4bK−2515319038; rpor t =5060;
r e c e i v ed =184.82 .238 .216

Date : Wed, 23 Feb 2011 16 : 49 : 21 GMT
Allow : INVITE , ACK, CANCEL, BYE, REFER,
OPTIONS, REGISTER, SUBSCRIBE, NOTIFY

User−Agent : 3Com−SIP−Phone/v2 . 6 . 0
(sipXphone) (VxWorks)

root@vmware−virtual−machine : / home/vmware#
nmap −P0 −sS −sU −A −O 12 . 238 . 71 . 115 −p 17185
Nmap scan repor t for 12 . 238 . 71 . 115
Host i s up (0 .00035 s l a t ency) .
PORT STATE SERVICE VERSION
17185/ tcp f i l t e r e d unknown

11

17185/udp open | f i l t e r e d wdbrpc
Device type : g ene ra l purpose | s torage−misc

Listing 2: Scanning the 3COM SIPX Phone

msf a ux i l i a r y (wdbrpc vers ion) > s e t RHOSTS 12.238.71.115−116
RHOSTS => 12.238.71.115−116
msf a u x i l i a r y (wdbrpc vers ion) > run

[∗] 1 2 . 2 3 8 . 7 1 . 1 1 5 : 5 . 4 . 2
PC PENTIUM host : / dos0/R6 5 22/vxWorks

msf a u x i l i a r y (wdbrpc boot l ine) >
s e t RHOSTS 12.238.71.115−116
RHOSTS => 12.238.71.115−116

msf a u x i l i a r y (wdbrpc boot l ine) > run
[∗] 1 2 . 2 3 8 . 7 1 . 1 1 5 : 5 . 4 . 2 PC PENTIUM
host : / dos0/R6 5 22/vxWorks

[∗] 1 2 . 2 3 8 . 7 1 . 1 1 5 : BOOT> ata =0 ,0(0 ,0)
host : / dos0/R6 5 22/vxWorks e =192 .0 .0 .1 tn=e lb ru s f=0x0 o=e lPc i

[∗] Aux i l i a ry module execut ion completed

Listing 3: Gathering Version and Bootline Information - 3COM SIPX Phone

msf a ux i l i a r y (wdbrpc memory dump) > s e t RHOST 12 . 238 . 71 . 115
RHOST => 12 . 238 . 71 . 1 15
msf a u x i l i a r y (wdbrpc memory dump) > run

[∗] Attempting to dump system memory . . .
[∗] 1 2 . 2 38 . 7 1 . 115 Connected to 5 . 4 . 2 − PC PENTIUM (host : / dos0/

R6 5 22/vxWorks)
[∗] Dumping 0 x26 f f f 0 0 0 bytes from base address 0x00000000 at o f f s e t

0x00000000 . . .
[∗] [00 %] Downloaded 0x000104b4 o f 0 x26 f f f 0 0 0 bytes (complete at

2011−04−14 02 : 50 : 07 −0400)
[∗] [00 %] Downloaded 0x000203dc o f 0 x26 f f f 0 0 0 bytes (complete at

2011−04−14 01 : 26 : 47 −0400)
. .
[−] Aux i l i a ry in t e r rup t ed by the conso l e user
[∗] Aux i l i a ry module execut ion completed

Listing 4: Downloading Memory Dump - 3COM SIPX Phone

Listing 3 shows the successful enumeration of VxWorks version and boot-
line parameters using Metasploit [5] auxillary modules. Listing 4 shows the
downloading of memory content from 3COM SIP IPhone. This debugging ser-
vice possesses an inherent vulnerability which provides open access to perform
operations on the remote machine running VxWorks. However, by using WDB
routine core library and executing code through this running service, it is pos-
sible to write in memory location remotely.

12

7.6 Weak Password Encryption Algorithm

VxWorks uses inbuilt vxencrypt utility to generate encrypted password which
uses weak hashing algorithm [4] as presented in listing 5.

