
From Ahead-of- to Just-in-Time and Back Again:
Static Analysis for Unix Shell Programs

Lukas Lazarek
lukas_lazarek@brown.edu

Brown University

Seong-Heon Jung
seong-heon_jung@brown.edu

Brown University

Evangelos Lamprou
evangelos_lamprou@brown.edu

Brown University

Zekai Li
zekai_li@brown.edu
Brown University

Anirudh Narsipur
anirudh_narsipur@brown.edu

Brown University

Eric Zhao
eric_c_zhao@brown.edu

Brown University

Michael Greenberg
michael@greenberg.science

Stevens Instisute of Technology

Konstantinos Kallas
kkallas@ucla.edu

UCLA

Konstantinos Mamouras
mamouras@rice.edu

Rice University

Nikos Vasilakis
nikos@vasilak.is
Brown University

ABSTRACT
Shell programming is as prevalent as ever. It is also quite
complex, due to the structure of shell programs, their use of
opaque software components, and their complex interactions
with the broader environment. As a result, even when exer-
cising an abundance of care, shell developers discover devas-
tating bugs in their programs only at runtime: at best, shell
programs going wrong crash the execution of a long-running
task; at worst, they silently corrupt the broader environment
in which they execute—affecting user data, modifying system
files, and rendering entire systems unusable. Could the shell’s
users enjoy the benefits of semantics-driven static analysis
before their programs’ execution—as offered by most other
production languages?

CCS CONCEPTS
• Software and its engineering → Scripting languages;
Compilers; Operating systems.

KEYWORDS
Unix, Linux, shell, static analysis, type systems, inference

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HOTOS 25, May 14–16, 2025, Banff, AB, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1475-7/25/05.
https://doi.org/10.1145/3713082.3730395

ACM Reference Format:
Lukas Lazarek, Seong-Heon Jung, Evangelos Lamprou, Zekai Li,
Anirudh Narsipur, Eric Zhao, Michael Greenberg, Konstantinos
Kallas, Konstantinos Mamouras, and Nikos Vasilakis. 2025. From
Ahead-of- to Just-in-Time and Back Again: Static Analysis for Unix
Shell Programs . In Workshop in Hot Topics in Operating Systems
(HOTOS 25), May 14–16, 2025, Banff, AB, Canada. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3713082.3730395

1 INTRODUCTION
Edition XVIII of HotOS featured a presentation on the Next
50 Years of the Shell [9], with a humorous segment in which
a panel of experts opines on the right approach to improve
the safety and correctness of shell scripts:

Static analysis! Type systems! More static analysis!
—exclaimed by experts [8]

The implied benefits are clear [17, 26]: fast pre-execution
checks for computations that take days; detection of misbe-
haviors by a script’s developer, not its user; improved error
messages; whole-program optimization opportunities; and
elimination of entire classes of bugs—well-typed shell pro-
grams cannot go wrong, at least not in their usual ways.
Yet this expert opinion comes to the presenters’ dismay:

the shell is uniquely challenging when it comes to anything
static. Its pervasive dynamicity—e.g., runtime evaluation, ex-
pansion, subshells—seems to make ahead-of-time checking
intractable. Its tight integration with, and arbitrary effects
on, the broader environment complicates reasoning about
possible states and effects prior to program execution. And
its opaque, polyglot commands—communicating with each

https://orcid.org/0009-0000-6484-5270
https://orcid.org/0009-0008-8850-3054
https://orcid.org/0009-0009-1989-3922
https://orcid.org/0000-0003-4402-8665
https://orcid.org/0009-0001-9926-6831
https://orcid.org/0009-0000-4969-2376
https://orcid.org/0000-0003-0014-7670
https://orcid.org/0000-0002-8984-6648
https://orcid.org/0000-0003-1209-7738
https://orcid.org/0000-0001-7347-298X
https://doi.org/10.1145/3713082.3730395
https://doi.org/10.1145/3713082.3730395


HOTOS 25, May 14–16, 2025, Banff, AB, Canada L.Lazarek, S.Jung, E.Lamprou, Z.Li, A.Narsipur, E.Zhao, M.Greenberg, K.Kallas, K.Mamouras, N.Vasilakis

other and the shell through raw bytes—occlude deep rea-
soning. It is no accident that the shell, the oldest and most
prevalent environment today [14], still relies on surface-level
syntactic linting à la ShellCheck [5]. In the face of these chal-
lenges, the presenters argue for a shift from ahead-of-time
to just-in-time analysis to enable shell rehabilitation.
This paper counter-argues: the shell can and should en-

joy the benefits of ahead-of-time analyses, offered by other
mainstream languages, by combining several insights.
First, divide and conquer. Disaggregate static guarantees

into tractable subclasses, develop separate subsystems tar-
geting each subclass, then reaggregate these subsystems.
For example, constraints over command effects on the file
system are expressible in Hoare-style logical pre- and post-
conditions, whereas constraints over IPC and other stream
contents are expressible in regular languages—offering ben-
efits in computational tractability, succinctness, and famil-
iarity for everyday Unix developers.

