International Journal of Information Security
https://doi.org/10.1007/s10207-022-00633-3

REGULAR CONTRIBUTION l‘)

Check for
updates

PatrloT: practical and agile threat research for loT

1

Emre Siiren'® - Fredrik Heiding' - Johannes Olegard’ - Robert Lagerstrom’

© The Author(s) 2022

Abstract

The Internet of things (IoT) products, which have been widely adopted, still pose challenges in the modern cybersecurity
landscape. Many IoT devices are resource-constrained and almost constantly online. Furthermore, the security features
of these devices are less often of concern, and fewer methods, standards, and guidelines are available for testing them.
Although a few approaches are available to assess the security posture of IoT products, the ones in use are mostly based on
traditional non-IoT-focused techniques and generally lack the attackers’ perspective. This study provides a four-stage IoT
vulnerability research methodology built on top of four key elements: logical attack surface decomposition, compilation of
top 100 weaknesses, lightweight risk scoring, and step-by-step penetration testing guidelines. Our proposed methodology
is evaluated with multiple IoT products. The results indicate that PatrloT allows cyber security practitioners without much
experience to advance vulnerability research activities quickly and reduces the risk of critical IoT penetration testing steps
being overlooked.

Keywords IoT attack surfaces - Weaknesses - Risk scoring - Penetration testing guidelines - MITRE CWE - OWASP IoT

Top 10

1 Introduction

The IoT ecosystem provides a platform for connecting every-
day objects over a network (e.g., Internet). Over the last few
years, loT-enabled solutions have become significantly pop-
ular with both consumers and industries, and the number
of connected things has already exceeded the world popula-
tion. IoT devices are leveraged to build solutions for personal
assistants, home automation, building management, health-
care monitoring, and energy metering.

The IoT environment includes hardware manufacturing,
software development [firmware, web, mobile, network ser-
vice, cloud application programming interfaces (API)], radio

<1 Emre Siiren
emsuren @kth.se

Fredrik Heiding
theiding @kth.se

Johannes Olegard
jolegard@kth.se

Robert Lagerstrom
robertl @kth.se

School of Electrical Engineering and Computer Science,
KTH Royal Institute of Technology, Stockholm, Sweden

Published online: 18 November 2022

connectivity, Internet service providers, and IoT platform
integrators. Clearly, all these components need to be secure.

If IoT challenges are not met, exploitation of vulnerabili-
ties can impact both the security of systems and consumers’
privacy. Furthermore, smart devices are inevitable candidates
for large-scale compromise, especially for botnet operators.
The legendary example is the Mirai botnet [1], which com-
promised millions of physical devices that were turned into
a botnet controlled by criminal groups. It was utilized to
attack organizations across many nations, resulting in one of
the highest recorded DDoS volumes of all time. It is worth
recalling that while the same weakness being exploited in
IoT systems can lead to massive results, the impact may not
be the same when it happens in Information Technology (IT)
systems. As in the example above, it is not common to create
a botnet after exploiting a default password vulnerability in
an IT system.

The proliferation and the increasing demand for smart
devices make it necessary to prioritize their security. Such
concerns have raised the need for IoT-specific capabilities.

We consider part of the solution to this challenging prob-
lem to be vulnerability research, as it is vital to discover
vulnerabilities before threat actors. For example, had the
company behind these compromised IoT products planned

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-022-00633-3&domain=pdf
http://orcid.org/0000-0003-2356-8590

E.Slren et al.

a vulnerability research activity, it would have been possi-
ble to identify and patch weaknesses in time before attackers
exploited them. More precisely, we believe that there should
be practical IoT-specific penetration testing (pentest) capa-
bilities in addition to traditional testing skills.

The development of security testing capabilities rests on
three pillars: people, processes, and technology. In the first
step, we used existing tools for IoT pentesting and addressed
the problem from the process and people perspective. Our
decision was based on the fact that the available tools are
sufficient to get started and that the process and people per-
spectives were lacking. Process. Upon executing several
pentest projects and examining many IoT pentest reports,
we identified four significant shortcomings in IoT vulnera-
bility research. (1) Vulnerability research is usually based
(only) on web and network pentesting, which offers a lim-
ited attack surface for IoT." (2) The lack of security test
standardization leads to subjective assessments (tested weak-
nesses differ between very similar IoT devices). (3) Threat
modeling is either too complex or is omitted entirely (diffi-
culties in calculating risk scores). (4) Existing [oT pentesting
guidelines are very limited or difficult to follow [2]. People.
Offensive security research laboratories continuously pentest
devices and report the results. This means that large-scale
studies offer great potential from which to gain substantial
knowledge. On the other hand, both academic and industry
laboratories usually have a high personnel turnover, mean-
ing researchers are constantly arriving and leaving for various
reasons (e.g., graduation or better offers). This period some-
times falls below six months and the projects started are left
unfinished. Another researcher should be able to take the
unfinished work and only complete the remaining part. In
addition, since we usually work with novice researchers, the
shortage of IoT security expertise fans the flame.? That is
why it makes sense to take some precautions to obtain the
maximum benefit from these studies at a given period.

