Rigorous specifications of the SSH Transport Layer

Erik Poll'* and Aleksy Schubert?**

! Digital Security, Institute of Computing and Information Science, Radboud University Nijmegen
2 Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, Warsaw University

Abstract. This document presents (semi-)formal specifications of the security protocol
SSH, more specifically the transport layer protocol, and describe a source code review of
OpenSSH, the leading implementation of SSH, using these specifications.

Our specifications, in the form of finite state machines, are at a different level of abstraction
that the typical formal descriptions used to study security protocols. Our motivation is to
understand actual implementations of SSH, so we try to capture some of the details from the
official (informal) specification that are irrelevant to the security of the abstract protocol,
but which do complicate the implementation.

Our specifications should be useful to anyone trying to understand or implement SSH.
First versions of our specifications were developed for the formal verification of a Java
implementation of SSH [17].

1 Introduction

The SSH protocol is officially specified in a set of five RFCs, namely RFC 4250-4254 [16, 26-29).
Understanding the SSH protocol based on these RFCs is a daunting task, as they add up to about
150 pages. The SSH protocol is broken down into three layers — the transport, authentication, and
connection protocols — which provides some modularity, but the layers are not quite independent.

This stands in shrill contrast with typical descriptions in the standard ‘Alice-Bob’ notation for
security protocols. For example, the description of the SSH Transport Layer Protocol in [25] is
only six lines. Of course, such a description ignores some details and abstracts away from others.
This is the whole point of such descriptions: these concise abstract presentations are meant to be
useful for understanding and analysing security properties of the protocol, possibly using one of
the many tool-supported formal methods that are available to analyse security protocols (e.g., [1,
2,6,8,9,21,24]).

Still, when faced with the job of implementing the protocol, or understanding an existing
implementation of SSH, e.g. as part of security review, one cannot ignore or abstract away from
irrelevant details in the RFCs. In this report we explore the possibilities for formal specifications
of SSH, which capture more details of the RFCs than the standard “Alice-Bob” notation, without
resorting to a dozens of pages of English prose.

Some of the tricky issues we want to capture include the handling of messages that are ill-
formed, messages that arrive out of sequence, and messages for optional parts of the protocol. We
also want to take into account the asynchronous nature of communication. All these details are
typically ignored when analysing security of the abstract protocol, but an implementation still has
to get them right.

An important complication is that SSH is really a family of protocols: there are some optional
parts, some restrictions on which combinations of optional parts are allowed, and it is parame-
terised by other protocols. For instance, several key exchange protocols can be used.

Another complication is that the official specifications are not always clear in what the response
to an unexpected, unsupported message should be: some of these may or should be ignored, whereas
others must lead to disconnection. Information about this is spread over the various RFCs and in
many cases implicit, complicating the job of anyone implementing the standard.

* Supported by the Sixth Framework Programme of the EU under the MOBIUS project FP6-015905.
** Supported supported by the Sixth Framework Programme of the EU under the SOJOURN project
MEIF-CT-2005-024306.

Underspecification in the specifications can be dealt with in various ways. Some people advocate
the robustness principle, also know as Postel’s Law: “be conservative in what you send, liberal in
what you accept” [18, Section 3.2]. However, given that the security provided by security protocols
can be very fragile, it seems better to adopt the correctness principle: “be conservative in what you
send, and conservative in what you accept”. Note that there has been quite some debate about
the precise interpretation of Postel’s law and the way it is used as a poor excuse for imprecise
specs or non-conformant implementations.

Our goal is to provide a (semi)formal definition of SSH Transport Layer Protocol that captures
the issues mentioned above, so that it could either act as a detailed blueprint for an implementation,
or — as we have used it — as a basis for performing a thorough code review of an implementation.
To describe the protocol we use finite state machines. The notion of ‘state’ is crucial for the
correctness of the protocol, but largely implicit in the official specifications. Making it explicit is
an important step towards understanding of possible implementations. Ideally, such finite state
machine descriptions in specification could provide the starting point for implementations [14].

We started this work during an exercise in formal program verification, in which we verified
a Java implementation of SSH, where we were confronted with the issues described above. This
verification effort, using the program verification tool ESC/Java2 and the formal specification
language JML is reported in [17]. It revealed this Java implementation to be completely insecure;
it did not keep track of any protocol-state whatsoever. The models described in this paper have
been used for an informal code review of OpenSSH, which is described in Section 9.

The rest of the paper is organised as follows: Section 2 presents a general overview of the SSH
protocol and the documents which standardise it. Section 3 presents a general framework of the
SSH Transport Layer Protocol in the form of “Alice-Bob” interaction. Then we provide stepwise
refinements for the protocol description in terms of finite state machines. Section 4 presents an
initial model, which is then refined

— in Section 5 by considering the parallelism and asynchronous communication between client
and server,

— in Section 6 by including the possibility to guess the key exchange algorithm,

— in Section 7 by allowing for key re-exchange, and

— in Section 8 with the different categories of unexpected messages.

Section 9 then describes the code review of OpenSSH. Finally, sections 10 and 11 discuss related
work and conclude.

2 Overview of SSH

SSH is defined in five RFCs: RFCs 4250-4524 [16,26-29]. We will use the symbolic names to
refer to these RFCs — [SSH-NUMBERS], [SSH-ARCH], [SSH-TRANS], SSH-USERAUTH], and
[SSH-CONNECT] — as is also done in the RFCs.

Two first two RFCs describe common notations and the overall architecture:

— [SSH-NUMBERS], the SSH Protocol Assigned Numbers, summarises the numbers and
symbolic names used in the protocol, e.g. for message numbers, error messages, etc.

— [SSH-ARCH, the SSH Protocol Architecture describes the architecture of the protocol,
fixes the terminology and discusses the security objectives of SSH.

The other three RFCs then describe the three sub-protocols that make up the layers of the
SSH protocol stack:

— [SSH-TRANS] defines the SSH Transport Layer Protocol, the sub-protocol for establish-
ing a connection. This sub-protocol negotiates an algorithm, establishes session keys, authen-
ticates the server and finishes with the initialisation of the SSH data exchange. It ensures
authentication of the server and confidentiality & integrity of the communication.

— [SSH-USERAUTH)] defines the SSH Authentication Protocol, the sub-protocol to estab-
lish the authenticity of the user who is about to log in with the use of SSH, e.g. by user-
name/password.