Second, trust, but verify. Leverage large-language models
(LLMs) to translate documentation—the only common source
of truth for opaque commands—into partial specifications,
then interpose on commands to test these specifications. For
example, the effects of a specific command invocation to the
file system are inferable from its man page and checkable via
file system containment and system-call tracing.
Third, better late than sorry. If ahead-of-time checking is

insufficient to conclude safety, specification-aware runtime
monitoring can stop execution before catastrophic bugs oc-
cur: a monitor can halt the execution of a script about to
perform a dangerous action going against key invariants.

These insights can tame what the presenters call [9, §2.2]
the shell’s bad aspects—arbitrariness, dynamicity, obscurity—
and eliminate its ugliest: error proneness (§2). They also open
up additional opportunities for exciting future research on
correctness and reliability—not only benefiting the shell, but
also other prominent virtualization, containment, and cloud
environments thinly wrapping shell constructs (§5). There
is truly something here for everybody.

2 RENDERING SYSTEMS UNUSABLE
Consider the core of a bug in the Steam-for-Linux updater
(Fig. 1), which famously wiped the file systems of several
Steam users [33]. The updater first deletes the existing instal-
lation, whose location it identifies via a variable STEAMROOT .
Its value is determined via runtime expansion in a subshell
( $(...) ). identify the path of the current script ( ${0} ),
expand it to remove anything after the last slash ( %/* ),
change to that path ( cd . . . ), and report the current direc-
tory ( $PWD ). For some paths (e.g., ~/.steam/upd.sh ), ex-
pansion results in the parent directory as intended (e.g.,
/home/jcarb/.steam ); for other paths (e.g., ones lacking

1 #!/bin/sh
2 STEAMROOT="$(cd "${0%/*}" && echo $PWD)"
3 # ... more lines ...
4 rm -fr "$STEAMROOT"/*

Figure 1: The core of a Steam updater bug [33]. When expan-
sion results in an empty STEAMROOT string (ln. 2), the script deletes
everything user-writable (ln. 4).

any directories like upd.sh ), expansion results in the script
name, causing cd to fail and STEAMROOT to end up empty.
The result: rm -fr /* deletes everything user-writable.
The states of the art and practice: Many earlier research
efforts [4, 15, 20, 29] focus on the interaction of individual
commands with the environment, not larger-scale program
composition, or on a single composition primitive (e.g., | ).
Tools such as ExplainShell [16], offer help with command
invocations, but do not check correctness.
The most widely used tool is ShellCheck [5], a syntac-

tic linter based on a collection of hard-coded patterns (e.g.,
proper variable names).1 The ShellCheck linter (v0.10.0)
indeed issues a warning for Fig. 1, suggesting replacing
$STEAMROOT with "${STEAMROOT:?}" to signal a runtime
error if the variable is empty. Unfortunately, this kind of
syntax-matching approach is limited: it fails to recognize
an obviously safe fix (Fig. 2) and it fails to identify the un-
ambiguous incorrectness of an obviously unsafe fix (Fig. 3).
(The two attempted fixes, placed next to each other, differ
by only one character.) Surface-level syntactic linting, while
useful, is inherently noisy and context-insensitive.

3 SEMANTICS-DRIVEN ANALYSIS
Reasoning deeply about semantics at the scale and complex-
ity of real shell programs requires several key ingredients.
Reasoning about state: A static analysis system for the
shell must first be able to understand and reason about the
state of the shell and its broader environment—e.g., the file
system, command arguments, and environment variables.
The first ingredient is therefore to generate and track relevant
constraints on state. To identify the bug in Fig. 1 (and rec-
ognize its absence in Fig. 2), the analysis needs to generate
constraints for all variables and their contents. Examples
of such variables include Fig. 1’s $0 and $PWD , whose con-
tents may be file or directory paths. Such constraints can
be captured by existing and well-understood formalisms—
e.g., by a regular expression of the form /?([ˆ/]*/)*[ˆ/]+ .
Such formalisms offer several benefits—e.g., computational
efficiency and ease-of-use for developers versed with the
expressions found pervasively in the Unix environment.

1A quick exploration reveals that ShellCheck is used by about 65% of top
GitHub shell repositories with over 1K shell LoC—which speaks volumes
about the community’s needs for static shell-script analysis.



From Ahead-of- to Just-in-Time and Back Again: Static Analysis for Unix Shell Programs HOTOS 25, May 14–16, 2025, Banff, AB, Canada

1 #!/bin/sh
2 STEAMROOT="$(cd "${0%/*}" && echo $PWD)"
3

4 if [ "$(realpath "$STEAMROOT/")" != "/" ]; then
5 rm -fr "$STEAMROOT"/*
6 else
7 echo "Bad script path: $0"; exit 1
8 fi

Figure 2: An obviously safe fix to the Steam bug (cf. Fig.1).
The rm -fr line will never delete from the root—guaranteed across
all executions and environments.

Semantics of state transformations: A static analyzer
must also be able to reason about how the aforementioned
state is transformed by an arbitrary piece of shell code—e.g.,
composition primitives, subshells, expansion, and built-ins.