STATUS log inDe fau l tEncrypt
(char ∗ in , /∗ input s t r i n g ∗/

char ∗out /∗ encrypted s t r i n g ∗/) {
i n t i x ;
unsigned long magic = 31695317;
unsigned long passwdInt = 0 ;

i f (strlen (in) ” 8 | | s t r l e n (in) ” 40) {
e r rnoSet (S loginLib INVALID PASSWORD) ;
re turn (ERROR) ; }

for (i x = 0 ; i x ” s t r l e n (in) ; i x++)
passwdInt += (in [i x]) ∗ (i x+1) ˆ (ix+1) ;
s p r i n t f (out , ”%u” , (long) (passwdInt ∗ magic)) ;

f o r (i x = 0 ; ix ” strlen (out) ; i x++){
i f (out [i x] ” ’ 3 ’) out [i x] = out [i x] + ’ ! ’ ;
i f (out [i x] ” ’ 7 ’) out [i x] = out [i x] + ’ / ’ ;
i f (out [i x] ” ’ 9 ’) out [i x] = out [i x] + ’B ’ ; }

r e turn (OK) ;}

Listing 5: VxWorks Weak Encryption Algorithm

In general, the total number of permutations for this algorithm is not a very
high and can be brute forced very easily. This can be effectively supported by
no account lockout policy used by VxWorks after a number of missed attempts.
One can use FTP or telnet as a protocol to launch this attack.

7.7 NDP Information Disclosure

IPv6 [12] uses Neighbor Discovery Protocol (NDP) [9] for location routers on the
link. VxWorks real time OS implements NDP in an insecure way [3] in order
to discover the network reachability of the nearby nodes on the same IPv6
link. Attacker using spoofed IPv6 address as source address forces the router to
create a cache entry. After successful creation of entry, IPv6 implementation in
VxWorks creates a Forward Information Base (FIB) which may trick the router
to forward traffic to the attacker residing in the same IPv6 network. Attacker
may intercept the private traffic and in certain scenarios may cause Denial of
Service (DOS) attack by congesting the network. This flaw was discovered in
2008 and has not been patched till yet.

8 Design of VxWork 5.x - Firmware

Firmware is the heart of any embedded device. The firmware analysis provide a
more robust picture of the security model opted by the device. It also helps us to

13

identify security vulnerabilities in the device. In this section, VxWorks firmware
details are dissected to understand the discreet details about the firmware.

8.1 VxWorks Firmware Generic Structure

VxWorks OS (firmware) provides a reduced flash and RAM which is not com-
patible with the third party firmware until the proprietary image is killed and re-
flashed to install a new open source firmware. Generally, VxWorks 5.x firmware
image consists of 8 trailer files and 8 primary files, thus in total 16 different
internal files. Listing 6 shows the analyzed layout of VxWorks firmware image
in the Linksys router. The primary files are written to flash specifically where
as trailer files (unknown in nature) are the supporting files to make the firmware
image intact. The images usually ends with a 32 bit aligned boundary.

E:\ audi t \vxworks>wrt vx imgtoo l . exe vxworks wrt45gs . bin
+ Found parameter , view firmware
+ I n f i l e parameter vxworks wrt45gs . bin
Extract ing f irmware vxworks wrt45gs . bin
Firmare f i l e s i z e i s 1769384 bytes

Code pattern : 5SGW
Build date : 10−05−09
Vendor name : Linksys
Device name : WRT54GS
Checksum : 0x9FC74AB0 (given)
Checksum : 0x9FC74AB0 (c a l c u l a t ed)
Checksum CORRECT

+ Tra i l i n g f i l e s :
F i l e d e s c r i p t o r 0 , Type Id : 16
F i l e d e s c r i p t o r 1 , Type Id : 17
F i l e d e s c r i p t o r 2 , Type Id : 18
F i l e d e s c r i p t o r 3 , Type Id : 19
F i l e d e s c r i p t o r 4 , Type Id : 341191297
F i l e d e s c r i p t o r 5 , Type Id : −1616601592
F i l e d e s c r i p t o r 6 , Type Id : 18499
F i l e d e s c r i p t o r 7 , Type Id : 759

+ Primary f i l e s :
F i l e d e s c r i p t o r 0 , Name : vxworks . bin
F i l e d e s c r i p t o r 1 , Name : igwhtm . dat
F i l e d e s c r i p t o r 2 , Name : langpak en . dat
F i l e d e s c r i p t o r 3 , Type Id : 11
F i l e d e s c r i p t o r 4 , Type Id : 12
F i l e d e s c r i p t o r 5 , Type Id : 13
F i l e d e s c r i p t o r 6 , Type Id : 14
F i l e d e s c r i p t o r 7 , Type Id : 15
Done !