— [SSH-CONNECT] defines the SSH Connection Protocol, the sub-protocol to establish
different communication channels within an SSH session (e.g. port forwarding, terminal, X11
communication) together with parameters of the channels.

The three sub-protocols are run in the order as they are listed above: first the Transport
Layer Protocol is used to establish a connection, then the Authentication Protocol is started to
authenticate the user, and finally the Connection Protocol is used to establish sessions of different
services that SSH provides. The three sub-protocols are not simply run consecutively, but rather
‘on top’ of each other: the Authentication Protocol on top of the Transport Layer Protocol, and
the Connection Protocol on top of the authentication protocol:

’ Connection Protocol

’ Authentication Protocol

’ Transport Layer Protocol

With the exception of the very first messages of the Transport Layer Protocol, all protocols use
the same format for packets, the so-called Binary Packet Protocol defined in [SSH-TRANS,
§6]. Here one byte in each packet is the message number, which determines the type of message.
Different ranges of message numbers are then reserved for the various sub-protocols: 1-49 for
the Transport Layer Protocol, 50-79 for User Authentication Protocol, 80-127 for the Connection
Protocol, with 128-255 reserved for client protocols and local extensions.

Messages of the different sub-protocols may or may not be allowed at various stages. Messages
that are specific to the Transport Layer Protocol, notably SSH_MSG_KEXINIT to restart a key
exchange, can occur at any time during other stages.

2.1 The Transport Layer Protocol

The Transport Layer Protocol guarantees the central security objectives of SSH, namely confiden-
tiality & integrity of the communication. It can be further divided into 4 stages:

1. the protocol identification phase, to decide which version of SSH — SSH1 or SSH2 — is
run (steps 1-3 in Fig. 1);

2. the algorithm negotiation phase, to decide which algorithm is used for key exchange (steps
4 and 5 in Fig. 1);

3. the key exchange phase, to do the actual key exchange using this algorithm (steps 6 and
7 in Fig. 1);

4. the service request phase, which starts the subsequent protocols (anything after step 9 in
Fig. 1).

The Transport Layer Protocol is still parametrised by an algorithm for key exchange. [SSH-
TRANS] prescribes two obligatory key exchange algorithms, called diffie-hellman-groupl-shal and
diffie-hellman-group14-shal, which differ in the group used for the Diffie-Hellman key exchange
computations. RFC 4419 [11] adds the possibility to negotiate a more secure group for the Diffie-
Hellman key exchange. RFC 4462 [15] specifies Diffie-Hellman key exchange using the Generic
Security Service Application Program Interface (GSS-API). RFC 4432 [13] and RFC 5656 [22]
describe key-exchange algorithms based on RSA and Elliptic Curve Cryptography (ECC), respec-
tively.

3 The SSH Transport Layer Protocol in “Alice-Bob” style (Version 1)

Figure 1 describes the SSH2 Transport Layer Protocol using Diffie-Hellman key exchange in the
common “Alice-Bob” notation for security protocols. Rather than using A for Alice and B for Bob,

S — C : VERSION_S server version string
C — S : VERSION_C client version string
S — C': SSH.MSG KEXINIT /¢
C — S : SSH.MSG _KEXINIT Is
C — S : SSH MSG KEXDH_INITe
where e = g” for some client nonce =
7. § — C : SSH.MSG KEXDH REPLYK s, f, signw s (H)
where f = g for some server nonce v,
K =¢€Y and H = hash(Ve, Vs, Ic,Is,Ks,e, f, K),
K is the server key
8. S — C : SSH.MSG_NEWKEYS
9. C' — S : SSH.MSG_NEWKEYS
10 } session, incl. SSH authentication
T and connection protocols

protocol identification

key exchange algorithm
negotiation

C — S : CONNECT }

S Ttk W

key exchange

Fig. 1. The abstract Transport Layer Protocol of SSH2 with Diffie-Hellman key exchange.

we use C for Client and S for Server. The description assumes both parties support SSH version
2 and want to use Diffie-Hellman as the key exchange algorithm.

The RFCs do not always clearly distinguish the negotiation of key exchange algorithm negoti-
ation (steps 4 and 5) from the subsequent key exchange (steps 6-9), and sometimes use the term
‘key exchange’ to refer to both phases together.

All messages, or packets, after the protocol identification phase are in format prescribed by
the Binary Packet Protocol [SSH-TRANS, §6], where one byte in each packet is the mes-
sage number, which determines the type of message. Fig. 1 abstracts from this format, but does
include the symbolic names of the message numbers, such as SSH.MSG_KEXINIT, as defined in [SSH-
NUMBERS]. These symbolic names all start with SSH-MSG; we will omit this prefix from now on
to avoid clutter.

After the protocol in Fig. 1 is completed, subsequent traffic between client and server is en-
crypted and digitally signed. The four keys for this— for each party one for signing and one
for encryption —are derived from K and H. The encryption and signing algorithms used are
determined on the basis of I and Ig.

After the protocol in Fig. 1 is completed, at any stage either party can send a SSH.MSG_KEXINIT
message to re-negotiate a new session key.

The description in Fig. 1 abstracts from some aspects and ignores others, such as the actual
format of messages, the encryption of the session after step 9, and the possibility of key re-exchange,
but also the asynchronous nature of communication and alternative protocol runs that are allowed
by the specification. In the following sections try to capture these complications. We will continue
to abstract from the actual format of messages. Indeed, we will go one step further and abstract
from their content altogether, except for the symbolic names of the message numbers. So we focus
on the possible sequences of messages that are correct, but ignore the actual contents of these
messages.

The issues considered in the following sections include:

— the parallelism between client and server, and the asynchronous nature of the communication
between the two parties, which for instance allows both parties to send their version strings
simultaneously;

— the possibility of guessing the key exchange algorithm, and optimistically sending the first
key exchange packet before negotiation of the key exchange algorithm has been completed, as
allowed by the specs;

— the possibility of refreshing the session keys;

— dealing with ‘unexpected’ — incl. unsupported — messages.

4 Parallelism (Version 2)

The “Alice-Bob” notation in Fig. 1 over-specifies, in that it prescribes an order between messages
that could be sent in a different order or in parallel. E.g., it specifies an order between the two
VERSION messages, the two KEXINIT messages, and the two NEWKEYS operations, whereas the RFCs
leave it open in which order these messages occur. This can be described as follows

CONNECT ;

(VERSION_C || VERSION_S) ;
(KEXINIT_C || KEXINIT_S) ;
KEXDH_INIT ;

KEXDH_REPLY ;

(NEWKEYS_C || NEWKEYS_S) ;

where || denotes parallel composition and ; sequential composition. For messages that both
parties can send, such as KEXINIT, we use suffixes _C and _S to indicate the party that sent them.

