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ABSTRACT
Mobile phones are increasingly equipped with a range of highly re-
sponsive sensors. From cameras and GPS receivers to three-axis
accelerometers, applications running on these devices are able to
experience rich interactions with their environment. Unfortunately,
some applications may be able to use such sensors to monitor their
surroundings in unintended ways. In this paper, we demonstrate
that an application with access to accelerometer readings on a
modern mobile phone can use such information to recover text
entered on a nearby keyboard. Note that unlike previous emana-
tion recovery papers, the accelerometers on such devices sample
at near the Nyquist rate, making previous techniques unworkable.
Our application instead detects and decodes keystrokes by measur-
ing the relative physical position and distance between each vibra-
tion. We then match abstracted words against candidate dictionar-
ies and record word recovery rates as high as 80%. In so doing, we
demonstrate the potential to recover significant information from
the vicinity of a mobile device without gaining access to resources
generally considered to be the most likely sources of leakage (e.g.,
microphone, camera).

1. INTRODUCTION
Mobile phones are becoming increasingly powerful devices. In

addition to being able to run applications ranging from email clients
to web browsers, a progressively sophisticated set of sensors are
enabling these devices to more actively interface with the world
around them. From gestures captured by accelerometers for games
to augmented reality applications displaying metadata tags on video
from the camera in real-time, mobile phones are becoming adept
at capturing and harnessing rich features and data from their sur-
roundings.

Unfortunately, the array of sensors in these devices can also be
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used in unintended ways. As many have suggested, malware could
potentially gain access to a mobile phone’s camera to take photos or
video of the owner and their surroundings [16, 37]. In cases where
the camera may not be pointed at an interesting target, a malicious
application could instead attempt to activate the device’s micro-
phone and record ambient sounds or syphon GPS data to track the
target’s location [17, 13, 23, 21]. Recognizing the potential for the
leakage of sensitive information, many modern mobile phone oper-
ating systems provide mechanisms by which access to such sensors
is protected by explicit permission from the user. For instance, the
manifest files included with every Android application provide an
unambiguous list of all of permissions an application may ever re-
quest at installation time. Should an application not request access
to these resources1 or the user deny the application such rights, the
application will not be able to potentially abuse these resources.
However, access to all of the sensors contained in these devices are
not so tightly controlled.

In this paper, we demonstrate that unfettered access to the ac-
celerometers available on many mobile phones can allow for sig-
nificant unintended leakage of information from a user’s environ-
ment. We show that a malicious application with access to the ac-
celerometer feed can record and reconstruct the keypresses made
on a nearby keyboard based solely on the observed vibrations. We
develop profiles for pairs of keypress events using a neural network,
which creates an abstract representation of the relationship between
consecutive events. We then recover the typed content by translat-
ing from our intermediary form to English words using a number
of different dictionaries. Such tasks are not a trivial application of
standard techniques, especially when compared to previous efforts
in this space. Specifically, we must overcome much lower sen-
sor sampling rates than has been experienced in the related acous-
tic and electromagnetic-based eavesdropping attacks, which makes
deciphering individual keypresses extremely difficult.

Through this, we make the following contributions in this paper:

• Recover keystrokes with far less precise monitoring equip-
ment: We note that while a number of related efforts analyze
keyboard emanations, our techniques overcome a notewor-
thy disadvantage. Most critically, the sampling rates of the
devices used to recover acoustic and electromagnetic emana-
tions are six (2.5 GHz) [40] and two (44.1 kHz) [3] orders of

1Specifically, the manifest file would need
to contain RECORD_AUDIO, CAMERA and
ACCESS_FINE_LOCATION [2].
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magnitude greater than that of the accelerometers running in
a modern mobile phone (100 Hz).

• Develop an infrastructure for characterizing keypress vi-
brations: We capture, analyze and develop profiles of pairs
of keypress events on a nearby keyboard based on the vi-
brations created when they are pressed. Our inputs are then
processed using a neural network to create an intermediary
representation of the relative position and distance between
keypress pairs, which is combined with candidate dictionar-
ies to successfully recover words at rates as high as 80%.

• Provide effective mitigation techniques: In spite of a rich
resource management options, we demonstrate that mobile
phones lack sufficient policies to prevent such attacks. We
offer suggestions to dramatically reduce the effectiveness of
these kinds of attacks without appreciably affecting other ap-
plications requiring legitimate access to the accelerometers.

Note that for all its apparent obstacles, our approach has a sig-
nificant advantage over previous work. Attacks designed to com-
promise keystrokes using electromagnetic and acoustic emanations
have thus far required that an adversary gain undetected physical
access to the space occupied by their target. Our approach elimi-
nates this requirement by allowing our malicious application to run
on a device most users are likely to already be carrying with them.

The remainder of this paper is organized as follows: Section 2
discusses important related work and provides context for our con-
tributions; Section 3 describes our attack and threat model in detail;
Section 4 attempts to apply previously used methods and demon-
strates why they do not work in this setting; Section 5 describes
our model and experimental setup in detail; Section 6 offers exper-
imental results; Section 7 discusses a number of related issues and
mitigation strategies; Section 8 provides concluding remarks.