Thus another ingredient is symbolic execution, simulating
the actions of the shell interpreter, symbolically describing
the results of operations and transforming sets of program
states along the way. The symbolic engine implements the
semantics of the shell language [6], including composition
primitives such as | , & , and && . It also models the behavior
of key built-in commands, such as cd and [ , analogously to
primitive functions in other programming languages. Dur-
ing symbolic execution, the engine expands parameters,
tracksworking directories, follows success and failure paths—
collecting and propagating constraints on symbolic variables
and pruning via concrete state whenever possible.
For example, given that the possible contents of $0 ex-

pand to either a directory or a filename, cd will either (1)
change the program’s current directory to a directory, print
no output, and succeed, or (2) fail with output on stderr
but not stdout . The engine will explore both executions
and symbolically exit the subshell with two potential results.
Upon conclusion, it will issue a warning for one of the two
execution paths that results in rm -fr /* .
Inferring command specifications: The analysis depends
on specifications of commands such as cd and rm , and their
specific invocations such as rm -fr . Commands are funda-
mentally opaque, written by different developers and in arbi-
trary languages, often distributed as binaries, and equipped
with a multitude of configuration flags and system-specific
variations. Conventional program analysis techniques there-
fore face immense hurdles for inferring their specifications.

Fortunately, commands are typically distributedwith some
form of documentation. Thus, another ingredient is docu-
mentation mining with instrumented probing—applied ahead-
of-time to build a queryable specification library accompa-
nying the analysis engine. The first step (Fig. 4) is to derive
a command’s invocation syntax from its natural language
documentation—e.g., man pages, markdown files, web pages,
etc. This syntax derivation leverages large-language models
(LLMs) guardrailed via domain-specific languages designed

1 #!/bin/sh
2 STEAMROOT="$(cd "${0%/*}" && echo $PWD)"
3

4 if [ "$(realpath "$STEAMROOT/")" = "/" ]; then
5 rm -fr "$STEAMROOT"/*
6 else
7 echo "Bad script path: $0"; exit 1
8 fi

Figure 3: An almost-identical, but obviously unsafe fix. A
small syntactic mistake carries significant semantic weight: the
rm -fr line can only delete everything user-writable.

to express only legitimate invocations—satisfying common
utility conventions such as the XBD standard [13]. Using the
syntax specification, a miner next generates a large number
of test configurations sweeping through the possible flags,
options, and relevant file system states. It then instantiates
concrete environments, executing each command config-
uration with appropriate interposition to record all of its
interactions within each environment. Finally, it examines
the traces extracted by these executions and applies a series
of transformation rules to produce the final specifications.

This process leads to a precise and accurate specification,
expressed for example as Hoare triples—i.e., preconditions
and postconditions around the command invocation. For
instance, for rm -fr the man -driven, LLM-assisted deriva-
tion generates a syntax specification that includes (1) -r and
-f as distinct, non-exclusive flags, and (2) at least one posi-
tional argument to rm as a path. It then generates all valid
invocations, including rm { , -f, -r, -f -r} $p , along
with appropriate environments for probing each invocation’s
effects—including cases where $p is a file, a directory, or
non-existent. By instrumenting its execution during prob-
ing, it discovers that given a path to an extant directory,
rm -f -r $p deletes that directory and exits with code 0 :

{ (∃ $p ) ∧ (arg 0 $p path.FD) }
rm -f -r $p

{ (� $p ) ∧ exit 0 }

That is, if the -r and -f flags are present and the first
positional argument is a path to a file or directory, then the
file or directory is deleted and the exit code is 0.
Reasoning about stream contents: The analysis must
also reason about the contents of Unix streams and files. To
illustrate stream reasoning, consider Fig. 5’s fix to Fig. 1’s bug:
append STEAMROOT with a platform-dependent subdirectory.
The output of lsb_release -a , lines of label-value pairs
separated by tabs, is filtered first by grep to select a line
with a matching label, and then by cut to extract the second
field. Unfortunately, '^desc' should have been '^Desc' :
grep produces no output and the suffix is never set, leaving
the script vulnerable to the same bug.



HOTOS 25, May 14–16, 2025, Banff, AB, Canada L.Lazarek, S.Jung, E.Lamprou, Z.Li, A.Narsipur, E.Zhao, M.Greenberg, K.Kallas, K.Mamouras, N.Vasilakis

Generator
Command Invocations

Execution Environments

Tracer

Syscalls FS Diff

×

Specs
File I/Os

FS Side-effects

Stream contents
…

Generator

LLM Parser

Constrained 
DSL

Documentation
…
…

Figure 4: Command specification inference. Left: generate
all valid invocations of a command by guardrailing a tuned LLM.
Mid: instrument and execute all command invocations in a set of
execution environments, confirming their effects. Right: compile
their effects to specifications targeting key classes of constraints.