Therefore, we seek an answer to the question: What should
a methodology contain to provide the maximum benefit from
vulnerability research studies of various IoT devices per-
formed by dynamic and fairly novice security teams?

This study addresses the four shortcomings regarding
the process perspective of IoT vulnerability research by
introducing the following four key elements: The logical
decomposition of attack surfaces, 100 currently prevalent
weaknesses found in IoT environments, a lightweight risk
scoring approach, and step-by-step IoT pentesting guide-
lines. Then, we incorporate these four key elements into our
IoT vulnerability research methodology that contains four
stages of activities: planning, threat modeling, exploitation,
and reporting, as shown in Table 1.

! https://bit.ly/3Eu6GkU.
2 https://bit.ly/3CSwaVM.

@ Springer

To evaluate the proposed methodology, we selected seven
real-world IoT products, each representing a common IoT
product category. The empirical results show that PatrloT
allows researchers to conduct vulnerability research activi-
ties quickly, and it indicates a decreased risk of overlooking
critical steps.

The contribution of the research is that:

(a) information inquiry templates make the IoT information
gathering phase easier,

(b) decomposing IoT infrastructure into seven logical com-
ponents is an efficient way for IoT attack surfaces
mapping,

(c) compilation of weaknesses compatible with “Open Web
Application Security Project (OWASP) IoT Top 1073
and “MITRE Common Weakness Enumeration (CWE),”4
which are the state-of-the-art approaches, facilitates
threat modeling (to the best of our knowledge, such a
comprehensive list for IoT has not been made public
before),

(d) lightweight risk scoring approach effectively reduces the
overhead of IoT threat modeling,

(e) step-by-step pentesting guidelines fortify the discovery
of critical IoT vulnerabilities,

(f) detailed report templates for IoT pentest and vulnerabil-
ity disclosure assist in developing high-quality content,

(g) all artifacts of PatrloT [3] are kept in a public repository
and open for collaboration.

The remainder of this paper is organized as follows. Sec-
tion2 describes the approach we follow to address the four
shortcomings. A comprehensive explanation of the method-
ology, including the incorporation of these four key elements
into the stages, is provided in Sect. 3. Section4 evaluates the
methodology, and presents the results. Section 5 discusses the
trade-offs and challenges of using the proposed methodology,
along with opportunities for future work. Section6 intro-
duces the literature and compares similar studies. Finally,
the paper is concluded in Sect. 7 with the main takeaway.

2 Design of methodology

Although we prefer the term “vulnerability research,”
we use “pentesting” interchangeably when it is proper
due to its widespread use. Similarly, this paper uses the
term “researcher” to abbreviate “vulnerability researcher,”
meaning “penetration tester.” Penetration testing is the sim-
ulation of an attack on a system, network, piece of equipment,

3 https://owasp.org/www-project-internet-of-things/.

4 https:/cwe.mitre.org.

https://bit.ly/3Eu6GkU
https://bit.ly/3CSwaVM
https://owasp.org/www-project-internet-of-things/
https://cwe.mitre.org

PatrloT: practical and agile...

Table 1 Four-stage IoT vulnerability research methodology

Planning Threat modeling

Exploitation Reporting

Scoping Attack surface decomposition [b]

Information gathering [a] Vulnerability analysis [c]

Enumeration Risk scoring [d]

Known vulnerabilities [e] Template [f]
Vulnerability disclosure

CVE

Exploit development

Post-exploitation

or other facilities to prove how vulnerable that system or tar-
get would be to a real attack. Information technology (IT)
pentesting is a well-studied topic, covering one or two attack
surfaces, mostly testing networks and web applications. This
study also uses the “traditional pentesting” term when refer-
ring to the well-known “IT pentesting” [4,5] or “network,
OS, and web app pentesting.” Unlike IT systems, the IoT
also includes additional attack surfaces (hardware, firmware,
and radio) that need to be explored. That is why we use the
“loT pentesting” term to refer to PatrloT, which involves the
exploitation of all components of an IoT product. We con-
sider “weakness” as a generic concept and “vulnerability”
as an instance of a weakness in a product. In other words,
when a weakness is discovered in a product, we call it a
vulnerability.

We use the word “product” to refer to the entire IoT
infrastructure (e.g., Smart Home IoT product), whereas the
term “device” refers to the individual IoT devices that
together form the “product.” We have gained IoT vulner-
ability research experience mostly by pentesting consumer
ToT devices widely used globally, IoT devices from local
manufacturers, or IoT devices used for public services. For
example; smart things (e.g., TVs, watches, speakers, IP cam-
eras), home security sensors (e.g., fire, water, presence),
smart home appliances (e.g., doors, refrigerators, vacuum
cleaners), smart transportation equipment (e.g., Bluetooth-
activated rental e-scooters, ticket readers, drones), and pay-
ment systems. Many of these devices have already become
an indispensable part of our lives. Our research laboratory
has published several IoT pentest reports [6] in recent years.