2. RELATED WORK

The emanations of electrical and mechanical devices have long
been known to expose information about their users’ activities. As
early as the 1940s, scientists working on the TEMPEST project
demonstrated the ability to capture the electromagnetic signals gen-
erated by the Bell 131-B2 teletype terminal, which was used to en-
crypt communications by the US military [29]. These techniques
were improved and used during the Vietnam War to detect Viet
Cong trucks at distances of up to ten miles [28]. More recently,
researchers applied similar techniques to CRT [39] and LCD [27]
monitors and demonstrated the ability to recover their contents both
at great distance and through significant obstacles (e.g., brick walls).
Similar attacks on electromagnetic emanations have since been demon-
strated against Smart Cards [31], CMOS chips [1], serial port ca-
bles [34] and keyboards [40]. While such an attack vector was
certainly within the capabilities of sophisticated adversaries, its use
by the general public has thus far been fairly limited.

Optical emanations and reflections also offer a potential source
of information. Kuhn [26] demonstrated that temporal variations of
the diffuse reflections of CRT monitors could be processed to reveal
the contents displayed on the screen. Backus et al. [7] were able to
capture the content from any monitor based on mirroring by nearby
objects with high reflectiveness, including soda bottles, tea pots and
eye glasses. This work was later extended to capture reflections
directly from a target’s eye [5]. While these attacks are effective at
distances of up to 30 meters, they are difficult to execute without
a constant and unobstructed line of sight, which may potentially
expose the presence of the adversary.

Figure 1: Our experimental placement of a mobile phone run-
ning a malicious application attempting to recover text entered
using the nearby keyboard.

The acoustic emanations made by a range of devices are more
easily captured by less capable adversaries. For instance, using a
simple consumer-grade microphone, the contents of printouts made
by a dot-matrix printer can be recognized with high accuracy [11,
6]. Recognizing this, the research community has spent signifi-
cant effort recreating key presses on computer keyboards through
such auditory channels. Specifically, previous work has shown the
ability to recover greater than 80% of keyboard presses given sub-
stantial training [3], without training [42] and based on acoustic
dictionaries [10]. While such approaches are certainly more within
the reach of the adversary, they are extremely difficult to scale to
large deployments as they require that a microphone is physically
located near all potential targets at all times.

The vibrations caused by physical activities can also be exploited
to surreptitiously leak information. For instance, laser vibration
systems focused on flat surfaces such as windows can recover both
voiced conversations and typing [8]. As such systems are becoming
more readily available to the public [22], their use becomes more
practical. However, like the above acoustic case, the scalability
of their deployment makes large-scale attacks using such equip-
ment difficult. Through the use of compromised mobile phones,
our work focuses on taking advantage of such side channels while
making such attacks significantly more scalable.

3. ATTACK DESCRIPTION AND THREAT
MODEL

Many previous emanation papers have been successful because
they were able to deploy sensitive equipment near their intended
target. From microphones to an antenna, previous attacks require
an adversary to violate the physical security of the area near their
target. This observation does not make such attacks impossible, but
certainly increases both difficulty and likelihood of detection. Our
attack instead attempts to recover emanations with a device that the
target themselves will bring near the keyboard.

Mobile phones perfectly match this description. These devices
contain a range of sensors (e.g., camera, microphone, GPS) through
which a malicious program could potentially eavesdrop upon a tar-
get [32, 38]. Such attacks have long been expected and can easily
be prevented by denying access to such resources [24, 9]. Access to
information generated by accelerometers, however, is not protected
in any current mobile phone operating system. Accordingly, we in-
vestigate whether or not this sensor can record nearby phenomenon
with sufficient accuracy to recover sensitive information.

Our attack is based on a simple observation. Specifically, many
users place their mobile devices on their desk when they are work-
ing so that their are easily accessible. Figure 1 shows our exper-
imental setup. An adversary attempting to recover sensitive in-
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Figure 2: A comparison of accelerometer readings from an iPhone 3GS (top) and an iPhone 4 (bottom) during the spaced and
repeated pressing of a single key. Note that keypress events are easily recognizable on the iPhone4, whereas they are indistinguishable
on the iPhone 3GS.

formation entered by a user on a desktop computer would operate
as follows: the adversary would install a malicious application on
the mobile phone belonging to their target. This step could be by
gaining physical access to the device or through social engineering
(e.g., suggesting an innocuous and seemingly useful application to
a colleague, spam, etc). Secondly, the application will record ac-
celerometer data. This operation need not occur constantly, but
could instead occur by explicit wake up (e.g., text message trig-
ger) or by periodic sampling for activity. Finally, the malicious
application has some means of exfiltrating the observed data. This
channel could via a direct connection to the Internet or potentially
indirectly through another application. We do not assume access to
any additional resources.