Encoding the shape of streams requires another ingre-
dient: regular types, a new type system for string shapes
centered around the familiar and concise representation of
regular languages. The languages can equivalently describe
the shape of entire streams or, more conveniently, of each
line in the stream—e.g., for the output of lsb_release -a :
(Distributor ID|Description|Release|Codename):\t.*

In turn, specifying that Fig. 5’s grep accepts any input
and produces output beginning with desc amounts to the
following summary in the style of a type signature:

grep '^desc' :: .* → desc.*

Straightforward reasoning shows that the intersection of
grep ’s combined input (from lsb_release ) and output
constraints is the empty language, thus always resulting in
the default (empty) case .
Key takeaways: Stepping back, the critical pieces to high-
light about this entire discussion is that the proposed ap-
proach (1) performs the analysis entirely statically, well be-
fore the execution of a program, (2) stems directly from
reasoning about the semantics of the shell and the compo-
nents involved in a program, and (3) provides guarantees
about all possible executions, not just a subset.

In contrast to other approaches (§2), this approach is con-
text sensitive; it concludes safety or unsafety by tracking
constraints on variable contents, including those from condi-
tionals. It is also robust to semantically-equivalent syntactic
variants such as splitting rm ’s path across variables:

c="/*"; rm -fr $STEAMROOT$c

4 ADDITIONAL COMPLEXITY. . .
The four ingredients (§3) are potent enough to offer conclu-
sive results on the snippets shown. Additional complexities
may arise in practice.
File system effects: Diagnosing dangerous file deletions
is an important benefit of the proposed analysis, but pre-
cise reasoning could detect and prevent even finer-grained

file manipulation bugs (such as idempotence violations). By
augmenting the symbolic execution engine, the analysis can
track constraints on the nodes in the file system to which
individual paths resolve; when competing constraints are
inconsistent, the system determines that the script contains
a bug arising from command composition.

rm -r "$1"
cat "$1/config"

As a simple yet suggestive example,
consider the snippet on the right. By sym-
bolically modeling the state of the file sys-
tem, the analysis determines that, after the invocation of
rm , the file or directory to which $1 resolved no longer
exists. The invocation of cat introduces a constraint that
$1/config resolves to a file. To resolve this path, how-
ever, $1 must resolve to a directory with a file entry named
config , and the directory does not exist: the system issues
a warning that the invocation will always fail.
While such bugs may seem trivial at the surface, they

easily become subtle as multiple control paths, variables con-
taining arbitrary paths, and path aliasing come into play. For
example, understanding that Fig. 2’s check on the normalized-
path result of realpath implies information about the po-
tentially un-normalized-path of $STEAMROOT demands rea-
soning about the identity of filesystem locations referrable
to by arbitrarily many path-strings. And in general, file sys-
tem bugs may be split across hundreds of lines of code and
arise only under specific conditions. But this is all par for
the course with a symbolic execution that simultaneously
considers all possible executions. The central challenge is to
track the file system’s state with sufficient precision as to en-
able useful reasoning while avoiding exponential explosion
in complexity for realistically sized programs.
Environment and runtime monitoring: Inference of
stream and file contents, while feasible, still faces precision
limitations, and therefore might at times fail to produce a
type for a command. Addressing these limits, without risk-
ing safety and when user annotations are not available, re-
quires runtime monitoring: when enabled, runtime monitor-
ing protects computations adjacent to an untyped command
to ensure their type expectations are maintained during the
execution of the program.

Thismonitoring is achievablewith a higher-order monitor
command, similar in spirit to strace and xargs (but more
sanely named), that monitors a command’s input and output
streams to ensure they conform to the specification inferred
by adjacent commands. The cost of maintaining safety with-
out annotations is monitoring overhead and delayed error
detection—trade-offs similar to gradual types [11, 25, 32].
Ergonomic annotations: Retrofitting existing shell inter-
preters with an elaborate stream type system will likely
require large amounts of engineering effort, drastic changes
to syntax and semantics, and break backwards-compatibility.



From Ahead-of- to Just-in-Time and Back Again: Static Analysis for Unix Shell Programs HOTOS 25, May 14–16, 2025, Banff, AB, Canada

1 #!/bin/sh
2 STEAMROOT="$(cd "${0%/*}" && echo $PWD)"/
3 case $(lsb_release -a | grep '^desc' | cut -f 2) in
4 Debian) SUFFIX=".config/steam" ;;
5 *Linux) SUFFIX=".steam" ;;
6 esac
7 rm -fr $STEAMROOT$SUFFIX

Figure 5: Yet another fix, introducing a subtle bug. The
grep '^desc' filter is mistaken, allowing no content to pass
through, causing the fix to never apply.

In order to avoid that and maintain full compatibility with
existing shell interpreters, these constraints should instead
join the shell ecosystem through annotations manifesting
as specialized inline comments or external files. This strategy
also allows developers to examine, interact, and produce new
constraints as they see fit.
Confidence on non-expert annotations can be increased

by levering instrumented probing (see §3, ingredient no.3),
injecting runtime monitoring, or building a community-
sourced repository of annotations à la TypeScript.