Instead of a textual representation, as given above, we can also use a state diagram to describe
this, as is done in Figure 2. Advantages of this graphical notation are that it is easy to name
states and to include cycles. To illustrate this, Fig. 2 also describes the possibility of key exchange
(where the key is renegotiated after parties exchange KEXINIT messages) and the ongoing session
as the messages traffic C and traffic_S in state 6 (abstracting from the actual content of these
messages)>.

In an actual implementation of the protocol, the state will have to be recorded by the program
point and/or by values of program variables. For example, in OpenSSH, the state is (sometimes)
characterised by an array of 256 function pointers, as discussed in more detail in Section 9. Un-
derstanding how this implementation of the state relates to the abstract states in Fig. 2 is crucial
to understanding the correctness of the implementation.

5 Asynchronisity (Version 3)

The asynchronous nature of communication between client and server gives us some freedom in
resolving the possible parallelism. For example, both parties could send their VERSION messages
simultaneously, so that both process the incoming message VERSION message of the other party
after sending their own.

One natural way to do this is to send all outgoing messages that can be sent before handling
any incoming traffic. This approach, which we will call ‘priority to sending’, is natural because it
is efficient: waiting for incoming messages may waste time, or worse, result in a deadlock if both
parties decide to wait for the other. Also, incoming traffic will typically be buffered, so there is no
harm in postponing the handling of incoming traffic. Resolving the parallelism in this way gives
the following descriptions for client and server:

client server
CONNECT! ; CONNECT? ;
VERSION_S? ; VERSION_C! ; VERSION_S! ; VERSION_C? ;
KEXINIT_C! ; KEXINIT_S? ; KEXINIT_S! ; KEXINIT_C? ;
KEXDH_INIT! ; KEXDH_INIT 7 ;
KEXDH_REPLY? ; KEXDH_REPLY! ;
NEWKEYS_C! ; NEWKEYS_S? ; NEWKEYS_S! ; NEWKEYS_C? ;

3 Note that some arrows in Fig. 2 are labelled with the parallel composition of protocol steps. We could
draw these out as individual steps, resulting in a diamond shape with one path for each possible
interleavings. But this makes the diagram needlessly complex, and less accurate, as there can be true
concurrency between these events.

(o)

CONNECT
A

(START PROTOCOL IDENTIFICATION]

iVERsmr\Lc || VERSION_S

(START KEX ALG NEGOTIATION]

W KEXINIT_C || KEXINIT_S

KEXDH_INIT
A

Gj
KEXINIT_C
|| KEXINIT_S KEXDH_REPLY

D)

NEWKEYS_C || NEWKEYS_S

traffic_C traffic_S

Fig. 2. Abstract description of SSH2 with Diffie-Hellman key exchange.

The suffix ! means a message is sent, the suffix 7 that it is received.

Note that the order of events is different when seen from the point of view of the client or
server. For example, the client sends VERSION_C before receiving VERSION_S, but the server sends
VERSION_S before receiving VERSION_C. Fig. 3 gives a graphical representation of the textual
description above. For the moment we ignore key re-exchange.

Many variations are possible in the graphical representation. For example, one could replace the
arrow labelled VERSION_C! ; VERSION_S? by two arrows, one labelled VERSION_C! and one labelled
VERSION_S?7, and introduce an extra state in between. Our choice not to do this is completely
arbitrary. Our main motivation here is to keep successive refinements of the diagram similar and
as readable as possible.

OpenSSH does not always take the “priority to sending” approach. For instance, the OpenSSH
client waits for VERSION_S before sending VERSION_C.

6 Guessing the key exchange algorithm (Version 4)

The RFCs are a bit more liberal than the description above. Directly after sending its KEXINIT
messages, each party may already guess the key exchange protocol, without waiting for the other
party’s KEXINIT to complete key exchange algorithm negotiation, and optimistically send a first
message of the key exchange protocol, assuming of course that it is appropriate for that party to
send the first message in the key exchange®.

For a client wanting to do Diffie-Hellman key exchange this means it can send KEXDH_INIT
directly after sending its KEXINIT_C, without waiting to receive KEXINIT_S. Since diffie-hellman-
groupl-shal and diffie-hellman-groupl4-shal have to be supported by all servers an optimistic
guess has a good chance to be correct.

4 Liberal reading of [SSH-TRANS] could even be interpreted as meaning that the first key exchange
message could be sent before KEXINIT, but that is clearly silly.

(o) (o)

CONNECT! CONMNECT?
h
(START FPROTOCOL IDENTIFICATION] (START_PROTOCOL_IDE NTIFICATION]
VERSION_C! ; VERSION_57 \ VERSION_S! ; VERSION_C?
(START KEX ALG NEGOTIATION] (START KEX ALG NEGOTIATION]
z KEXINIT_C! ; KEXINIT_S? ‘rKEXINIT_S! S KEXINIT_C?
| STARTKEX | STARTKEX I
KEXDH_INIT! KEXDH_INIT?
h 4 h 4
KEXDH_REPLY? KEXDH_REPLY!
h h
NEWKEYS_C! ; NEWKEYS_S? NEWKEYS_S!; NEWKEYS_C?
A A
6 6
send! receive? send! receive?
(a) client (b) server

Fig. 3. SSH2 using Diffie-Hellman key exchange, resolving parallelism by giving priority to sending.

However, the client should also be prepared to receive a first key exchange packet from a server
that makes a (wrong) guess for the key exchange protocol. Combining these aspects yields the
description in Fig. 4. Here square brackets denote an optional message, which may occur at most
once, and KEX_WRONG_GUESS_S is an erroneous first key exchange packet sent by the server. (The
parallelism has not been resolved here; we will do that in the next section, when we also include
key re-exchange.)