Over time, we have refined our approach and presented
our streamlined IoT vulnerability research methodology in
this paper, following the design science research process [7].

2.1 Problem

The problem we faced was to determine the way in which
to conduct IoT vulnerability research such that the benefit
would be maximized. The review of many studies pub-
lished as IoT pentest reports revealed the four shortcomings
described in Sect. 1. Briefly, limited scope in terms of the [oT
attack surfaces, the lack of standards in relation to the IoT
weaknesses that need to be tested, complex or no threat mod-
eling and no risk score calculation, and insufficient technical

documentation on carrying out attacks for IoT vulnerability
discovery and exploitation. We also need to emphasize two
challenges related to the people’s perspective: high personnel
turnover and a shortage of security expertise.

2.2 Objective

Systematic. It is critical to perform activities systematically
and according to a basic standard in a laboratory environment
where vulnerability research is conducted on a regular basis.
Faster adoption (efficiency). Working systematically accel-
erates the adaptation of new researchers to the research
method and team.

Higher quality (effectiveness). Doing tasks according to
a certain minimum standard maintains the quality of the
research output above a certain level.

To achieve our overall objective, we address the four short-
comings observed by targeting broader IoT attack surfaces,
introducing common IoT weaknesses compilation, favoring
lightweight risk scoring, and providing step-by-step IoT test-
ing guidelines.

2.3 Design and development

The approach we introduced to address the four shortcomings
is described below. We then build our systematic four-stage
IoT vulnerability research methodology on top of these four
key elements.

2.3.1 Element 1: Attack surface decomposition

We observed that IoT products are being tested for limited
attack surfaces (network and web app pentesting).

The main reasons for this are that more publications are
available on IT pentesting topics. Researchers are experi-
enced in IT pentesting, and they are performing vulnerability
research in the IoT with the knowledge of IT pentesting.
However, research in different domains requires a different
specialized skill set. According to our experience, I'T pentest-
ing is not sufficient to properly assess the security posture of
an [oT product because such devices contain unconventional
attack surfaces. Hardware, firmware, and radio communica-
tion are essential for IoT devices, which is why vulnerability
research should also comprise weaknesses on these surfaces.

@ Springer

E.Slren et al.

The IoT infrastructure is built on top of various compo-
nents. We choose to decompose it from the attacker’s point of
view. The proper approach is logical decomposition based on
technology. That is why we used the terminology in the offen-
sive security domain instead of the layer-based approach (i.e.,
perception, transport, and business layers) used in the IoT
architecture reference models. Thus, we logically decompose
the ToT infrastructure into seven attack surfaces: hardware,
firmware, radio protocol, network service, web application,
cloud API, and mobile app, as in Table 2.

2.3.2 Element 2: Compilation of top weaknesses

As the “OWASP IoT Top 10” project is considered to be the
most comprehensive and well-known study, we chose it as
our primary source, which is a type of guideline contain-
ing ten security risks. Although this checklist could assist
with [oT vulnerability research, what is actually required are
the weaknesses and associated attacks. Therefore, we first
aimed to fortify the process by compiling a list of common
weaknesses. We accomplished this by leveraging the “CWE”
project to map each security risk to its corresponding weak-
nesses. The key point here is that OWASP IoT Top 10 and
CWE are not compatible. Additionally, a specific security
risk can arise as a result of various weaknesses. For example,
the OWASP IoT Top 10 checklist contains ten items, whereas
the CWE database contains close to a hundred records for
the hardware attack surface alone.’

Moreover, there could be weaknesses in this database that
are not related to any item on the checklist.

The challenge here is to determine which weaknesses cor-
respond to each particular risk. Our mapping technique is
based on the wealth of knowledge we have gathered as a
result of the pentest projects we have conducted thus far.
Finally, the OWASP IoT Top 10 checklist was transformed
into 100 security weaknesses with CWE-IDs. Additionally,
the weaknesses compilation is enriched with clear descrip-
tions, risk impacts, default severity values, and more [3]. The
objective here is to determine the concise yet major security
tests that need to be performed first to enable researchers to
progress quickly without missing the key parts. The compi-
lation of weaknesses is listed in “Appendix A.”

2.3.3 Element 3: Lightweight risk scoring

We shortlisted potential weaknesses in the previous step;
now, we prioritize them based on the risk score. Quantita-
tively ranking potential weaknesses or vulnerabilities is the
key in decision making, especially in the third stage, exploit-
ing vulnerabilities, which is a relatively more resource-
consuming part.

> https://cwe.mitre.org/data/definitions/1194.html.