But dealing with raw constraints is intimidating and cum-
bersome. Alleviating this challenge requires offering first-
class support for constraints, including an extensible library
of descriptive types. For example, any may stand for .* ;
url for inputs to curl ; and longlist for outputs of ls -l .
Other support includes type introspection via shell utilities
such as typeOf , type definitions and abstractions, and tight
integration with dynamic monitoring infrastructure. Such
support simplifies development, improves precision and per-
formance, and results in more descriptive error messages.

hex='[0-9a-f]+'
grep -oE "$hex" |
sed 's/^/0x/'|
sort -g

Richer types: Simple regular types, as
introduced above, do not always preserve
information across stages. Consider the
pipeline on the right, which extracts hexa-
decimal numbers, then prefixes every
number with 0x, and finally sorts them. Simple types for
the first two stages are:

grep -oE "$hex" :: .* → [0-9a-f]+

sed 's/^/0x/' :: .* → 0x.*

These two types alone are unable to establish that the input
of sort -g falls under 0x[0-9a-f]+.* , because the type
of sed fails to propagate that each 0x prefix is followed by
a hexadecimal number.
Polymorphic types [21] come to the rescue, offering ex-

pressiveness that allows a single abstract type to be param-
eterized over one or more constituent types. For example,
if every input line of sed 's/^/0x/' satisfies, say, 𝛼 , then
every output line satisfies 0x𝛼 :

sed 's/^/0x/' :: ∀𝛼. 𝛼 → 0x𝛼

sort -g is similar, but imposes a constraint on 𝛼 :

sort -g :: ∀𝛼 ⊆ 0x[0-9a-f]+.* . 𝛼 → 𝛼

Correctness is confirmed by (1) instantiating sed ’s type
variable 𝛼 with its concrete input [0-9a-f]+ (from grep )
to obtain the concrete output type 0x[0-9a-f]+ , and (2)
confirming that this concrete output type is compatible with
sort -g , i.e., that 0x[0-9a-f]+ ⊆ 0x[0-9a-f]+.* .
Feedback loops and circular dataflow: As noted by Doug
McIlroy on a recent HotOS panel on the Shell [7], complex
patterns of interprocess communication in the shell are in-
creasingly prevalent [10, §4.2]. Typical workloads such as
crawlers and indexers already feature circular dataflow struc-
tures, but the rise of machine-learning workloads makes ex-
tensive use of feedback loops and backpropagation edges.
These structures complicate type constraint propagation,
requiring (challenging, in the worst case) fixpoint reasoning.

Establishing correctness in these settings requires reason-
ing about stream invariants, i.e., properties preserved by
the entire cycle. Worst-case invariant discovery for circu-
lar streams can be difficult, but real scripts require invari-
ants simple enough to be computed with an iterative “least
fixpoint” approach: start with an empty invariant set and
then gradually expand it until a property needs no further
expansion—often straightforward due to the semantics of
cat or tail -f typically at the beginning of such cycles.
Incorrectness criteria: Deleting the entire file system, in
the manyways triggered earlier, clearly constitutes buggy be-
havior. Other behaviors are not as clear, especially since the
shell lacks well-established definitions of program correct-
ness and is resilient to mistakes typically causing outright
failure in other environments—e.g., undefined variables or
unhandled exceptional behavior.
A comprehensive and practically useful set of criteria re-

quires surveying the literature and exploring bugs in the
wild. For example, beyond dangerous destructive file system
operations, the CoLiS project reveals idempotence as an im-
portant criterion for software installation scripts [15]. And
an exploration of shell-related StackOverflow questions iden-
tifies many reasons for considering scripts buggy, ranging
from command failures to messages on standard-error.

5 . . .AND BROADER HORIZONS
Building a robust infrastructure tackling these challenges for
real shell programs in turn opens up exciting opportunities
for future research across fields.
Correctness: Early detection of potential incorrectness is
not limited to the script itself but can be extended to incom-
patibilities with the execution environment. For example, a
script might be written on a developer environment running
Mac OS X but might end up deployed on cloud infrastruc-
ture running Linux. Given the capability to perform static



HOTOS 25, May 14–16, 2025, Banff, AB, Canada L.Lazarek, S.Jung, E.Lamprou, Z.Li, A.Narsipur, E.Zhao, M.Greenberg, K.Kallas, K.Mamouras, N.Vasilakis

reasoning, the analysis can trivially also identify andwarn de-
velopers before distribution about platform-dependent code,
and even automatically transform the program to equivalent
variations for different platforms.

Besides identifying potential errors, static analysis can be
leveraged to automatically insert fixes targeting correctness.
These might include synthesized dependency prologues that
ensure that a script’s dependencies are met—including ex-
pected file system state, available utilities, and shell environ-
ment. With integration into IDE tooling, developers could
also receive tailored suggestions that guarantee protection
against identified bugs. Correctness benefits extend to other
environments that operate as thin shell wrappers, such as
Dockerfiles, Vagrant shell provisioners, GitHub Actions, etc.
Security: Infrastructure for ahead-of-time semantics-driven
analysis can also offer significant security benefits [3, 22].
One possibility enabled by this infrastructure is checking
scripts against user-defined specifications capturing prop-
erties beyond crashes or catastrophic system effects, which
might even be context-dependent. Consider for example the
unfortunately-not-uncommon curl -to- sh software instal-
lation method, which instructs users to download and exe-
cute an installer script with a single line of code:

curl sw.com/up.sh | sh

A security-conscious user may wish to confirm or enforce
that up.sh does not read or modify key directories. With ac-
cess to a configurable ahead-of-time specification verify er
(and perhaps a library of commonly used definitions), they
would prefer executing the following instead:

curl sw.com/up.sh | verify --no-RW ~/mine | sh

As the use suggests, such a verification tool could verify as
much as possible statically, inform the user about possible
effects, and then leverage the guard and monitor generation
mentioned above to fill gaps or address reasoning challenges
in static verification, protecting from unintended effects.
Performance: Whole-program performance optimizations
for shell scripts show great promise in prior work. Such
optimizations include shell script or command elision [1],
parallelization [28, 34], fusion [12], and various forms of
distribution [19, 23, 27, 35]. With rich static information,
these optimizations can be improved by reducing the need
to discover and reason about optimizations dynamically. As
a concrete example, shell state and file system reasoning
can identify read-write dependencies between commands in
a script, which would allow speculative execution systems
like hS [18] to reorder commands without needing to guard
against misspeculation, and incremental execution systems
like Riker [2] to reduce the runtime tracing overhead.

Alternatively, ahead of time analysis can be used to bring
the benefits of shell optimization systems to users without

asking them to replace their shell or change how they run
scripts at all. A static optimization engine can serve as the
backbone for a suggestion-based optimization coach that—
similar to ShellCheck—can be integrated tightly with IDE
tooling or even be available via a webpage.
Comprehension: Rich static information about shell script
behavior opens up opportunities to help script developers, of-
ten experts in domains outside computer science, understand
the behavior of their own code.
An interactive program visualization system, identifying

possible behaviors and allowing users to explore the impact
of different environments or assumption violations, could
make all the difference for identifying or exploring desirable
and undesirable behavior beyond strict incorrectness [24, 30,
31]. Such human-centered visualizations may still retain the
shell’s complex actions and effects while being interpretable
even by developers with limited programming background.
. . . and beyond: The ongoing project to deliver correctness
guarantees for computing systems has mainly focused on
specific environments and languages. Yet, modern computing
infrastructure remains heterogeneous and legacy systems
are pervasive. The shell’s continued prevalence is explained
in great part by its role in bridging the gap between these
heterogeneous systems—fundamentally, its key domain.
While the shell is not sacred, and many use-cases might

benefit from replacing the shell with more tailored work-
flow languages, the fundamental challenges of bridging the
gap are not particular to the language. The benefits to be
found from seriously tackling correctness for the shell apply
to all systems that bridge this gap, including e.g., Docker,
Ansible, CI/CD, and beyond. Heterogenous system orches-
tration, composition, and installation does not need to be a
painful trouble spot that wastes developer time and causes
mysterious bugs.

The series of insights outlined here hints at the feasibility
of building tooling for the shell on par with that of other
production languages and serves as a call for action.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback. We
also thank Brown CS2952R (Fall’24) participants for input
on several iterations of this paper. This material is based
upon research supported by NSF awards CNS-2247687, CNS-
2312346, and CCF-2340479; NSF GRFP grant no. 2439559;
DARPA contract no. HR001124C0486; a Fall’24 Amazon Re-
search Award; a seed grant from Brown University’s Data
Science Institute; and a BrownCS Faculty Innovation Award.

REFERENCES
[1] Emery D Berger. 2003. Optimizing Shell Scripting Languages. Technical

Report UMCS TR-2003-009. University of Massachusetts Amherst.



From Ahead-of- to Just-in-Time and Back Again: Static Analysis for Unix Shell Programs HOTOS 25, May 14–16, 2025, Banff, AB, Canada

[2] Charlie Curtsinger and Daniel W Barowy. 2022. Riker: Always-Correct
and fast incremental builds from simple specifications. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22). USENIX Association,
Carlsbad, CA, 885–898. https://www.usenix.org/conference/atc22/
presentation/curtsinger

[3] Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng. 2020. Automat-
ically detecting risky scripts in infrastructure code. In Proceedings of
the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)
(SoCC ’20). Association for Computing Machinery, New York, NY, USA,
358–371. https://doi.org/10.1145/3419111.3421303

[4] Loris D’Antoni, Rishabh Singh, andMichael Vaughn. 2017. NoFAQ: syn-
thesizing command repairs from examples. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017). Association for Computing Machinery,
New York, NY, USA, 582–592. https://doi.org/10.1145/3106237.3106241

[5] Vidar Holen et al. 2012. ShellCheck: A shell script static analysis tool.
https://www.shellcheck.net/. Accessed: 2024-10-14.