Listing 6: VxWorks 5.x-6.x Firmware Image

14

9 VxWorks Firmware Security Analysis

In order to analyze the security features in the real time environment, we looked
into the VxWorks 5.x OS (firmware) running on Linksys router WRT54GS ver-
sion 6. As we know, VxWorks is a proprietary firmware, there are a number of
restrictions applied on it as compared to open source firmwares such as Linux
and DD-WRT. During the course of this experiment, we analyzed the security
model of firmware 1.50.6 which is used in VxWorks 5.x-6.x versions.

9.1 Hacking Boot Sequence Program (BSP)

The most critical step in VxWorks firmware hacking is the replacement of Boot
Sequence Program (BSP) with the Common Firmware Environment (CFE).
The generic way to do this process is by using JTAG programming cable which
is replaced with the parallel-3 programming cable. However, following points
should be taken into account while setting JTAG interface with the motherboard
or the embedded device board.

• It provides a connection from the parallel port on your PC to a standard
6-pin JTAG header on the target board. However, the pins have to be
selected in the right manner. This is because JTAG header has to be
installed on the target board before actual programming can be done.

• NVRAM (-erase:nvram) and the kernel (-erase:kernel) should be removed
appropriately in order to take control of the router on the embedded de-
vice.

• One should take the backup of the CFE image (-backup:cfe). The backup
must be taken atleast three times so that final verification can be done
after validating the contents of CFE.

• The last step is to flash the new firmware (open source) on the target
board through TFTP.

For analyzing VxWorks firmware (or any firmware), the best way is to dis-
assemble the BSP. This is because BSP parses the structural code of VxWorks
firmware format. The next step is to look forward for the different types of
blocks (as most blocks are unidentified) and try to verify whether the unused
block can be used to flash the new image over BSP i.e. replacing BSP with
CFE tactically. In other words, detecting which block is being used for boot
loading process. However, this process also includes the verification of checksum
algorithm. This trick is used to kill VxWorks firmware and this binary file is ap-
plied during the management mode. Jeremy Collake from bitsum technologies
has developed a VxWorks firmware killing binary that can also be used directly.
For different versions of Linksys router, one can also modify the code to run
appropriately on other firmwares.

15

NOTE: For doing symmetric analysis on VxWorks firmware, the ”/dev/t-
tyS0” team has released a tutorial for reversing VxWorks [23] firmware image.
The tutorial is fruitful, when a firmware has to be reversed without the device
at hand.

9.2 VxWorks Firmware Killer

Generally, VxWorks firmware used in home routers such as WRT54GS (Linksys)
has reduced flash memory and RAM. There are a lot of restrictions posed on the
VxWorks firmware in order to have controlled secure environment. However, it
is still possible to kill this firmware and load another third party firmware such
as DD-WRT. Installing a new firmware by killing the old version of firmware is
termed as flashing process. In this step, no hardware modifications take place.
Listing 7 shows the the output of the VxWorks killer binary.

E:\ audi t \vxworks>wrt vx imgtoo l . exe −x vxwo rk s k i l l e r g v 06 . bin
WRT54G/GS v5−v6 f irmware image bu i lde r , ex t rac to r , f i x e r , and

viewer

Extract ing f irmware vxwo rk s k i l l e r g v 06 . bin
Firmare f i l e s i z e i s 327168 bytes

Code pattern : 5VGW
Build date : 07−08−06
Vendor name : Linksys
Device name : WRT54G
Checksum : 0x1A21473A (given)
Checksum : 0x1A21473A (c a l c u l a t ed)
Checksum CORRECT

+ Tra i l i n g f i l e s :
+ Primary f i l e s :
−
F i l e d e s c r i p t o r 0 ; Type Id : 1 ;
Name : bootrom . bin ; S i z e : 326656 ;
Writing f i l e bootrom . bin
−
F i l e d e s c r i p t o r 1 ; Type Id : 0
Name : ; S i z e : 0

Done !

Listing 7: Extracting CFE image of VxWorks Killer

In listing 8, CFE (Common Firmware Environment) [7] image (bootrom.bin)
[15] has been extracted from the primary file. Image tool utility [8] is used
to extract CFE image. It is also possible to tamper with the VxWorks Boot
Sequence Program (BSP) with BSPTOOL [16].