4. APPLICATION OF PREVIOUS
TECHNIQUES

A number of papers have recently been published on the de-
coding of keyboard emanations. Two questions naturally arise.
First, given that the accelerometers found in current mobile phones
sample at rates that are orders of magnitude smaller than previ-
ous acoustic and electromagnetic attacks, can keypresses even be
detected by these sensors? Secondly, if such events can be ob-
served, can previously developed methodology (i.e., identifying in-
dividual keys using neural networks) be blindly applied to identify
keystrokes?

We answer the first question by comparing the capabilities of
two different phones - the iPhone 3GS and the iPhone 4. Fig-
ure 2 shows the raw amplitude readings from the z-axis accelerom-
eters on these devices when placed two inches from the left side
of a QWERTY-style keyboard. Most noticeably, generic keypress
events are unidentifiable on the iPhone 3GS. The relatively noisy
output generated by the accelerometers on the iPhone 3GS provide
very few differentiable features over which classification could oc-

cur. The presence of a better accelerometer and a gyroscope on the
iPhone 4 provides significantly improved separation of keypresses
and shows 9 distinct events. This observation leads us to assert
that accelerometer-based eavesdropping could potentially be im-
plemented on some phones.

Having satisfactorily determined that keypress events are ob-
servable using the accelerometers included on a currently available
mobile phone, we attempt to determine whether such events are
measurably different enough to allow for classification. Asonov et
al. [3] showed accuracies of 79% by processing acoustic emana-
tions using microphone signals digitized with a standard PC sound
card with 44.1 kHz sampling rate. In their experiments, audio sam-
ples were captured and feature vectors were created using FFT val-
ues for each sample. These feature vectors were used to train a
neural network for classification.

Our initial experiments aimed to recreate the methods used in
the acoustic work. We gathered samples using an iPhone 4 on
a wooden surface located 2 inches from a wireless Apple Blue-
tooth keyboard. Each alphabetic key was sampled 150 times by
gathering x, y, z values from the raw accelerometer output. Due
to the constraints on the accelerometer hardware, our sample rates
were limited to 100 Hz, 441 times less than Asonov et al. The
raw output was then processed through several algorithms for cre-
ating feature vectors, including mean, min, max, FFT, MFCC and
other time window values. We trained and tested a neural network
using a 70%/30% data split. As expected, our overall accuracies
(25.89%) were significantly lower than Asonov et al. (78.85%).
Specifically, only 3 letters out performed the acoustic results, ‘a’,
‘e’, and ‘o’. However, overall the accuracies of our initial results
were well below the results gathered in the acoustic experiments.
Figure 3 shows comparative results for each alphabetic key.

These initial results tell us that while keypress events are de-
tectable, the direct application of previous techniques does not pro-
vide an effective means of recovering text entered on a nearby key-
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Figure 3: Comparison of the per-letter accuracies for acoustic (theirs) and seismic (ours) emanations using the methodology by
Asonov et al. [3]. Note that our proposed use of accelerometer provides significantly less accurate results (25.89% vs 78.85%) based
on this approach. Accordingly, a different approach is necessary.

board. We therefore investigate an approach more suited to our
limited sampling abilities.

5. MODELING KEYPRESS EVENTS
In this section, we present our model for identifying keypress

events. We then discuss our experimental setup and processing ar-
chitecture.

5.1 Keypress Event Modeling
Because of the extremely low sampling rates available to ac-

celerometers and our previously demonstrated difficulty in recog-
nizing individual keys, we instead attempt to characterize pairs of
keypresses and their relation to each other. Let Pi, Pj equal se-
quential keypress events. We characterize the relation between two
successive events, rel(Pi, Pj) using the following two features:

• Horizontal Orientation: The location loc(Pi) of each key-
press event relative to a ‘central-line’ dividing the keyboard
into left and right partitions.

• Distance Between Consecutive Keypresses: For a thresh-
old distance in keys α, we define the distance dist(Pi, Pj)
of consecutive keypress events as being either near or far,
where near < α and far ≥ α.

We define consecutive keypress events as rel(Pi, Pj) = loc(Pi)
||loc(Pj)||dist(Pi, Pj), where || represents feature concatenation.
A word is thus composed of a series of concatenated event-pairs,
referred to as its ‘word-profile’. As an example, assuming α = 3
and a central-line marking all keys including and to the left of ‘t’,
‘g’ and ‘b’ on a standard QWERTY keyboard as left and all keys
including and to the right of ‘y’, ‘h’ and ‘n’ as right, the word
“canoe” would be represented as:

LLN.LRF.RRF.RLF.

Note that for the five letter word “canoe”, there are four pairs
of consecutive keypresses: “ca”, “an”, “no”, and “oe”. Accord-
ingly, all words of length n will be represented as abstract strings
of length n − 1 in our system. These abstract words can then be
processed for content using dictionaries as discussed below. We
note that as there are only two one letter words in English (e.g., ‘a’
and ‘I’), that we can identify such words as a special case in our
architecture.

5.2 Framework Overview
To convert raw accelerometer data into dictionary words, our

framework consists of a two phase process: the learning and at-
tack phases. Figure 4 provides an overview of this process.