[6] Michael Greenberg and Austin J. Blatt. 2019. Executable formal seman-
tics for the POSIX shell. Proc. ACM Program. Lang. 4, POPL, Article 43
(2019), 30 pages. https://doi.org/10.1145/3371111

[7] Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis. 2021.
The Future of the Shell: Unix and Beyond. In Proceedings of the Work-
shop on Hot Topics in Operating Systems (HotOS ’21). Association
for Computing Machinery, New York, NY, USA, 240–241. https:
//doi.org/10.1145/3458336.3465296

[8] Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis. 2021.
HotOS 2021: Unix Shell Programming: The Next 50 Years (Fun Applica-
tions). ACM SIGOPS Youtube. https://www.youtube.com/watch?v=
dMrfLCjtHM4#t=300s

[9] Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis. 2021.
Presentation: Unix Shell Programming: The Next 50 Years. In Proceed-
ings of the Workshop on Hot Topics in Operating Systems (Ann Arbor,
Michigan) (HotOS ’21). Association for Computing Machinery, New
York, NY, USA, 104–111. https://doi.org/10.1145/3458336.3465294

[10] Michael Greenberg, Konstantinos Kallas, Nikos Vasilakis, and Stephen
Kell. 2021. Report on the "The Future of the Shell" Panel at HotOS
2021. arXiv:2109.11016 [cs.OS]

[11] Ben Greenman and Matthias Felleisen. 2018. A Spectrum of Type
Soundness and Performance. Proc. ACM Program. Lang. 2, ICFP, Article
71 (2018), 32 pages. https://doi.org/10.1145/3235045

[12] Anna Herlihy, Periklis Chrysogelos, and Anastasia Ailamaki. 2022.
Boosting efficiency of external pipelines by blurring application bound-
aries. In 12th Annual Conference on Innovative Data Systems Research
(CIDR’22). Chaminade, CA, USA. https://infoscience.epfl.ch/entities/
publication/79f2a485-ecb5-4272-a107-bf0951d5f6aak

[13] IEEE and The Open Group. 2018. The Open Group Base Specifi-
cations Issue 7, 2018 edition. Volume XBD: Base Definitions. https:
//pubs.opengroup.org/onlinepubs/9699919799.2018edition/

[14] Github Inc. 2024. The top programming languages. https:
//github.blog/news-insights/octoverse/octoverse-2024/#the-most-
popular-programming-languages.

[15] Nicolas Jeannerod. 2021. Verification of Shell Scripts Performing File
Hierarchy Transformations. Ph. D. Dissertation. University of Paris.

[16] Idan Kamara. 2016. explainshell: match command-line arguments to
their help text. https://explainshell.com/ Accessed: 2024-10-20.

[17] Shriram Krishnamurthi. 2003. Programming Languages: Application
and Interpretation (3 ed.). https://www.plai.org/

[18] Georgios Liargkovas, Konstantinos Kallas, Michael Greenberg, and
Nikos Vasilakis. 2023. Executing Shell Scripts in the Wrong Order,
Correctly. In Proceedings of the 19th Workshop on Hot Topics in Operat-
ing Systems (HOTOS ’23). Association for Computing Machinery, New
York, NY, USA, 103–109. https://doi.org/10.1145/3593856.3595891

[19] Aurèle Mahéo, Pierre Sutra, and Tristan Tarrant. 2021. The serverless
shell. In Proceedings of the 22nd International Middleware Conference: In-
dustrial Track (Middleware ’21). Association for Computing Machinery,
New York, NY, USA, 9–15. https://doi.org/10.1145/3491084.3491426

[20] Karl Mazurak and Steve Zdancewic. 2007. ABASH: finding bugs
in bash scripts. In Proceedings of the 2007 Workshop on Program-
ming Languages and Analysis for Security (PLAS ’07). Association
for Computing Machinery, New York, NY, USA, 105–114. https:
//doi.org/10.1145/1255329.1255347

[21] Robin Milner. 1978. A Theory of Type Polymorphism in Programming.
J. Comput. System Sci. 17, 3 (1978), 348–375.

[22] Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong.
2014. SHILL: a secure shell scripting language. In Proceedings
of the 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI’14). USENIX Association, Broomfield, CO,
USA, 183–199. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/moore

[23] Tammam Mustafa, Konstantinos Kallas, Pratyush Das, and Nikos
Vasilakis. 2023. DiSh: Dynamic Shell-Script Distribution. In 20th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 23). USENIX Association, Boston, MA, USA, 341–356.
https://www.usenix.org/conference/nsdi23/presentation/mustafa

[24] Brad A. Myers. 1990. Taxonomies of visual programming and program
visualization. Journal of Visual Languages & Computing 1, 1 (1990),
97–123. https://doi.org/10.1016/S1045-926X(05)80036-9

[25] Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual type
theory. Proc. ACM Program. Lang. 3, POPL, Article 15 (2019), 31 pages.
https://doi.org/10.1145/3290328

[26] Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.).
The MIT Press.