@ Springer

Table2 IoT infrastructure

Attack surface Functionality

Hardware Smart devices
Firmware OS + utilities + configs
Radio Local network

Network Network services

Web Management app

Cloud Communication API
Mobile Controlling app

The Common Vulnerability Scoring System (CVSS) with
8 base parameters is the de facto risk scoring standard [8].
In addition, OWASP also provides a risk rating methodol-
ogy with 16 parameters [9]. It is a known fact that it is
challenging to determine the values of parameters [10]. Addi-
tionally, devoting much effort to these calculations may not
yield much information or may not pay off. That is why we
ended up customizing a commonly known method, DREAD,
containing five parameters and introduced an alternative
lightweight routine with three parameters.

Here, the goal is to give researchers the ability to choose
parameters by reasoning rather than by randomly choosing
values. We believe that using a simpler method properly for
risk calculation would be more useful than using mature tech-
niques incorrectly.

2.3.4 Element 4: Step-by-step pentesting guidelines

It is possible to find guidelines on network, web, cloud, and
mobile pentesting, butitis noteasy to find the equivalent work
for IoT-specific attack surfaces. Therefore, we prepared step-
by-step guidelines for hardware, firmware, and radio attack
surfaces. The objective here is to simplify the exploitation
stage and encourage novice researchers to work from the
attacker’s perspective.

3 Application of the methodology

This section explains the use of our four-stage IoT vulner-
ability research methodology, as illustrated in Fig. 1, which
is built on top of the four key elements. It also describes the
seven attack surfaces of the IoT infrastructure, various ways
of identifying and exploiting vulnerabilities, and execution
of the overall pentest.

3.1 Stage 1: Planning

The goal in the first stage is to examine the entire infras-
tructure to obtain an overall idea of the functionality of the

https://cwe.mitre.org/data/definitions/1194.html

PatrloT: practical and agile...

Hardware Firmware Network Web Cloud Mobile Radio
Scoping Black/Gray/White box & Lab settings & Rules of engagement & NDA
Ed OSINT
‘2 | Information
£ | gathering Specifications Specifications
.n_“; Visual inspection Frequency identification
E ti Disassembling device Obtaining firmware Host discovery ‘Web page crawling API discovery App GUI analysis Disassembling device
numeration Identification of modules Static code analysis Port & version scan Hidden page discovery Live traffic capturing Live traffic capturing
Eﬂ Attack sul'.fa.ce Use cases development, Attack surface mapping, Threat classification
.= | decomposition
O]
'g Identify potential threats Reverse engineering Vulnerability scanning Vulnerability scanning Reverse engineering Fuzzing
£ | Vulnerability Vulnerability discovery Dynamic code analysis Fuzzing Vulnerability discovery Dynamic code analysis Vulnerability discovery
- .
® | analysis
e Reuse findings from one surface on another attack surface & Identify the relationships between vulnerabilities & Find ways to chain vulnerabilities & Develop attack paths
ﬁ Risk scoring (Impact + Coverage + Simplicity*3) / 5
§ vKl?l(l)l‘:ll‘:lbilities Public exploit databases (exploit-db)
Z Exploit
= Xp-ot Manual exploit development
% development
=
};‘(J;]toi tation Running post exploitation scripts
» Report template Screenshot & PoC script & Video recordings
]
Bl
% | Vulnerability
. Bug bounty programs
2. | disclosure g y progi
&
CVE CVE Authorities (e.g., MITRE)

Fig.1 Steps of IoT vulnerability research methodology

IoT product. Later on, this stage will allow us to estimate
the types of potential weaknesses that could be present in
specific attack surfaces.

3.1.1 Scoping

Before starting the vulnerability research, boundaries must
be drawn, which we refer to here as scoping. The attack sur-
faces that will be included in the pentest study are specified,
namely hardware, firmware, radio, etc. The type of test is
defined as a black-box, white-box, or gray-box. The test type
directly affects the type of weaknesses that can be discovered,
thus it is important to make a well-planned decision. As an
example, web application testing is mostly performed using
ablack-box approach. This type of test for web attack surface
has specific limitations due to its nature [11]. The most well-
known example is the authentication bypass (e.g., password
forgot), which cannot be fully tested. The forgot password
function usually sends a password reset URL address, con-
taining a random value via email. The attacker aims to reset
the password of a targeted user (e.g., administrator), but one
has to guess the random value in the URL address. If we
knew how this random value was generated, we might pre-
dictit. This does not mean that the white-box approach should
always be applied. For example, the device may be damaged
in hardware tests while trying to obtain firmware. Briefly,
although we favor a white-box approach, the selection usu-
ally depends on the context, and we explain how we chose
which approach in what context in Sect. 3.2.2. The physi-
cal location of the pentest is also stated in this phase, that is,

whether the test will be performed in a customer environment
or a controlled research laboratory. If we do not purchase IoT
products but obtain them from an organization as part of a
service, we sign a contract containing initial rules of engage-
ment and a non-disclosure agreement (NDA) to declare the
protection of confidential information concerning the parties.