(o]

CONNECT

(START PROTOCOL IDENTIFI CATION]

| WERSION_C || VERSION_C

(START KEX ALG NEGOTIATI ON]

(KEXINIT_C ; KEXDH_INIT)
|| (KEXINIT_S, [KEX_WRONG_GUES5_51)
b
C3_J‘
(KEXINIT_C ; KEXDH_INIT)
KEXDH_REPLY H (KEXINIT_S; [KEX_WRONG_GUESS_5])

)

NEWKEYS C || NEWKEYS_S

4

s

traffic_C traffic_S

Fig. 4. SSH2 doing Diffie-Hellman key exchange, allowing for guessing of the key exchange algorithm (i.e.
KEXDH_INIT may be sent before KEXINIT_S) and an erroneous initial key exchange packet by the other
party (the optional KEX_WRONG_GUESS_S that is ignored).

7 Key re-exchange (Version 5)

Fig. 7 describes the full behaviour of a client and server, taking into account key re-exchange.
Parallelism is resolved not taking the ‘priority-to-sending’ approach, but as is done in OpenSSH:
the OpenSHH client waits for VERSION_S before sending VERSION_C and waits for KEXINIT_S before
sending KEXDH_INIT.

Note that dealing with re-exchange of the keys in Fig. 7 is more involved than suggested in
Fig. 4. This is because the official specs stipulate that

Note, however, that during a key re-exchange, after sending a SSH_MSG_KEXINIT
message, each party MUST be prepared to process an arbitrary number of messages
that may be in-flight before receiving a SSH_MSG_KEXINIT message from the other
party. [SSH-TRANS, Sect 7.1, page 20]

So in state CLIENT_REKEX, after the client has taken the initiative to refresh the keys, it should be
prepared to receive incoming traffic form the server until it receives KEXINIT_C.

Dually, in state SERVER_REKEX, after the client receives KEXINIT_S from the server requesting
the keys to be refreshed, there is nothing to prevent the client from using the old keys for a while

to send traffic. Whether a client should do this is of course questionable; hence the use of a dashed
arrow in the diagram for this. It would be better to immediately respond with KEXINIT_C! and
proceed with the key re-exchange. Of course, some messages sent by the client using the old keys
may still be underway to server at this point.

8 Unexpected messages

What is still implicit in all the specifications up to now is what should happen if we receive a
message different from the one we expect. For protocol specifications in “Alice-Bob” notation, as
the one in Fig. 1, the implicit idea is that the protocol should be aborted if anything else happens.
However, in reality the situation is more complicated Three responses are possible — or may be
required — in case of an unexpected message:

1. the session is aborted, either by simply stopping all further communication, or, more gracefully,
by sending a last SSH_MSG_DISCONNECT message before stopping all further communication;

2. the message is ignored, with the session continuing as if the message was never received;

3. the message is ignored, but the other party is informed about this, by replying with an
SSH_MSG_UNIMPLEMENTED message, with the session then continuing as if these messages never
happened [SSH-TRANS, §11.4].

Aborting the connection when an unexpected message is received is the safest thing to do. However,
simply ignoring unexpected messages does not compromise the overall security, as long as expected
messages with the “wrong” content (e.g. with incorrect signatures) do lead to disconnection. The
real danger in a faulty implementation lies in processing an unexpected message as if were part of
a legitimate protocol run.

In general, the RFCs leave quite some implementation freedom here. One approach is to follow
the so-called robustness principle, also known as Postel’s Law®

Be liberal in what you accept, and conservative in what you send.

However, the robustness principle has come in for quite some criticism over the years, as a cause
of — or excuse for — compliance problems in the long run. Being too liberal can be dangerous when
performing security-sensitive operations, so here it may be better to:

Be conservative in what you accept, and conservative in what you send.

An inverse to Postel’s Law, “Be conservative in what you accept, and liberal in what you do” has
been proposed as a strategy to expose security flaws [10].

Below we consider the various types of unexpected messages — i.e. deviations from the normal
protocol runs as given in the specifications so far — that there are and discuss how these should
be dealt with:

1. Expected messages with wrong content
Clearly, if we get a message of the right type (i.e. a message with the right message number),
but with the wrong contents, then we must abort. For instance, if in state 3 in Fig. 4 the client
receives a KEXDH_REPLY message with the wrong content — i.e. a wrong signature signg(H)
as defined in Fig. 1 — it should abort.

2. Request for deconnection: SSH.MSG_DISCONNECT
At any stage we should be ready to accept a SSH.MSG_DISCONNECT message, and this should
lead to immediate termination of the connection [SSH-TRANS, §11.1].

3. Ignorable messages: SSH_MSG_IGNORE SSH_MSG_UNIMPLEMENTED, SSH_MSG_DEBUG
There are three types of messages that can always be ignored:

5 The origin of this principle is RFC 793, Section 2.10: “TCP implementations will follow a general
principle of robustness: be conservative in what you do, be liberal in what you accept from others”.

CONNECT!

WAIT_VERSION

VERSION_57 ; VERSION_C!

WAIT_KEXINIT

KEXINIT_C! ; KEXINIT_57

L

SERVER_REKEX

e
traffic_C!

>{ WAIT_KEX [«
KEXDH_INIT!
[KEX_WRONG_GUESS_S?] ;

KEXDH_REPLY?

_ WAIT_NEWKEYS _

NEWKEYS_C! ;
NEWKEYS_57

COMMUNICATION

KEXINIT_C! KEXINIT_S?

CLIENT_REKEX

KEXINIT_S7 KEXINIT_C!

traffic_5?

traffic_C!

traffic_57

(a) client

CONNECT?

WAIT_VERSION

VERSION_S! ; VERSION_C?

WAIT_KEXINIT

KEXINIT_C? ; KEXINIT_S!

SERVER_REKEX

KEXINIT_C?

3| WAIT KEX |
o~ = T,
)
[KEX_WRONG_GUESS_C?] ;
KEXDH_INIT? ;
KEXDH_REPLY!

_ WAIT_NEWKEYS _

KEXINIT_S!

CLIENT_REKEX

10

traffic_C?

KEXINIT_S!

NEWKEYS_C? ;
NEWKEYS_S!

COMMUNICATION

KEXINIT_C?

traffic_S!

traffic_C?

traffic_5!

(b) server

Fig. 5. SSH2 client and server supporting Diffie-Hellman key exchange, allowing for an erroneous initial key exchange packet by the other party. In resolving the
possible parallelism the same choices are taken as in OpenSSH: (i) the client waits for the server to send its VERSION message before sending its own VERSION;
(ii) the client does not use the possibility of guessing the key exchange algorithm, and hence sends its KEXDH_INIT only after receiving KEX_INIT from the server;

(iii) the server waits for the client’s KEX_INIT before replying with its own KEX_INIT.