E:\ audi t \vxworks>imgtool nvram . exe bootrom . bin)
Free for a l l the world . GPL License .
+ CFE image : bootrom . bin
+ Reading nvram . . .

boa rd f l ag s=0x2558 ; boardnum=42
boardrev=0x10 ; v x k i l l e d=g

16

teacup=db90h ; et0macaddr =00 : 40 : 10 : 10 : 00 : 01
i l0macaddr =00 : 40 : 10 : 10 : 00 : 02 ; wl0gpio0=2
wl0gpio1=5 ; wl0gpio2=0
wl0gpio3=0 ; boardtype=0x0467
sromrev=2 ; c l k f r e q=200
sdram in i t=0x0002 ; sdram conf ig=0x0032
sdram re f r e sh=0 ; sdram ncdl=0
et0phyaddr=30 ; et0mdcport=0
et1phyaddr=0x1f ; wl0 id=0x4318
aa0=3 ; ag0=2
pa0maxpwr=72 ; p a 0 i t s s i t =62
pa0b0=0x176e ; pa0b1=0xfa35
pa0b2=0xfe77 ; opo=12
wl0gpio5=2 ; c c t l=0
ccode=0 ; vlan0hwname=et0
v lan0por t s=3 2 1 0 5∗ ; vlan1hwname=et0
v lan1por t s=4 5 ; landevs=vlan0 wl0
wandevs=et0 ; l an ipaddr =192 .168 .1 .1
lan netmask =255 .255 .255 .0 ; boot wai t=on
r e s e t g p i o=7 ; watchdog=3000
gpio1=s e s l e d ; gpio14=se s but ton

Embedding nvram . . .
+ Writing nvram . . .

boa rd f l ag s=0x2558 ; boardnum=42
boardrev=0x10 ; v x k i l l e d=g
teacup=db90h ; et0macaddr =00 : 40 : 10 : 10 : 00 : 01
i l0macaddr =00 : 40 : 10 : 10 : 00 : 02 ; wl0gpio0=2
wl0gpio1=5 ; wl0gpio2=0
wl0gpio3=0 ; boardtype=0x0467
sromrev=2 ; c l k f r e q=200
sdram in i t=0x0002 ; sdram conf ig=0x0032
sdram re f r e sh=0 ; sdram ncdl=0
et0phyaddr=30 ; et0mdcport=0
et1phyaddr=0x1f ; wl0 id=0x4318
aa0=3 ; ag0=2
pa0maxpwr=72 ; p a 0 i t s s i t =62
pa0b0=0x176e ; pa0b1=0xfa35
pa0b2=0xfe77 ; opo=12
wl0gpio5=2 ; c c t l=0 ; ccode=0
vlan0hwname=et0 ; v lan0por t s=3 2 1 0 5∗
vlan1hwname=et0 ; v lan1por t s=4 5
landevs=vlan0 wl0 ; wandevs=et0
l an ipaddr =192 .168 .1 .1 ; lan netmask =255 .255 .255 .0
boot wai t=on ; r e s e t g p i o=7
watchdog=3000 ; gpio1=s e s l e d
gpio14=se s but ton

Completed s u c c e s s f u l l y . .

Listing 8: Extracting NVRAM variable from Bootrom.bin

Listing 8 shows how exactly the nvram is updated and embedded so that new
values can be written. The scenarios discussed above show the potential threats
of VxWorks firmware used in routers. The nvram variables are used to define
the boot sequence pattern during reboot and other critical settings. Before,
installing the new firmware on VxWorks device, a binary file (bootrom.bin) is

17

designed which provides default nvram variables that are required to boot the
router during firmware upgrade. In general, the nvram is re-flashed with new
boot parameters which itself prepares the router to be ready for changes in
the firmware. Basically, embedded nvram is used, when real nvram is either
corrupted or empty so that the device can be restored to defaults.

9.3 Services and Port Layout

There are certain differences in the remote management of the VxWorks running
on Linksys as compared to other open source firmwares which are as follows:

• By default, WRT54GS (running VxWorks 5.x) version 6 does not sup-
port the Telnet and FTP as a part of the remote administration process.
The firmware has restricted the use of these protocols and only supports
HTTP/HTTPS over port 80 and 8080. This constraint actually reduces
the interactivity with the OS.

• The firmware does not support SSH (Secure Shell) protocol for remote
administration. In order to use the SSH, one has to kill VxWorks and
re-flash the open source firmware such as DD-WRT [13].

Listing 9 shows the scanning results of our testbed environment running Vx-
Works 5.x on Linksys.