[27] Deepti Raghavan, Sadjad Fouladi, Philip Levis, and Matei Zaharia.
2020. POSH: A Data-Aware Shell. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 617–631. https:
//www.usenix.org/conference/atc20/presentation/raghavan

[28] Jiasi Shen, Martin Rinard, and Nikos Vasilakis. 2022. Automatic Syn-
thesis of Parallel Unix Commands and Pipelines with KumQuat. In
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’22). Association for Comput-
ing Machinery, New York, NY, USA, 431–432. https://doi.org/10.1145/
3503221.3508400

[29] Michael Sippel and Horst Schirmeier. 2023. Process Composition
with Typed Unix Pipes. In Proceedings of the 12th Workshop on Pro-
gramming Languages and Operating Systems (PLOS ’23). Associa-
tion for Computing Machinery, New York, NY, USA, 34–40. https:
//doi.org/10.1145/3623759.3624546

[30] Juha Sorva. 2013. Notional machines and introductory programming
education. ACM Trans. Comput. Educ. 13, 2, Article 8 (2013), 31 pages.
https://doi.org/10.1145/2483710.2483713

[31] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of
Generic ProgramVisualization Systems for Introductory Programming
Education. ACM Trans. Comput. Educ. 13, 4, Article 15 (2013), 64 pages.
https://doi.org/10.1145/2490822

[32] Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The design and
implementation of typed scheme. In Proceedings of the 35th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL ’08). Association for Computing Machinery, New York,
NY, USA, 395–406. https://doi.org/10.1145/1328438.1328486

[33] Github user keyvin. 2015. Moved ~/.local/share/steam. Ran steam. It
deleted everything on system owned by user. #3671. https://github.
com/ValveSoftware/steam-for-linux/issues/3671. Accessed: 2025-01-
01.

https://www.usenix.org/conference/atc22/presentation/curtsinger
https://www.usenix.org/conference/atc22/presentation/curtsinger
https://doi.org/10.1145/3419111.3421303
https://doi.org/10.1145/3106237.3106241
https://www.shellcheck.net/
https://doi.org/10.1145/3371111
https://doi.org/10.1145/3458336.3465296
https://doi.org/10.1145/3458336.3465296
https://www.youtube.com/watch?v=dMrfLCjtHM4#t=300s
https://www.youtube.com/watch?v=dMrfLCjtHM4#t=300s
https://doi.org/10.1145/3458336.3465294
https://arxiv.org/abs/2109.11016
https://doi.org/10.1145/3235045
https://infoscience.epfl.ch/entities/publication/79f2a485-ecb5-4272-a107-bf0951d5f6aak
https://infoscience.epfl.ch/entities/publication/79f2a485-ecb5-4272-a107-bf0951d5f6aak
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://github.blog/news-insights/octoverse/octoverse-2024/#the-most-popular-programming-languages
https://github.blog/news-insights/octoverse/octoverse-2024/#the-most-popular-programming-languages
https://github.blog/news-insights/octoverse/octoverse-2024/#the-most-popular-programming-languages
https://explainshell.com/
https://www.plai.org/
https://doi.org/10.1145/3593856.3595891
https://doi.org/10.1145/3491084.3491426
https://doi.org/10.1145/1255329.1255347
https://doi.org/10.1145/1255329.1255347
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/moore
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/moore
https://www.usenix.org/conference/nsdi23/presentation/mustafa
https://doi.org/10.1016/S1045-926X(05)80036-9
https://doi.org/10.1145/3290328
https://www.usenix.org/conference/atc20/presentation/raghavan
https://www.usenix.org/conference/atc20/presentation/raghavan
https://doi.org/10.1145/3503221.3508400
https://doi.org/10.1145/3503221.3508400
https://doi.org/10.1145/3623759.3624546
https://doi.org/10.1145/3623759.3624546
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2490822
https://doi.org/10.1145/1328438.1328486
https://github.com/ValveSoftware/steam-for-linux/issues/3671
https://github.com/ValveSoftware/steam-for-linux/issues/3671


HOTOS 25, May 14–16, 2025, Banff, AB, Canada L.Lazarek, S.Jung, E.Lamprou, Z.Li, A.Narsipur, E.Zhao, M.Greenberg, K.Kallas, K.Mamouras, N.Vasilakis

[34] Nikos Vasilakis, Konstantinos Kallas, KonstantinosMamouras, Achilles
Benetopoulos, and Lazar Cvetković. 2021. PaSh: Light-Touch Data-
Parallel Shell Processing. In Proceedings of the Sixteenth European
Conference on Computer Systems (EuroSys ’21). Association for Com-
puting Machinery, New York, NY, USA, 49–66. https://doi.org/10.
1145/3447786.3456228

[35] Keith Winstein and Hari Balakrishnan. 2012. Mosh: an interactive
remote shell for mobile clients. In Proceedings of the 2012 USENIX Con-
ference onAnnual Technical Conference (USENIXATC’12). USENIXAsso-
ciation, USA, 15. https://www.usenix.org/conference/atc12/technical-
sessions/presentation/winstein

https://doi.org/10.1145/3447786.3456228
https://doi.org/10.1145/3447786.3456228
https://www.usenix.org/conference/atc12/technical-sessions/presentation/winstein
https://www.usenix.org/conference/atc12/technical-sessions/presentation/winstein

	Abstract
	1 Introduction
	2 Rendering Systems Unusable
	3 Semantics-driven analysis
	4 Additional Complexity…
	5 …and Broader horizons
	Acknowledgments
	References