5.2.1 Learning Phase
Before we begin training our learner, our framework defines a

preprocessing step needed to build the training data. This step con-
sists of determining parameters for where the keyboard will be split
for left-right and near-far labeling (α and central-line) . Once these
parameters are defined, we build training data and word-profiles
from different predefined English dictionaries for use during the
learning and attack phases. To avoid over-fitting in the learners, the
preprocessing step also ensures that the training data has an equal
distribution of features.

After preprocessing, our framework trains the model through
data collection, feature extraction, word labeling, and supervised
learning processes.

Data Collection: When a key is pressed, the iPhone’s accelerom-
eter senses the surface vibrations and gives outputs values of the
instantaneous acceleration on the x, y, and z axes. Our ‘Data-
Collector’ application running on the iPhone records these accel-
eration values at a variable sampling rate (100Hz on average) along
with the key that was pressed. At the start of the learning phase,
we type all the letters in the English alphabet (a through z) 150
times each (with no fixed ordering or timing) on the target key-
board. The ‘Data-Collector’ application continuously records the
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Figure 5: An example of identifying a single word “canoe". As the victim types, raw x, y, and z values are captured and converted to
feature vectors. These feature vectors are analyzed by two classifiers, creating a word profile that is used to select the best possible
match from a dictionary of words.

seismic emanations produced by these key-presses resulting in the
raw-acceleration dump for learning phaseDL of 3900 distinct key-
press events corresponding to all the alphabets (150 times).

Feature Extraction: The raw acceleration values collected are
then processed to extract relevant features to be used to train the
model. Due to the iPhone accelerometer’s low sampling rate, we
were unable to obtain satisfactory classifier performance by only
using features gathered in previous emanations work [3]. There-
fore, we use a combination of time-domain, frequency-domain and
cepstral features to construct our ‘feature-vector’. Asonov et al. [3]
determined a key-press is approximately 100 ms long guiding us
to use the same time window for our feature extraction calcula-
tions. From the raw acceleration (x, y, z) values stored in DL, we
calculate time-domain features including root mean square (rms),
skewness, variance, and kurtosis and combine those with spectral
and cepstral features such as fast Fourier transform (FFT) and mel-
frequency cepstrum coefficients (MFCCs) respectively. The final
feature-vector corresponding to the x, y, z accelerations of a key-
press (Pi) is denoted as: FV (Pi) =< mean, kurtosis, variance,
min, max, energy, rms, mfccs, ffts >. At the end of this step, we
have a set (SF ) containing 150 feature-vectors (FV s) correspond-
ing to each English letter. i.e., SF = {FV (Pi) | ∀Pi ∈ DL}

Word Labeling: Once the feature vectors are extracted from the
raw accelerometer data, the framework creates a training set by la-
beling individual key and key-pair samples based on the defined
dictionary. To prevent over-training, a preprocessing step is per-
formed which determines the number of samples to take per dictio-
nary character by finding an even distribution of left (L) and right
(R) and near (N) and far (F) labels.

Each word in the training dictionary is broken down into its con-
stituent characters and character-pairs. As described earlier, a word
of length n letters would be broken into n characters and n − 1
character-pairs. For each character, we randomly select 100 feature
vectors that correspond to that character from the Feature Extrac-
tion step and label each of these feature vectors as left (L) or right
(R) based on the Word Labeling step. In a similar manner, for each
character-pair we construct 100 composite feature vectors by con-
catenating 100 random feature vectors corresponding to the first
character and 100 random feature vectors corresponding to the sec-
ond character. Each of these composite feature vectors is labeled
near (N) or far (F), again using the labels from the Word Label-
ing step. Once this process is completed for every character and
character-pair in the dictionary, the labeled feature vectors can be
used to train the neural networks in the last step.
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Supervised Learning: The final step of the learning phase con-
sists of training a model that will be used during the attack phase to
classify each key and key-pair accordingly. We built two separate
models by training a left-right neural network and a near-far neural
network for classifying left-right and near-far feature-vectors re-
spectively. Both neural networks where trained using 500 training
cycles and a learning rate of 0.3.

5.2.2 Attack Phase
Our framework defines process for the attack phase much in the

same way the learning phase was defined by attempting to recover
words through data collection, feature extraction, key-press classi-
fication, and word matching.

Data Collection: When the ‘Data-Collector’ application becomes
malicious, the same properties and procedures apply to the attack
phase that existed in the learning phase with the exception of the
ability to tag an accelerometer with the appropriate key-press. Un-
der these circumstances we’re provided with a raw-acceleration
dump for attack phase DA of all the key-presses entered by the
victim minus the character pressed.

Feature Extraction: After the raw-acceleration data is collected
by the malicious application, the attack phase then calculates the
same features that were derived during the learning phase. The
feature-vectors are then used to create two sets of data, one for
classifying left vs. right and one for classifying near vs. far.