— SSH_MSG_IGNORE and SSH_MSG_UNIMPLEMENTED MUST be ignored [SSH-TRANS, §11.2
and 11.4]
— SSH_MSG_DEBUG MAY be ignored [SSH-TRANS, §11.3].
An implementation could simply filter out these three types of messages in the incoming traffic.
In fact, this is what the OpenSSH implementation does.
4. The wrongly guessed KEX_WRONG_GUESS

As explained earlier, parties should be prepared to accept and ignore an erroneous key exchange

message sent after an optimistic (but wrong) guess of the key exchange algorithm by the

other party. We indicated this as an optional KEX_WRONG_GUESS transition in our specifications.

However, KEX_WRONG_GUESS is not a fixed message number, which leaves the question: which

messages from should be treated as an erroneous key exchange message?

The most liberal approach is two treat any message as erroneous key exchange message and ig-

nore it, except the two messages that are expected — SSH_MSG_KEX_INIT and SSH_MSG_KEXDH_REPLY

— and SSH_MSG_DISCONNECT, of course.

One could be more restrictive, and only treat messages with numbers in the rage 1-49 (the num-

bers reserved for the transport layer protocol) except SSH_MSG_KEX_INIT and SSH_MSG_KEXDH_REPLY

as erroneous key exchange messages, and abort the session for all messages outside this range.

Or, more restrictive still, one could restrict this to messages in the range 30-49, which are the

numbers reserved for messages for specific key exchange methods.

5. Other unexpected messages

This leaves the question of how to deal with all other unexpected messages that might be

received at some point. We could choose to always abort the connection, or always ignore

them. However, [SSH-TRANS, Sect 11.3] states:
An implementation MUST respond to all unrecognised messages with an
SSH_MSG_UNIMPLEMENTED message in the order in which the messages were received.
Such messages MUST be otherwise ignored. Later protocol versions may define

other meanings for these message types.
The big problem with interpreting this is that it is not clear at all which messages should

be regarded treated as ‘unrecognised messages’. Here we have a similar range of choices as
in 4 above: should we consider all numbers currently not allocated in the specification as
unrecognised messages, or only those in the range 1-497

Some remarks in the RFCs suggest some further restrictions in the choices we can make choices
for 4) and 5): [SSH-TRANS, §7.1] states

Once a party has sent a SSH MSG_KEXINIT message for key exchange or re-exchange,
until it has sent a SSH_MSG_NEWKEYS message (Section 7.3), it MUST NOT send
any messages other than:
— Transport layer generic messages (1 to 19) (but SSH_MSG_SERVICE_REQUEST and
SSH_MSG_SERVICE_ACCEPT MUST NOT be sent);
— Algorithm negotiation messages (20 to 29) (but further SSH.MSG_KEXINIT messages
MUST NOT be sent);
— Specific key exchange method messages (30 to 49).
The provisions of Section 11 apply to unrecognised messages.

and [SSH-AUTH, §6] states

Message numbers of 80 and higher are reserved for protocols running after this
authentication protocol, so receiving one of them before authentication is complete
is an error, to which the server MUST respond by disconnecting, preferably with

a proper disconnect message sent to ease troubleshooting.

The first comment justifies aborting the protocol when receiving any messages outside the range
1-49 while performing key exchange, i.e. after receiving SSH_MSG_KEXINIT from the other party
until the SSH_MSG_NEWKEYS messages are exchanged. Although the second comment is given in
the specification of the authentication protocol — i.e. [SSH-AUTH], and not [SSH-TRANS]| —, as
the transport layer protocol is also run ‘before authentication is complete’, it could be taken to
apply to the transport layer protocol too.

11

9 Code review of OpenSSH

We did a manual code review to check that OpenSSH does indeed implement the protocols as
described in Figure 7, for both client and server. In the course of doing this we recorded a detailed
description of how the OpenSSH implementation works, which takes up the remainder of this
section. We recorded this information for our own benefit — without it we really kept getting lost
in the code. For people who not interested in the working of OpenSSH skimming this section might
provide some idea of the complexities involved in such a code review.

To understand the code we combined a top-down approach (following the control flow down
from the main procedures) with a bottom-up approach (looking for the procedure responsible for
handling incoming or outgoing messages and then proceeding up the call chain to where these are
used), documenting the procedures of interest along the way.

The OpenSSH source code consists of well over a hundred files. In the end, the functionality
we were interested was involved around a dozen of these files, namely

— ssh.c

— sshd.c

— sshconnect.c
— sshconnect2.c
— dispatch.c

— packet.c

— serverloop.c
— clientloop.c
— kexdhc.c

— kexgex.c

A major complicating factor in tracing the control flow was the use of function pointers, in the
so-called global dispatch table, as explained below.

Conventions Procedure names are written with trailing (), e.g. packet_read_inspect(), to
distinguish them from file or variable names. Arguments and argument types are omitted.

Procedure names in the OpenSSH source code often start with the name of the file in which
that procedure is defined, e.g. packet_read_inspect() is in the packet.c. We only mention
which file a procedure is when this convention is not followed.

Message names for SSH2 start with SSH2_MSG; we usually omit this, writing KEX_INIT instead
of SSH2_MSG_KEX_INIT. A subscript C' or S is sometimes added to a message name to make it
explicit if it is sent by the Client of the Server.

Handling incoming messages There are two procedures in OpenSSH to handle incoming traffic,
namely dispatch_run() or packet_read_expect (). The latter is used when an incoming message
of a specific type is expected, the former when messages of different types may arrive:

— dispatch_run():
This procedure uses a dispatch table, a global array display of function pointers, one for every
message type. It retrieves an incoming message, reads the byte that specifies the message type,
and then forwards handling of the message to the corresponding entry in the dispatch table.
The content of the dispatch table is changed at various stages during the protocol, de-
scribed in more detailed later Three helper procedures are used to do this: dispatch_range(),
dispatch_set(), and dispatch_init().
For retrieving the incoming message, dispatch_run() calls down to packet_read_poll_seqnr ()
or packet_read_seqnr (). Both these methods take care of handling the generic messages
SSH2_MSG_IGNORE, SSH2_MSG_DEBUG, SSH2_MSG_DISCONNECT, and SSH2_MSG_UNIMPLEMENTED
in the appropriate way.