Sta r t i ng Nmap 5 .51 (http : //nmap . org) at 2011−03−19 00:59 Eastern
Day l i gh t Time

Nmap scan repor t for 192 . 1 6 8 . 1 . 1
Host i s up (0 .0026 s l a t ency) .
Not shown : 96 f i l t e r e d por t s
PORT STATE SERVICE VERSION
21/ tcp c l o s ed f tp
23/ tcp c l o s ed t e l n e t
80/ tcp open http Into to httpd 1 .0
1723/ tcp open pptp Intoto
MAC Address : 0 0 : 1 8 : 3 9 : 8 1 : 7 7 :B5 (Cisco−Linksys)
Device type : WAP| broadband route r
Running : Linksys embedded , Netgear embedded , Netgear VxWorks 5 .X
OS d e t a i l s : Linksys WRT54G or WRT54G2, or Netgear WGR614 or

WPN824v2 w i r e l e s s broadband router , Netgear WGT624 WAP, Netgear
WGR614v7, WGT624v3, or WPN824v2 WAP (VxWorks 5 . 4 . 2)

Network Distance : 1 hop

OS and Se rv i c e de t e c t i on performed . Please r epo r t any i n c o r r e c t
r e s u l t s at http : //nmap . org/ submit / .

Nmap done : 1 IP address (1 host up) scanned in 37 .56 seconds

Listing 9: Scanning the WRT54GS v6

9.4 Factory Default Passwords

VxWorks runs on a number of embedded devices which are configured with fac-
tory default passwords that are used to configure the installed firmware. There

18

is no doubt that enforcing password policies is a configuration issue but it is
an unavoidable part of security. VxWorks like other firmwares also implement
factory default passwords. For example: VxWorks used in router devices are
configured with (admin,admin) , (guest,guest) username and password combi-
nation respectively. This fact should be taken into account when any VxWorks
device is tested for security concerns while deploying in the production environ-
ment.

9.5 Config.bin - Inappropriate Encryption

The backup restoration is a standard process for taking control of all the con-
figuration parameters. Usually, all the firmware backup files are stored in the
binary format as config.bin. Generally, the file is structured in a manner which
is easily readable by the firmware while restoring and upgrading. Editing the
config.bin file produces scrambled output because of the random code. This
gives an impression that config.bin is not fully encrypted or compressed insuf-
ficiently. However, reading the config.bin file carefully , one can find plain text
parameters. Since the size of the file is not big , walking through the file is not a
hard task. Unfortunately, the config.bin file produces the router administration
password, SSID and secret key in plain text. Figure 3 shows the successful trac-
ing of security credentials in config.bin file. This security issue has been found
during the course of this experiment.

Figure 3: Configuration Binary File - Clear Text Credentials

19

10 Embedded Devices - Truth about Security

There are certain truths about embedded device security that must be taken into
account while doing reverse engineering and auditing for security vulnerabilities.
Some of the generic issues are discussed as follows

10.1 Embedded Private Keys - HTTPS Communication

Nowadays, every embedded device provide a web interface in order to administer
the device. It has been noticed that many vendors embed the private keys in
the firmware itself. Ofcourse, these private keys vary from version to version
but hard coding is not a secure practice. It means that if a device is configured
to communicate over HTTPS, the device is going to use the private key that is
hard coded in the firmware. This is a potential security issue because firmwares
are available openly and on successful reversing the keys can be extracted easily.

10.2 Firmware Checksum Algorithms

The checksum algorithm that are used in the firmwares are not robust and re-
versing them is a trivial process. The firmwares do not use multiple obfuscation
algorithms and long message digests. The firmwares require more sophisticated
implementation of cryptographic modules.

10.3 Insecure Web Interfaces

Vulnerabilities in web interface can be disastrous from security point of view.
The html pages are embedded in zipped format and are compressed in the
firmware. Once the device boots and firmware is loaded, the web interface is
installed and can be easily accessed through port 80 or 8080. The security
model of web interface in firmware is not secure and is always prone to security
vulnerabilities. OWASP TOP 10 [24] fits very well in testing web interfaces
against critical vulnerabilities. A number of web attacks can be conducted
easily to control the device remotely.

10.4 Unpatched Firmware and Obsolete Versions

Firmwares are not updated regularly.. It has been analyzed that updating
firmware on embedded devices is not a security practice as in consideration
to the operating system. It is very easy to find embedded devices running
unpatched and older versions of firmware which provide an attack surface to
control the device by exploiting vulnerabilities.