Key-press Classification: Once the data has been processed, our
framework attempts to classify each vector. The model produced
by the left-right neural network is used to predict the L/R label for
each individual key-press while the model produced by the near-
far neural network is use to predict the N /F label for each pair of
key-presses. Each word is then labeled with its appropriate word
profile using the predicted labels and sent to the word matcher.

Word Matching: The word matcher takes each predicted word
profile of length n − 1 and assigns a score against each word in
the dictionary with length n. Algorithm 1 defines the scoring al-
gorithm. The scored dictionary words are then sorted and the top
two scores are presented as candidate predictions for the given pre-
dicted profile.

Algorithm 1 Word matcher scoring
1: curScore = 0
2: for all words in dic of len(n) do
3: for i = 0 to 2 do
4: if dic.word.profile[i] = prediction.profile[i]

then
5: if dic.word.profile[i] = L or

dic.word.profile[i] = R then
6: curScore+ +
7: else if dic.word.profile[i] = N or

dic.word.profile[i] = F then
8: curScore+ +
9: end if

10: end if
11: end for
12: end for
13: return curScore

5.3 Experimental Setup
In all of our experiments, we set the target desktop computer on

a wooden desk. We then placed the iPhone used to collect keyboard
vibrations beside the target computer’s keyboard. To maintain con-
sistency, we always placed the phone at a distance of two inches

from the left hand side of the keyboard. It is important to note
that there is nothing inherently desirable about the orientation of
the device used in our experiments. The attack will work if the de-
vice is trained in any orientation. All raw accelerometer readings
were collected by the phone, then uploaded to a remote server. This
server ran the data processing and classification algorithms used to
analyze the collected accelerometer readings.

The hardware and software components used to perform the ex-
periments are described below:

1. Keyboard: We used Apple A1255 Wireless Bluetooth key-
board. Bluetooth was used so that we could send the typed
characters to the data-collector application running on the
iPhone while collecting accelerometer readings. We did this
to automatically and accurately label the collected data dur-
ing the Learning phase and to match the classifier’s predicted
word-profile to the actual word-profile in the Attack phase.

2. Phone and Accelerometer: We used the iPhone 4 (running
firmware no. 03.10.01). The phone contains an ST-LIS331DLH
accelerometer; operating with sensitivity of 1 mg/digit, g-
range of ±2g and Acceleration noise density of 218 µg√

Hz

[41]. The maximum accelerometer sampling rate achievable
in our experiments was 100Hz.

3. Signal Processing: For calculating the FFT coefficients, we
used MATLAB’s Discrete Fourier transform function (FFT).The
mel-frequency cepstral coefficients values were calculated
using its Voicebox toolbox [12]. For MFCC calculations,
we set the number of channels in the Mel Scale Filter Bank
to 32 and use 3 MFCCs computed for the frame-duration of
0.025s and frame step of 0.01s.

4. RapidMiner / Machine learning: We used the RapidMiner
(version 5.0.010) data mining application and libraries for
training and testing our neural network models and develop-
ing our framework. This choice was motivated by Rapid-
Miner’s extensibility and integration in Java-based applica-
tions, the core of our framework.

6. EXPERIMENTAL RESULTS
To test the accuracy of our attack, we performed four experi-

ments, varying the test sentences and the target dictionary used to
match word profiles. In our first experiment, we demonstrate the
accuracies that the L/R and N/F classifiers are capable of achieving
by analyzing a single test sentence from the Harvard Sentences [30].
We chose this list of sentences because it is phonetically-balanced,
i.e. it uses specific English phonemes with a uniform distribution.
In our second experiment, we examine the system’s potential for
text recovery using a small dictionary of the first ten Harvard sen-
tences and attempting to recover the same ten Harvard sentences
as test data. In our third experiment, we calibrate our work against
previous research in this space by re-creating the experiment used
by Berger et al. [10] in order to gauge the relative accuracy of our
approach against very large dictionaries. Finally, we simulate a
real-world attack on a piece of written media selected from the US-
AToday [14]. We construct a dictionary based on the context of the
target article using related news stories, then type the article as test
data.

6.1 Feature Accuracy
Our first analysis of these three experiments examined the base

accuracy of both classifiers in correctly distinguishing letters as
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Figure 6: Examples of g-force measurements for L/R keypresses and N/F pairs. Note the distinct difference between left and right
characters “a" and “l", as well as the varying level of contrast between near and far pairs “nm" and “pq". Also, left and right
characters are even distinguishable across graphs, with “a" and “q" creating similar left side vibrations while “l", “n", “m", and
“p" create similar right side vibrations.

L/R and pairs as N/F. Figure 6 shows examples of the g-force mea-
sured by the accelerometer for two individual keypresses and two
pairs. Even viewing with the naked eye, the difference between
keypresses on the left end of the keyboard (“a”) and the right end
(“l”) is significant. When visually examining concatenated pairs,
the difference between two adjacent keypresses (“nm”) is minimal
when contrasted to the difference in two distant keypresses (“pq”).
Our results demonstrate that for a majority of keypresses and key-
press pairs, these differences are distinguishing enough to correctly
identify the approximate location of a keypress on the keyboard.
Moreover, these results reinforce the results shown in Figure 3.
The keypresses of letters in close proximity, such as “nm”, cre-
ate very similar vibrations, making it incredibly difficult to identify
the specific key pressed. Thus, our method of identifying a region
rather than a specific key provides a more feasible means of differ-
entiating between keypresses.