3.1.2 Information gathering

This step is sometimes called open-source intelligence
(OSINT), where we usually do not communicate directly
with the devices. A comprehensive review of the documen-
tation of the devices is performed, where all assets with
functionalities are identified with relevant information. As
an example, we identify the type of hardware board (e.g.,
Arduino, Raspberry Pi, or custom), available ports, slots,
and buttons; the firmware version (e.g., proprietary or open-
source software); and the operating radio frequency of the
device.

3.1.3 Enumeration

In this step, active and passive scanning techniques are
applied to each attack surface. Every device belonging to
the product is physically examined and interacted with. The
main purpose of this step is to collect data that cannot be
obtained at the end of a superficial examination. As an exam-
ple, we disassemble the hardware and identify non-default
modules on the board. We obtain the firmware image to
externally examine especially the customized features. We

@ Springer

E.Slren et al.

000 —— ~

www

%0$$®
LI,
OB~ BLE .
T - Radio
e

Hardware & Firmware Mobile

Fig.2 Architecture mapping

[Administrator]

[webur !

[Recording service }—{ Collector service }\ [Cloud service }

I | I

(os) [es) {_am)

I 1 —

[Firmeare J [Firmeare J Data flow ~——

Boundaries '--------
Components —

[User]

[Hardware J
Gateway

[Hardware]
Sensor

Fig.3 Component decomposition

investigate whether similar equipment operate in the same
frequency range as these devices or whether devices also
have an undocumented channel for communication. In light
of these inquiries, all hardware and software components
and communication protocols are identified. We document
the functions of each component item by item, how the func-
tionalities are triggered and ended, and the effects of each
action. We share the details of information gathering and
enumeration steps of each attack surface and information
inquiry templates in our public repository [3].

3.2 Stage 2: Threat modeling

The objective of the second stage, threat modeling [12,13],
is to predict the relevant potential threats for each attack sur-
face, estimate the possible impacts of successful exploitation,
and prioritize them by calculating risk scores. Our approach

@ Springer

requires no specific tools, and the researchers on each project
choose the ones they find the most appropriate®’+® providing
flexibility.

3.2.1 Attack surface decomposition

We start modeling by identifying the architecture of the IoT
product. A general architecture mapping provides a simple
overview of the system in its entirety, a high-level interaction
of all hardware and software components, and communi-
cation protocols, as shown in Fig. 2. Then we break the
architecture model down into seven logical components.
Component decomposition involves modeling the data flow
(communication protocols) between the IoT components, as
shown in Fig. 3, and provides a clear view of the poten-
tial IoT attack surfaces. The main point to focus on here
is which boundaries are crossed when communicating with
which component, as it will help us identify the exact entry
points.

Secondly, we use the information from the previous stage
to derive use cases from the original purpose of a particular
function. The number of use case descriptions changes based
on the penetration test scope, the number of different devices,
and the user profiles. For repeatable testing, it is essential to
detail the use case steps required up to the start of the test.
The following is an example of use case description steps.
We also develop use case diagrams for complex use cases,
as illustrated in Fig. 4.

— Place a device <X> and power it up

— Place a hub for device <X> and power it up

— Register an account in the mobile app

— Scan the environment via the app to identify the device
<X>

— Add the identified device <X> via the mobile app

— Scan the environment via the app to identify the hub for
the device X

— Add the identified hub via the mobile app

— Pair the device with the hub via the mobile app

— The system is now installed and the user has owner priv-
ileges

Thirdly, threats related to each function are estimated.
To use resources effectively, we must be able to estimate
the weaknesses that are most likely to be observed on the
basis of attack surfaces. This procedure is relatively diffi-
cult to perform and requires prior knowledge. The presented
methodology provides a compilation of the most common
IoT weaknesses per attack surface.

6 www.microsoft.com/en-us/securityengineering/sdl/threatmodeling.

7 https://owasp.org/www-project-threat-dragon/.

8 https://foreseeti.com/securicad-professional/.

www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://owasp.org/www-project-threat-dragon/
https://foreseeti.com/securicad-professional/

PatrloT: practical and agile...

Table 3 Risk assessment

Rating High (3)

Medium (2)

Low (1)

Damage Code execution

ReproducibilityBypass prevention—Stable
Exploitability Exploit publicly available—Little skill
Affected Users All users or critical processes are significantly

affected

Discoverability Automated tools—Black-box

Authentication bypass, Weak
authentication/authorization, Tampering,
and Privilege escalation

Bypass prevention only when certain
conditions exist

Manual intervention—Gray-box

Sensitive data disclosure and
Denial of service

Difficult to bypass
prevention—Unstable

Need to modify exploit code—Moderate skill Need to write exploit from

scratch—High skill

Some users are affected or critical processes Little or no impact on users, nor
are interrupted

critical processes

Significant manual
review— White-box

)) oo WEFILZLTE o /7 T
Xction log <Switch on/ 0ff>> 1;'[0
? Action <Switch on/off> = o
£ i
. s
M g
: g iR
o 5.2
LI
-y e . i
- { } —e Action <Switch on/off>
-— e ad
o L T TE———— o
Il 11 T BLE

Fig.4 Use case diagram

We share the details of how to step-by-step estimate the
potential threats to an IoT product in our public repository
[3].