12

— packet_read_expect (int expected_type):
This procedure aborts the connection if a message is received of a type other than the specified
type.
It calls down to packet_read_seqnr (), which — as already mentioned above — takes care of
the generic messages types SSH2_MSG_IGNORE, SSH2_MSG_DEBUG, SSH2_MSG_DISCONNECT, and
SSH2 _MSG_UNIMPLEMENTED in the appropriate way.

Clearly these approaches are very different when it comes to handling unexpected messages:
packet_read_expect () will disconnect, whereas what dispatch_run() does depends on the cur-
rent content of the dispatch table. Often large parts of the dispatch table are filled with pointers
to error handling procedures, e.g. dispatch_protocol_error() or kex_protocol_error().

9.1 The client

The main() program for the client in ssh.c calls ssh_login() (in sshconnect.c) to do the
key negotiation and the user authentication. It then calls ssh_session2(), which in turn calls
client_loop() in clientloop.c for the interactive session.

To carry out the transport layer protocol, the procedure ssh_login()

— calls ssh_exchange_identification() in sshconnect.c to exchange version numbers: it
waits for the server’s identification string and then sends the client’s;

— calls ssh_kex2 in ssh2connect.c for the key exchange, discussed below;

— finally calls ssh_userauth2() in ssh2connect.c to handle the session.

For the key exchange, the procedure ssh_kex2

— defines a Kex-struct kex with function pointers to the procedures that do the key exchange,
which are kexdh_client() and kexgex_client();
— calls kex_setup(), which in turn
e calls kex_send_kexinit () to send SSH2_MSG_KEXINIT;
e calls kex_reset_dispatch() to reset the dispatch table, setting all transport protocol
messages (the range 1- 49) except KEX_INIT to be treated as errors;
— calls dispatch_run(Q).

Now dispatch_run() will only respond to KEXINIT, and hand over control to the procedure
kex_input_kexinit () to handle it. This procedure

— sends a SSH2_MSG_KEXINIT, if the client hasn’t done so already; this cannot be the case when
kex_input_kexinit() is called the first time to set up a new session, but it can be the case
when kex_input_kexinit () is invoked later to refresh the keys;

— calls a procedure from the kex struct kexdh_client () and kexgex_client (), for the actual
key exchange,

The procedure kexdh_client () then

— sends SSH2_MSG_KEXDH_INIT;

— receives SH2_MSG_KEXDH_REPLY using packet_read_expect;

— calls kex_finish() first sends SSH2_MSG_NEWKEYS and then receives SSH2_MSG_NEWKEYS using
packet_read_expect ().

Alternatively, the procedure kexgex_client ()

— sends SSH2_MSG_KEX_DH_GEX_INIT;

— receives SH2_MSG_KEX_DH_GEX_REPLY using packet_read_expect();

— calls kex_finish() which sends SSH2_MSG_NEWKEYS and then receives SSH2_MSG_NEWKEYS
using packet_read_expect ().

13

VERSIONg?
VERSION !

KEXINITg!

KEXINITg?

KEXINIT o ?

KEXINITg!

KEXDH_INIT!
KEXDH_REPLY?
NEWKEYS!

NEWKEYSg?

GEX_INIT!
GEX_REPLY?
NEWKEYSg!

NEWKEYSg?

VERSIONg!
VERSION !

KEXINIT !

KEXINITg?

KEXDH_INIT?
KEXDH-REPLY!
NEWKEYSg!

NEWKEYS?

GEX_REQUEST?

GEX_INIT?
GEX_REPLY!
NEWKEYSg!

NEWKEYSo?

So, as far as the incoming messages for transport layer protocol are concerned, the client
handles KEXDH_REPLY and NEWKEYS using packet_read_expect (), and only uses dispatch_run()
to handle incoming KEX_INIT messages. This makes sense, as only KEX_INIT can be received when
other messages (namely messages of higher protocol layers) are expected.

From the moment that re-keying starts (by sending KEXINIT_C) the function packet_send2()
in packet.c will buffer any outgoing messages with types outside of the range 1-49, and only sent
these later once re-keying has been completed (by returning to state CLIENT_REKEX in Fig. 7).
This assures that no outgoing messages of higher protocol layers (marked as traffic_C in Fig. 7)
will be sent during re-keying, in accordance with Fig. 7 and the comment to that effect at the
bottom of page 19 in [SSH-TRANS].

9.2 The server

The server (in the basic mode) sets up a listening socket in server_listen() (called from main()
in sshd.c) and then the incoming clients are accepted in server_accept_loop() (also called from
main()). Each time a client connects, the server process forks to handle the client in a sub-process.
This sub-process returns from server_accept_loop(). The parent process that listens for new
incoming clients never returns from server_accept_loop().

The main() procedure for the server (daemon) in sshd.c

— calls the procedure sshd_exchange_identification() takes care of exchanging version num-
bers: it sends the server’s identification string and then waits for the client’s.

— then calls do_ssh2_kex () to do the key exchange, discussed below;

— then calls do_authentication2() for the user authentication.

finally calls do_authenticated() to handle the session, which calls down to client_loop2().

For the key exchange, do_ssh2_kex () in sshd.c works rather like ssh_kex2 for the client:

— it defines a Kex structure kex with function pointers to kexdh_server () and kexgex_server ()
as procedures to use for the key exchange;
— calls kex_setup(), which in turn — just as for the client —
e calls kex_send_kexinit () to send SSH2_MSG_KEXINIT;
e calls kex_reset_dispatch() to reset the dispatch table, setting all transport protocol
messages (the range 1- 49) except KEX_INIT to be treated as errors;
— calls dispatch_run.

Now dispatch_run() will only respond to KEXINIT , and hand over control to kexdh_server ()
or kexgex_server () for the actual key exchange.
The procedure kexdh_server ()

— waits for a KEXDH_INIT from the client (using packet_read_expect());

— replies with its KEXDH_REPLY message;

— calls kex_finish() which first sends NEWKEYS and then receives SSH2_MSG_NEWKEYS using
packet_read_expect.

The procedure kexgex_server

— waits for a KEX_DH_GEX_REQUEST or KEXDH_GEX_REQUEST_OLD message, using packet_read(),
aborting the protocol with a fatal error if any other message arrives; packet_read() calls
down to packet_read_seqnr (), which takes case of the generic messages in the correct way;

— waits for a KEX_DH_GEX_INIT from the client (using packet_read_expect);

— replies with its KEXDH_GEX_REPLY message

— calls kex_finish() which first sends NEWKEYS and then receives SSH2_MSG_NEWKEYS using
packet_read_expect.