In our first experiment, the L/R classifier was able to correctly
identify 91% of the individual keypresses as right or left, and 70%
of the keypress pairs as near or far. As the size of our test data grew,
these percentages declined. For the second experiment, our L/R ac-
curacy was 84% and our N/F accuracy 65%. This drop in accuracy
is to be expected with more keypresses, as the target will exhibit
minor inconsistencies in striking the same key over time. Consid-
ering that many emails sent are no more than one or two sentences,
these experiments represent a significant leakage of information.

6.2 Recovering Text

Our next analysis examined the percentage of text recovered by
the matcher given the word profiles produced by the neural net-
works. When examining the preliminary results of our experiment,
we noted that the overall percentages of words recovered notice-
ably dropped due to the frequency of two and three letter words in
the analyzed text. Since these words are generally articles and con-
junctions (e.g. an, the, and, or), they can be easily interpolated by
examining the semantics of the recovered text. In our experiments,
we opted to consider only “long" words of four letters or more in
all final percentages of recovered words. In each figure, the “short”
words will be denoted with asterisks.

In the first two experiments, the dictionary contained a small set
of words containing the test data exactly. Our first experiment took
vibrations from typing a single sentence and attempted to analyze
the text. In Figure 7, we show the results of this experiment and
compare the recovered sentence to the actual typed sentence. For
each word profile, the matcher returned a list of possible results
for that profile weighted by frequency of use. For the first Harvard
sentence, 80% of the words were correctly identified as the first
choice for their interpreted word profile. In the second experiment,
we expanded the test data to the first ten Harvard sentences. For
this larger analysis, 46% of the words were correctly identified as
the first choice for their interpreted word profile. However, if we
also consider the words ranked second most likely by the matcher,
this accuracy rises to 73%, as shown in Figure 8. By examining the
semantics of a captured sentence, we can easily choose the correct
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1st Choice Correct = 80%
L/R Accuracy = 91.07%
N/F Accuracy = 70.15%

Typed Text:  The birch canoe slid on the smooth planks
Recovered Text:  *** punch canoe slid ** *** smooth planks 

Figure 7: Experiment 1. In this experiment, we attempted to interpret a single sentence, shown here. Our dictionary was composed
of words from the first ten Harvard sentences. The first line shows the sentence as it was typed, and the second line shows the sentence
as our program analyzed it. A string of asterisks represents a word of three letters or fewer, all of which were omitted.

1st or 2nd Choice Correct = 72.92%
L/R Accuracy =83.95%
N/F Accuracy = 64.88%

Typed Text:  These days a chicken leg is a rare dish
Recovered Text:  These days * chicken *** ** * rare dish

Typed Text:  Glue the sheet to the dark blue background 
Recovered Text:  Glue *** sheet ** *** well hogs background 

blue

Figure 8: Experiment 2. Again using the first ten Harvard sentences as a dictionary, we attempted to interpret all ten sentences and
selected two to display here. We again show the text as it was typed and as our program analyzed it. If the correct word was weighted
second by the matcher, it is listed below the first choice word, which is written in line. A string of asterisks represents a word of three
letters or fewer, all of which were omitted from the analysis.
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Figure 9: A comparison of accuracy of our ((sp)iPhone) and the
acoustic dictionary techniques proposed by Berger et al [10].
Note that in spite of our dramatically reduce sampling rate, our
results are roughly comparable for a very large dictionary (i.e.,
57,000+ words).

choice between the top two choices for a word profile.

6.3 Comparison to Previous Work
In an attempt to calibrate this work against previous efforts in

this space, we re-created the experiment from the work by Berger
et al. [10]. This work cites a “corn-cob” dictionary of approxi-
mately 58,000 words and attempts to use the acoustic emanations
of a keyboard to recover 27 test words ranging in length from 7-13

characters. In our experiment, we used a portion of the same dic-
tionary, containing approximately 57,500 words (all the words with
4 or more characters). Rather than using the same 7-13 character
word list, we selected 30 words from a randomly chosen USATo-
day article [14] (announcing a court ruling to keep then candidate
Rahm Emanuel on the ballot for the February 2011 Chicago may-
oral election), ranging in length from 4-9 characters. This test word
set better demonstrates the practical accuracy of our technique by
using a test sample from written media rather than an arbitrary se-
lection of long words. The comparison is shown in Figure 9.