Finally, we categorize threats at this stage to estimate
impact values since we need these values while calculating
risk scores. We classify threats similar to STRIDE which is
one of the most widely known threat classification methods.

There are six categories in STRIDE; (S)poofing,
(T)ampering, (R)epudiation, (I)nformation disclosure,
(D)enial of service, and (E)levation of privilege. We add one
more category, which is code execution. According to the
experiences we have obtained from our IoT pentests so far,
each category has a specific impact. The potential impact
of the spoofing category is authentication bypass, for tam-
pering; it is integrity violation; for repudiation, it is weak
authentication / authorization; for information disclosure, it
is confidentiality violation; for denial of service, it is avail-
ability violation, for the elevation of a privilege (privilege
escalation) it is unauthorized access, and for the code exe-

cution it is the combination of integrity and confidentiality
violations.

It is worth remembering that although we assign default
values for impacts to make the threat modeling easier, we
determine the real impact value after performing the exploita-
tion stage. At the end of this step, we deduce specific attack
surfaces, functions (entry points), associated threats, and
their categories and impacts.

As pentesting [oT products involves multiple attack sur-
faces, information about the examined devices is gradually
revealed over time. Therefore, we first create a threat model
based on the information we have initially collected. We
update the threat model based on findings discovered in the
exploitation stage. That is why we utilize an iterative threat
modeling approach.

3.2.2 Vulnerability analysis

All the information gathered from the attack surface mapping
is interpreted in terms of potential vulnerabilities. Firstly, we
try to detect vulnerabilities automatically using tools called
vulnerability scanners specific to each attack surface (e.g.,
firmware security scanner). Such tools can identify known
vulnerabilities and also point out new ones. On the other
hand, in addition to a high rate of false-positive findings,
using these tools without fine-tuning can miss vulnerabili-
ties; even vulnerabilities found in public databases cannot be
detected. We configure tools according to our needs, which
are the estimated threats in the previous step.

Secondly, we conduct a search in public databases® for
previously published vulnerabilities specific to individual
functionalities identified. According to our experience, it is
possible to find a working exploit code for a known vulnera-
bility missed by automated tools. Thatis why a manual exam-
ination is vitally important. Beyond that, exploring known
vulnerabilities online also inspires vulnerability researchers.

9 https://cve.mitre.org/cve.

@ Springer

https://cve.mitre.org/cve

E.Slren et al.

The assumption is that a specific product is developed by a
specific group of people who tend to cause similar flaws. It is
also known that many vulnerabilities are discovered in spe-
cific features of a technology one after another. Even security
patches have led to new vulnerabilities. Therefore, examin-
ing previously vulnerable components helps gain insight into
the target and understand common flaws, eventually itis used
to discover new vulnerabilities.

Finally, we put the findings together. We focus on identi-
fying the relationships between vulnerabilities to chain them.
We also deal with reusing findings from one surface on
another attack surface. We finalize this step by develop-
ing attack paths according to the prerequisite relationship
of vulnerabilities with each other. For example, identifying
the user name by sniffing the network, brute-forcing pass-
words for authentication bypass, command injection for code
execution, enumerating the OS for privilege escalation, and
exfiltrating sensitive data, respectively. Therefore, our threat
modeling approach relies on entry points, vulnerability data,
and attack paths but not only predicted threats. We share the
details of the vulnerability analysis steps of each attack sur-
face in our public repository [3].

3.2.3 Risk scoring

We leverage an approach similar to DREAD to calculate
the risk scores but using fewer parameters. We perceive the
(d)amage as impact, the (a)ffected users as coverage, and the
(r)eproducibility, (e)xploitability, and (d)iscoverability alto-
gether as simplicity (probability of success) as in Table 3.
We assign a value between 1 and 3 to these three metrics,
and our risk rating equation becomes (impact + coverage +
simplicity = 3)/5.

We provide default values for the impact parameter; we set
it to 3 for remote code execution, 2 for authentication bypass,
weak authentication/authorization, tampering, and privilege
escalation, and 1 for information disclosure and denial of
service. We determine the impact coverage value based on
the rate of the affected user base. We set it to 3 if all users are
affected by the threat; we set it to 2 if only a group of users
(e.g., privileged users) are affected; otherwise, we set it to 1.
For the simplicity parameter, as an example, if we can find
exploit code and successfully execute it without making any
changes, we set it to 3; if we need to modify the code, we set
it to 2; if we need to develop the exploit code from scratch,
we set it to 1. We multiply the simplicity parameter by three
because it represents three DREAD parameters.

If the risk score is greater than 2.5, the severity is high; if
the score is less than 2, the severity is low; otherwise, it is
medium. Although we also provide a default severity value
for each weakness in the compilation, all values are updated
based on the previous step, and the final value is set according
to the result of the exploitation stage.