So, as far as the incoming messages for transport layer protocol are concerned, the server
handles KEXDH_INIT and NEWKEYS with packet_read_expect. Only an incoming KEX_INIT from
the client will be handled via the dispatch table.

14

9.3 Initialising and resetting of the dispatch table

The dispatch table is not explicitly initialised when the client or server starts. As dispatch is a
global array, the ANSI C standard guarantees it is initialised with NULLs®. Still, for clarity and
graceful degradation — with an error message rather than simply crashing — it would be nice to fill
the dispatch table with error handling procedures in the beginning, by calling

dispatch_init(&dispatch_protocol_error);

After the transport layer protocol and the authentication protocol have been run, just before
the interactive session starts, both client and server re-initialise their dispatch table. The client
does this by invoking client_init_dispatch() from clientloop() in clientloop.c, the server
does it by invoking server_init_dispatch() from serverloop2() in serverloop.c.

Both client_init_dispatch() and server_init_dispatch() reset all entries in the dispatch
table to dispatch_protocol_error, except

— one transport layer message, namely KEXINIT,
— all generic connection messages (numbers 80-82), and
— all channel related messages (number 90-100).

The entry in the dispatch table for KEXINIT is set to kex_input_kexinit() to restart the key
exchange when the keys are refreshed.

During the transport layer protocol both client and server reset the dispatch table by calling
kex_reset_dispatch()

— at the beginning of a new key exchange, directly after sending their KEX_INIT message’,
— at the end of a key exchange, just before sending their NEWKEYS message®

The procedure kex_reset_dispatch() resets the dispatch table such that all transport protocol
messages (i.e. messages types 1-49) except KEX_INIT are treated as errors, setting the corresponding
entries to kex_protocol_error().

Note that resetting the dispatch table at the end of the key exchange is redundant, as none of
the entries of the dispatch table are changed during key exchange.

In fact, for all transport protocol messages (i.e. message types 1- 49) except KEX_INIT the
corresponding entries in the dispatch table are only ever set to kex_protocol_error() or to
dispatch_protocol_error(). The only difference between these two error procedures is that
the former reports ”a kex protocol error” and the latter ”a dispatch_protocol_error”. Apart from
KEX_INIT, all transport protocol messages are processed by packet_read_expect, and never via
the dispatch table, so the dispatch table can indeed treat these messages as errors.

9.4 Discussion

The OpenSSH client does not take advantage of the possibility of optimistically sending the end
first key exchange message directly after sending its KEX_INIT. Instead, it always waits for the
incoming KEX_INIT first.

The server does not do this either, but then the server could not do this, as the first key exchange
message has to be sent by the client for all key exchange method supported by OpenSSH.

The client is not prepared to accept and ignore an initial key exchange message from the server
- this would lead to a disconnection. However, this situation is not likely — or even possible — as
none of the existing key exchange methods (which are all variants of Diffie-Hellman) would allow
a server to optimistically send a first key exchange message.

The OpenSSH implementation does not quite conform to the following requirement [SSH-
TRANS, §11.4]

5 Thanks to Darren Tucker for pointing this out.

7 To be precise, this happens in kex_setup(), which the client calls in ssh_kex2() and the server calls in
do_ssh2().

8 To be precise, this happens in kex_finish(), which is called from kexdh_server, kexdh_client,
kexgex_client, and kexgex_server.

15

An implementation MUST respond to all unrecognised messages with an
SSH_MSG_UNIMPLEMENTED message in the order in which the messages were received.
Such messages MUST be otherwise ignored. Later protocol versions may define
other meanings for these message types.

Such an SSH_MSG_UNIMPLEMENTED messages is sent if an unrecognised incoming message is handled
via dispatch_run(), but not if it is handled by packet_read_expect().

10 Related Work

Research into the analysis of security protocols is gradually beginning to tackle the problem of
looking at actual source code instead of more abstract representations of security protocols.

Closest to our work in spirit here is the work of Udrea et. al. [23] on using a static analysis of C
source code to check if it obeys constraints on the ordering of operations and on data values. The
constraints on the ordering of operations is precisely what we try to capture in our state machines.
The approach has been tried on SSH, where the authors extracted 87 rules from the RFC.

Apart from the fact that the approach is backed up by a static analysis tool, the approach of
Udrea et. al. is more ambitious than ours when it comes to describing the protocol, in that it tries
to do more than just capture the order of operations, as we do, by also imposing constraints on
the message contents.

Describing the protocol as a set of constraints is closer to the style used in the RFCs than
our state-based approach, but more likely to be only a partial specification, and underspecify the
set of allowed interactions. Our state-diagrams provide a more precise description of the order
of operations and are in fact likely to overspecify, especially the later versions which choose a
particular resolution of the possible concurrency.

More ambitious efforts to analyse C source code of security protocols [7,12] are more semantical
in nature, and try to prove security of the protocol implementation, not just conformance to
some protocol specification (in the form of a state-diagram or a set of constraints). This involves
modelling of an attacker and symbolically determining the knowledge an attacker might be able to
collect, and then proving security properties by model-checking [7] or automated theorem proving
[12]. Unfortunately, applying these techniques to a C implementation as complex as OpenSSH,
with e.g. its extensive use of function pointers, does not seem feasible yet.

Fournet and Gordon and their co-workers has been developing techniques to verify security
properties of protocols implemented in functional languages, initially by translating ML-like pro-
grams to ProVerif, a resolution-based theorem prover for cryptographic protocols [5], but more
recently using refinement types for a variant of F# [3,4] and automated theorem provers to dis-
charge the proof obligations that arise as part of type checking. Of course, F# is a much cleaner
programming language than C.

An analysis as we have done for SSH here has been repeated for TLS [20]. The specification of
TLS seems to be a lot more structured than that of SSH, and the state diagram much easier to
obtain from the specification. An informal code review of the TLS implementation studied there
revealed some deviations from the spec, but not in ways to would compromise security.

11 Conclusions

We presented partial but rigorous specifications of the SSH transport layer, and discussed a code
review of OpenSSH using these specifications. Our specifications are partial in that they only
consider the (dis)allowed orders of the different messages types in legal protocol runs. The speci-
fications could also be used for more formal, tool-supported analysis of the code, as demonstrated
in [17] for a Java implementation of SSH, but we do not know of techniques that could cope with
the C implementation of OpenSSH to do this.