After running our list of test words through the data processing
architecture, our techniques demonstrated comparable accuracies
to that of Berger et al. [10]. Our technique placed the correct guess
in the top 10 potential words selected for each test word 43% of the
time, matching the work of Berger. When examining the number of
correct terms in the top 50 potential words selected, our accuracy
trailed somewhat at 56%, compared to 72% for the acoustic work.
However, it is important to notice two distinct challenges faced by
our technique. First, the frequency which we sample vibrations is
two full orders of magnitude smaller than in the acoustic emanation
work. With this extremely limited bandwidth, we are still able to
match the acoustic accuracy in the top 10 potential words selected.
Second, our word list uses words of 4-9 characters in length, as
opposed to the 7-13 character words used in the previous work.
The dictionary attacks used in both works allow longer words to be
identified more easily since there are fewer potential matches in the
dictionary of terms.

6.4 A More Realistic Attack
To demonstrate the feasibility of our technique in a real-world

attack, we examined the following scenario. Since an attacker may
know the general context of a target’s message, it is reasonable
to construct a dictionary based upon terms that are likely to ap-
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1-5 Choice Correct = 80.00%
L/R Accuracy =78.58%
N/F Accuracy = 61.09%

Typed Text: The Illinois Supreme Court has ruled that Rahm Emanuel is eligible to 

run for mayor of Chicago and ordered him to stay on the ballot

Recovered Text:  ***  Illinois Supreme about *** ruled part wait Emanuel ** chicagos ** 

             *** *** names ** Chicago  *** printed *** ** look ** *** ballot

eligibleRahmamong
might
night
Court

members
grinned
ordered

Figure 10: Experiment 4. Using news articles as a dictionary, we analyzed the typed contents of a USAToday article. Here we show
an excerpt as it was typed and as our program analyzed it. If the correct word was weighted between second and fifth choice by the
matcher, it is listed below the words that were weighted more heavily. A string of asterisks represents a word of three letters or fewer,
all of which were omitted from the analysis.

pear in the target’s writing. So we constructed a dictionary using
seven news articles related to Rahm Emanuel (from the New York
Times [20, 18, 19] and USAToday [36, 15, 25, 35]) that were pub-
lished during the week before the target text. This simulates eaves-
dropping on the reporter typing the USAToday piece. We again
apply the methodology by Berger et al [10] to measure our results.

We again examined the same words of our test sample (from Ex-
periment 3), this time using our 799 word context-aware dictionary.
In 40% of the tests, our technique selected the correct word as first
choice, and 53% fell in the first or second choice, as shown in Fig-
ure 10. The correct word fell in top 5 predictions for 80% of the
tests. Based on these results, it is apparent that an attacker could
easily recover a dangerous amount of text captured using our tech-
nique, simply by knowing some context for the target’s writing.

7. DISCUSSION

7.1 Recognition versus Distance
Our experiments thus far have been conducted with the mobile

phone located within two inches of the targeted keyboard. We be-
lieve that this is reasonable given the dimensions of most desks
and the assumption that many users will wish to have their mobile
phone with reach while working at their computer. However, our
analysis would not be complete without an understanding of how
increasing the distance between the mobile phone and its target im-
pact recovery.

As expected, even small increases in distance dramatically re-
duce the effectiveness of this attack. Between absorption and at-
tenuation of signal based on the Inverse Square Law, our accuracy
drops rapidly at distance of one foot. Distinguishing keystrokes
from noise at two feet is extremely difficult, effectively disrupting
the attack. Beyond this range, our mechanism quickly approaches
random guessing as the received signals are simply too small to
meaningfully distinguish between. As we discuss in one of the fol-
lowing subsections, this simple observation functions as a powerful

mitigation to these attacks.
Due to the low sensitivity of the accelerometer, the distance lim-

itation is a difficult problem to overcome. Environmental factors,
such as the surface characteristics of the desk (discussed further
in the following section), add more complexity to this challenge.
In the wrong conditions, even a small increase in distance could
completely inhibit the attack, while good conditions could facili-
tate keystroke recognition from well over a distance of one foot.
Because of variable environmental conditions, we can only guaran-
tee proper functionality within one foot.

7.2 Challenges and Limitations
We examined three additional challenges that could be encoun-

tered with this application. Our first potential challenge relates to
the orientation of the monitoring device. In all of our experiments,
we positioned the mobile device vertically to the left of the key-
board, as shown in Figure 1. However, if this orientation were to
change, the vibrations measured for the same keystrokes would be
captured differently on the device’s x and y axes. On first review,
this would seem to cause errors in accuracy. The first strategy
for compensating for a change in orientation would be to simply
re-train the neural network to identify keystrokes coming from a
device in the new orientation. However, according to the work
of Zhuang et al. [42], the neural network does not have to be re-
trained in this manner. Instead, the keystrokes could potentially be
identified based on measuring their frequency. By using this tech-
nique to analyze vibrations captured by the mobile device in any
orientation, we believe that we can produce similar results regard-
less of the orientation of the mobile device. We plan to explore this
issue in future work.