20

11 Future Work

A number of vulnerabilities discussed in this paper are in the process of be-
ing patched. A thorough Understanding of the OS vulnerabilities can help
researchers to delve deeper into the inherent security model of VxWorks. It
can contribute to the creation of new robust and effective security models. Vx-
Works being a real OS is more secure as compared to the other real OS, but the
presence of security vulnerabilities makes it prone to attacks.OS security testing
helps to eradicate a number of flaws thereby making the OS more secure. In
the coming times, security concerns should be given utmost importance. Con-
sequently, OS designs should be validated regularly for detection of potential
flaws thereby eradicating security vulnerabilities.

12 Conclusion

In this paper, we described the existing security vulnerabilities in VxWorks OS
and firmware. We conducted experiments to verify the potential impact of these
vulnerabilities to understand the inherent security model of VxWorks. The anal-
ysis revealed new security issues in VxWorks firmware. VxWorks are exposed
to a specific set of security issues inspite of being a real time OS which ensures
that is quite secure than other open source models. Nonetheless, VxWorks is
restricted as it does not allow extensible operations to be performed in order to
avoid many default configuration bugs. vulnerabilities discussed and validated
in this experiment have not been patched yet but Wind River system knows
about them. VxWorks is still utilized in heavy volumes in embedded devices
owing to its feasibility of implementation in different environments.

21

13 References

[1] Wind River Systems, High-Availability CompactPCI Systems: Introduction
to Foundation HA, COTS Journal, September 2003, 47-53.

[2] T. Anderson, T. Grabbe, J. Hammersley, et al., Providing Open Architecture
High Availability Solutions, HA Forum, February 2001.

[3] SecurityFocus, Multiple Vendors IPv6 Neighbor Discovery Protocol Imple-
mentation Address Spoofing Vulnerability,http://www.securityfocus.com/bid/31529/info

[4] Metasploit Blog, Shiny Old VXWorks Vulnerabilities, http://blog.metasploit.com/2010/08/vxworks-
vulnerabilities.html

[5] Metasploit, http://www.metasploit.com

[6] Securityfocus Vulnerability Database , VxWorks Debugging Service Security-
Bypass Vulnerability, http://www.securityfocus.com/bid/42158

[7] Open WRT Docs, CFE - Common Firmware Environment, http://oldwiki.openwrt.org/OpenWrtDocs
%282f%29Customizing%282f%29Firmware%282f%29CFE.html

[8] CFE - Common Firmware Environment Image Tool, http://www.bitsum.com/files/wrt vx imgtool.zip

[9] RFC 2461, http://www.ietf.org/rfc/rfc2461.txt

[10] VxWorks Check Stack(), Vxworks Configuration Documentation, http://www.eso.org/projects/vlt/sw-
dev/wwwdoc/ADD-DOC/VLT-MAN-ESO-17210-0667/Output/configuration.html

[11] Rapid7, List of Vulnerable Devices - VxWorks, http://www.metasploit.com/data/confs/bsideslv2010/
VxWorksDevices.xls

[12] RFC 3513, http://www.ietf.org/rfc/rfc3513.txt

[13] DD-WRT,http://www.dd-wrt.com/site/index

[14] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols:
An Approach to Real-Time Synchronization. In IEEE Transactions on Com-
puters,vol. 39, pp. 1175-1185, Sep. 1990.

[15] LEON VxWorks 6.5 BSP Manual, http://www.gaisler.com/doc/vxworks-
bsps-6.5-1.1.2.0.pdf

[16] VxWorks Boot Sequence Program (BSP) Manipulation Utility, http://www.bitsum.com
/files/bsptool.zip

22

[17] OpenSSL, http://www.openssl.org

[18] Wek-Tek Sai, VxWorks and Tornado, http://asusrl.eas.asu.edu/cse494/content/realtime/
Vxworks&Tornado.pdf

[19] Achillers Industry Certification Program, http://www.wurldtech.com/cyber-
security/achilles-certification.aspx

[20] Blog, Wind River Introduces Worlds First Wurldtech Achilles Certified
Real-Time Operating System, http://www.windriver.com/news/press/pr.html?ID=8381

[21] Cryptlib, http://www.cryptlib.com/downloads/manual.pdf

[22] Firefly, http://www.windriver.com/alliances/newdirectory/product.html?ID=1222

[23 Reverse Engineering VxWorks Firmware: WRT54Gv8, http://www.devttys0.com/2011/07/reverse-
engineering-vxworks-firmware-wrt54gv8/

[24] OWASP Top 10, https://www.owasp.org/index.php/Category:OWASP Top Ten Project

23