16

We believe that a thorough code review of OpenSSH is impossible without effectively doing
the work that we have done in analysing the RFCs. After all, any implementation of SSH will
somehow implement a state machine that should conform to the RFCs specifying the protocol.
Providing rigorous specs in the form of state diagrams is therefore a useful first step for any code
review. Of course, it would also be a useful first step for developing any implementation.

It is a pity that the state diagrams hiding in RFCs that specify SSH are so implicit. Making
them more explicit would make the specification more useful. The fact that RFCs are produced
in ASCII is not conducive to including state diagrams, of course. It is interesting to note that the
RFC specifying FTP [19] includes state diagrams as ASCII art. We conjecture that in many other
settings the useful state diagrams that people draw on whiteboards and napkins ultimately don’t
make it to the official documentation, which seems a pity.

References

1. S. Andova, C. Cremers, K. Gjgsteen, S. Mauw, S.F. Mjglsnes, and S. Radomirovié. A framework for
compositional verification of security protocols. Inf. Comput., 206(2-4):425-459, 2008.

2. M. Backes, S. Lorenz, Maffei M, and K. Pecina. The CASPA tool: Causality-based abstraction for
security protocol analysis. In CAV’08: Proceedings of the 20th international conference on Computer
Aided Verification, pages 419-422. Springer, 2008.

3. J. Bengtson, K. Bhargavan, C. Fournet, A.D. Gordon, and S. Maffeis. Refinement types for secure
implementations. In CSF 2008, pages 17-32. IEEE, 2008.

4. K. Bhargavan, C. Fournet, and A.D. Gordon. Modular verification of security protocol code by typing.
ACM SIGPLAN Notices, 45(1):445-456, 2010.

5. K. Bhargavan, C. Fournet, A.D. Gordon, and S. Tse. Verified interoperable implementations of security
protocols. ACM Transactions on Programming Languages and Systems (TOPLAS), 31(1):1-61, 2008.

6. B. Blanchet. Automatic verification of correspondences for security protocols. J. Comput. Secur.,
17(4):363-434, 2009.

7. S. Chaki and A. Datta. ASPIER: An automated framework for verifying security protocol implemen-
tations. In IEEE Computer Security Foundations Symposium, pages 172—-185, 2009.

8. C.J.F. Cremers. Scyther - Semantics and Verification of Security Protocols. Ph.D. dissertation,
Eindhoven University of Technology, 2006.

9. S.F. Doghmi, J.D. Guttman, and F.J. Thayer. Searching for shapes in cryptographic protocols. In
Tools and Algorithms for the Construction and Analysis of Systems, 13th International Conference,
TACAS 2007, volume 4424 of LNCS, pages 523-537. Springer, 2007.

10. J. Engelhardt. Detecting and deceiving network scans. Available from http://jengelh.medozas.de/
documents/Chaostables.pdf, 2007.

11. M. Friedl, N. Provos, and W. Simpson. Diffie-Hellman Group Exchange for the Secure Shell (SSH)
Transport Layer Protocol. RFC 4419, The Internet Engineering Task Force, Network Working Group,
2006.

12. J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In VM-
CAI’2005, volume 3385 of LNCS, pages 363—-379. Springer, 2005.

13. B. Harris. Rivest-Shamir-Adleman (RSA) key exchange for the Secure Shell (SSH) Transport Layer
Protocol. RFC 4432, The Internet Engineering Task Force, Network Working Group, 2006.

14. E. Hubbers, M. Oostdijk, and E. Poll. From finite state machines to provably correct Java Card
applets. In Proceedings of the 18th IFIP Information Security Conference, Athens, Greece, pages
465-470. Kluwer Academic Publishers, 2003.

15. J. Hutzelman, J. Salowey, and J. Galbraith. Generic Security Service Application Program Interface
(GSS-API) Authentication and Key Exchange for the Secure Shell (SSH) Protocol. RFC 4462, The
Internet Engineering Task Force, Network Working Group, 2006.

16. S. Lehtinen. The Secure Shell (SSH) Protocol Assigned Numbers. RFC 4250, The Internet Engineering
Task Force, Network Working Group, January 2006.

17. E. Poll and A. Schubert. Verifying an implementation of SSH. In R. Focardi, editor, WITS’2007,
pages 164-177, 2007.

18. J. Postel. Internet Protocol. RFC 791, The Internet Engineering Task Force, Network Working Group,
1981.

19. J. Postel and J. Reynolds. File Transfer Protocol (FTP). RFC 959, The Internet Engineering Task
Force, Network Working Group, January 1985.

17

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

P. Rogaar. Security analysis of a TLS implementation using finite state machines, 2010. Unpublished
manuscript.

D. Xiaodong Song. Athena: a new efficient automatic checker for security protocol analysis. In
CSFW’99: Proceedings of the 12th IEEE workshop on Computer Security Foundations, page 192,
Washington, DC, USA, 1999. IEEE Computer Society.

D. Stebila and J. Green. Elliptic-Curve Algorithm Integration in the Secure Shell Transport Layer.
RFC 5656, The Internet Engineering Task Force, Network Working Group, 2009.

O. Udrea, C. Lumezanu, and J.S. Foster. Rule-based static analysis of network protocol implementa-
tions. Information and Computation, 206(2-4):130-157, 2007.

L. Vigano. Automated security protocol analysis with the avispa tool. Electr. Notes Theor. Comput.
Sci., 155:61-86, 2006.

D. von Oheimb. Formal specification of the SSH transport layer protocol in HLPSL, 2004. Available
online at http://www.avispa-project.org/library/ssh-transport.html.

T. Ylonen. The Secure Shell (SSH) Authentication Protocol. RFC 4252, The Internet Engineering
Task Force, Network Working Group, January 2006.

T. Ylénen. The Secure Shell (SSH) Connection Protocol. RFC 4254, The Internet Engineering Task
Force, Network Working Group, 2006.

T. Ylonen. The Secure Shell (SSH) Protocol Architecture. RFC 4251, The Internet Engineering Task
Force, Network Working Group, January 2006.

T. Ylonen. The Secure Shell (SSH) Transport Layer Protocol. RFC 4253, The Internet Engineering
Task Force, Network Working Group, January 2006.

18