The second potential challenge we considered was ambient vi-
brations. There is a plethora of possible scenarios where vibrations
in the environment around the device could potentially garble the
keystroke information being collected. Some of these vibrations
could be subtle or consistent enough that our application would be
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able to distinguish keystroke information from the ambient noise.
For example, if an office is adjacent to an air conditioning unit, a
consistent vibration could potentially be detected and filtered out.
However, other more obtrusive possibilities also exist. In skyscrap-
ers, the movement of the building itself could be detected, causing
periodic interference with keystroke detection. Users who bounce
their knee or habitually tap on their desk would also send signif-
icant vibrations into the device, again causing a loss of pertinent
data. This problem, although not common in most work environ-
ments, still merits further consideration with regards to the overall
accuracy of this attack.

Typing speed is also likely to pose a problem to some recovery
scenarios. Like previous studies [3], we limited the rate at which
we typed so that easily distinguishable characters could be recorded
and a proof of concept implementation of the attack created. How-
ever, some users that type very fast are likely to cause problems to
the current Data-Collector. These problems arising from such be-
havior are not likely to be a result of keypresses overlapping - each
keypress lasts roughly 100 ms and a user typing a key every 100 ms
would be able to type approximately 120 words per minute (i.e., the
extreme high range for professional typists [4]). Instead, the rapid
movement of hands on the surfact is likely to cause addition noise,
potentially making recognition more difficult. We intend to study
this issue in greater depth in our future work.

The final challenge we considered was desk surface character-
istics. The capability of an accelerometer to detect vibrations in
a desk is directly dependent on the surface’s ability to amplify or
dampen these vibrations. In all of our experiments, we recorded
keystrokes on the most common desk surface, wood. To begin
to answer the question of the impact of surface characteristics on
accuracy, we performed additional experiments on a ceramic tile
surface. As would be expected from a rigid surface, keystroke vi-
brations on ceramic tile were not carried to the device at all, com-
pletely inhibiting the use of our application. The extent of this limi-
tation to other surfaces, such as metal or plastic, merits some further
consideration. However, we consider vibration-inhibiting surfaces
such as tile to be minor special cases when evaluating the overall
usefulness of our application.

7.3 Mitigation Strategies
The attack discussed in this paper demonstrates the need for

careful thinking about how the array of sensors now available to
mobile phones can be accessed. While access to the most obvi-
ous candidates for information leakage (e.g., camera, microphone,
GPS) is increasingly being protected, we have shown that access to
seemingly innocuous sensor data can result in the accurate recov-
ery of potentially sensitive data. As a result, we now offer a number
of short and long term mitigation strategies and mechanisms to ad-
dress these problems.

The simplest mechanism is in preventing mobile phones from
coming too close to keyboards. Some businesses and many gov-
ernment buildings already forbid their employees from carrying
such devices on the premises. However, such an approach may
be too restrictive for most corporate and home environments, es-
pecially given the common and legitimate use of mobile phones in
these settings. Alternatively, a party concerned about such eaves-
dropping can place their mobile phone in a briefcase, backpack or
handbag which they regularly carry. Finally, a user may simply
place their mobile device on a separate surface. As our experi-
ments have demonstrated, the accelerometers contained in mobile
phones at the time of this writing are not nearly sensitive enough to
detect and uniquely identify keypress generated vibrations.2

2Assuming that the device is not placed on a highly amplifying

In the long term, mobile device operating systems should pro-
vide more finer-grained control to their resources. It is likely that
attacks using other unregulated sensors in unintended ways will
be possible on these platforms. Such access need not simply be
Boolean in this particular case. Instead, we can limit the sampling
rate to take advantage of the information theoretic lower bounds
for avoiding aliasing based on the Nyquist-Shannon sampling the-
orem [33]. Specifically, an observed signal must be sampled at the
Nyquist rate, at least two times the rate of the highest frequency, to
prevent signals from becoming indistinguishable from each other.
From our experiments, we determined that the highest observed
frequency in our dataset was approximately 15 Hz. Accordingly,
by providing all applications with less than 30 Hz resolution to ac-
celerometer data by default, such attacks become theoretically im-
possible. This approach will be particularly successful for applica-
tions such as text editors which are likely to only use accelerometer
data to rotate the contents of the screen based on the user turning
their phone. However, the use of a decreased sampling rate may not
be appropriate for applications such as games which may require
more accurate measurements of movement (e.g., driving games in
which the car is steered by rotating the phone). These applications
should instead be given explicit access to a high-sampling permis-
sion, much as application manifests for Android can be written for
fine and coarse-grained GPS access [2].

8. CONCLUSION
Mobile phones contain an array of powerful sensors. While ac-

cess to many of the most obvious sources of information is gener-
ally restricted, the use of a number of a number of other seemingly
innocuous sensors is not. In this paper, we demonstrate that unfet-
tered access to accelerometer data allows a malicious application to
recover and decode the vibrations caused by keypresses on a nearby
keyboard. By characterizing consecutive pairs of keypress events,
we demonstrate the ability to recover as much as 80% of typed con-
tent. We then provide a number of short and long term mitigation
strategies. In so doing, we demonstrate that access to increasingly
capable sensors by applications running on mobile phones must be
more carefully regulated.
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