@ Springer

3.3 Stage 3: Exploitation

The third stage is exploitation, which is a widely accepted
practice to prove whether a system is really vulnerable, and
to establish what an attacker could accomplish by taking
advantage of this exploitation. If we perform a vulnerabil-
ity assessment and do not execute this stage, we may not
go further than making assumptions about potential threats.
Additionally, it is commonly known that chaining a few low-
level vulnerabilities could result in a critical vulnerability.
However, this cannot be achieved solely with vulnerability
analysis. Therefore, realizing exploitation is a valuable exer-
cise.

PatrloT provides CWE-IDs for the IoT weaknesses in
the compilation. Since the CWE project is linked to the
Common Attack Pattern Enumeration and Classification
(CAPEC) project, associated attack vectors can be found
using CAPEC-IDs!? can be used to lookup associated attack
vectors. In addition, we have developed IoT-specific pentest-
ing guidelines [3]. These consist of instructions to conduct
step-by-step attacks and the tools that can be used for
exploitation. A comprehensive toolkit is valuable when pen-
testing IoT devices; thus, customized virtual machines,!!
which contain pre-configured tools, especially for hardware
and radio surfaces, are commonly used.

3.3.1 Known vulnerabilities

An exploit is usually a snippet of code written with a script-
ing language and is run manually from the command line.
We usually download exploit code for known vulnerabili-
ties from public databases'>!3-. Sometimes, we may need
to modify downloaded exploit code to successfully execute.
Additionally, semi-automated tools'* that contain exploit
code built-in can be utilized for easy and stable exploita-
tion. For the known vulnerabilities with no public exploits,
we develop our own! by leveraging disclosed data regarding
the vulnerability.

3.3.2 Exploit development

Automated tools (e.g., vulnerability scanners or fuzzers) help
find the signs of vulnerabilities; they may also provide primi-
tive payloads for proof of concept (PoC). These hints are then
used to design the real working exploit code for the purpose.

10" https://capec.mitre.org.

1 https://attify.com/attifyos.

12 https://exploit-db.com.

13 https://packetstormsecurity.com/files/tags/exploit.
14 https://github.com/rapid7/metasploit-framework.
15 https://github.com/beyefendi/exploit.

https://capec.mitre.org
https://attify.com/attifyos
https://exploit-db.com
https://packetstormsecurity.com/files/tags/exploit
https://github.com/rapid7/metasploit-framework
https://github.com/beyefendi/exploit

PatrloT: practical and agile...

In this step, we explain the common goals when exploiting
the vulnerabilities on the basis of each IoT attack surface. The
goal of hardware hacking is to gain shell access or access
to the firmware image file. Firmware analysis and mobile
app testing are conducted to collect helpful information for
other attack surfaces, for example, encryption keys (e.g., SSH
private key), a hash or password for authentication, libraries
used by network services, and compiled or source code of
applications. Similarly, radio signal analysis is performed to
capture sensitive data or replay commands over the air.

Hundreds of weakness types can be observed in IT sys-
tems, enterprise web applications, or networks. However,
web apps or network utilities served on IoT devices are devel-
oped for certain purposes (e.g., remote administration), so
they are prone to certain types of weaknesses. In principle,
the purpose of network service exploitation is to gain user-
level access to the device and then escalate the privileges to
enable full compromise. For web applications, the aim is to
execute a command on the device (remote code execution) as
well as bypass authentication. The objective of cloud service
exploitation is intercepting or modifying the data transmitted
by the IoT device and affecting the data analytics.

We observe that security misconfiguration is one of
the common weaknesses we encounter. One of the most
challenging problems to solve is to determine whether a vul-
nerability is caused by the product/protocol itself or its setup.
For example, during IoT device setup, if encryption is not set
for a protocol, the network/radio traffic can be sniffed, and
sensitive information can be captured. This finding is related
to the configuration of the device and not a vulnerability that
can be reported to the manufacturer. In rare cases, researchers
do not purchase the device but receive it from an intermediary
organizations (e.g., drone from military). In these cases, the
misconfiguration issue is reported to the organization (e.g.,
military) as well. However, if this setting is due to the pre-
configuration of the device in factory settings or if there is no
option to set encryption, the manufacturer is notified about
the vulnerability. That is why we should indicate the cause
of the vulnerability in the reports. While a penetration test
report is provided to the third parties, a vulnerability disclo-
sure report is authored for manufacturers.

3.3.3 Post-exploitation

Post-exploitation activities are performed right after gaining
user-level access to the firmware of the devices. The common
activities are persistence, privilege escalation, lateral move-
ment, pivoting, evasion, data exfiltration, covering tracks,
and password cracking. In IoT pentesting our major focus is
elevating privileges and password cracking.

Recall that we can reuse findings discovered from the anal-
ysis of another attack surface. Therefore, once gaining access
to the target device, we can have multiple options for priv-

ilege escalation. For example, we can discover a credential
while reversing the mobile app; then, we can use it to elevate
to admin privileges without much effort while pentesting the
network services.

Additionally, after gaining full access, we extract creden-
tials from devices and crack them to build an IoT-specific
hash and password database. Particularly, hard-coded pass-
words in firmware are useful when performing tests for
devices from the same vendors. Moreover, researchers can
go further depending on multiple criteria (e.g., the impor-
tance of the device for national security). As an example, a
drone’s radio communication is jammed to disconnect from
the command control center. It is forced to land at a desired
location, so the device is hijacked. Then a backdoor firmware
is flashed onto the device, and it is dispatched to its owner to
Spy on.

Some devices may have various security mechanisms,
albeit primitive (e.g., blacklisting and rate limiting); in such
cases, it is necessary to bypass the prevention mechanisms.
Additionally, while testing an IoT environment containing
multiple devices (such as sensors and gateways), the key
activities become pivoting, lateral movement, and persis-
tence. Such post-exploitation activities are worth underlining
as they practically mean turning a particular IoT network into
a botnet.

3.4 Stage 4: Reporting

Vulnerability research is concluded with a document, pen-
test report, that is the fourth and final stage of the activities.
Particularly, the discovery of a previously unknown vulnera-
bility would require additional steps to be taken, for those, we
author vulnerability disclosure report. We share both report
templates in our public repository [3]. As we report our
results with a standard template that familiarizes reviewers
and allows authors to reuse previous reports. Using the same
template for each pentest makes it easy to generate statistics
and conduct searches in previous pentest reports.

3.4.1 Report template

An IoT pentest report contains eight sections. The first sec-
tion is “General information,” which includes the service
recipient, the time period, the devices under test, the objec-
tive, and what information is included in the report. The
second section is “Scope,” which identifies the assets and
type of test (black-box or white-box). The third section is the
“General testing methodology,” which describes the steps
followed to perform the tests. The fourth section is “Risk
assessment,” which defines the meanings of the vulnerabil-
ity severity levels. The fifth section presents the “Executive
summary,” one page of information on the devices tested,
what types of tests failed, what types of tests were success-

@ Springer

E.Slren et al.

ful, and what actions were taken. The sixth section is the
“Technical summary,” which explains the “Executive sum-
mary” in detail. The seventh section contains three tables.
The first is the “Summarized vulnerabilities table,” which
shows the vulnerabilities of devices with their severity. The
second is the “Known vulnerabilities table,” which lists previ-
ously known vulnerabilities (e.g., vulnerabilities in the public
exploit database). The third is the “All attacks table,” which
contains all the weaknesses tested and the attacks performed.
The eighth section is “Findings,” which details which vulner-
abilities have been discovered on which devices. This section
contains the following information for each vulnerability: a
brief description of the vulnerability, attack surface, attacker
profile, the techniques used to find the vulnerability, refer-
ences to the identified vulnerability, impact and severity of
the vulnerability, PoC scripts for exploitation, screenshots,
steps to reproduce exploitation, and references for remedi-
ation. Unlike an IT penetration test, an IoT pentest report
also has its own characteristics; mainly, sections dedicated
to hardware and radio components contain high-quality pho-
tographic images and video demonstrations.

3.4.2 Vulnerability disclosure

Public disclosure is the practice of announcing security vul-
nerabilities discovered in software or hardware products.
As usual, stakeholders have different priorities. Security
researchers prefer to publish their vulnerability discoveries as
soon as possible and receive recognition. Beyond that, noti-
fying the manufacturer also confirms the vulnerability and
provides credibility, so this notification is highly important
for researchers. Customers of vulnerable products or services
also ask that the systems be patched as quickly as possible.
On the other hand, product owners favor the disclosure of
vulnerabilities only to themselves to have enough room to
fix flaws and avoid affecting user loyalty. The conflicts of
priorities have been resolved to some extent by the appropri-
ate implementation of the disclosure policies (responsible,
coordinated, self, 3rd party, vendor, full, etc.).

A typical responsible disclosure policy includes the steps
below. A researcher discovers the security vulnerability and
then documents the findings, including supporting evidence
(a PoC script and screenshots) and a disclosure timeline.
The researcher then notifies the vendor directly or via a
bug bounty program by submitting the report through secure
channels. Once the system provider accepts the finding, they
have a reasonable time frame within which to patch the vul-
nerability. Once a patch is available, product owner informs
the public by issuing a security advisory report. Industry ven-
dors'® generally agree that a maximum deadline of 90 days
is acceptable.

16 https://googleprojectzero.blogspot.com.

@ Springer

This approach helps people or organizations using vulner-
able products take their precautions.

Companies determine how findings will be reported to
them. Bug bounty programs, which act as an intermediary
between vulnerability researchers and product owners, are
popular. They assist in protecting both parties from potential
conflicts (e.g., subjective interpretations) and provide a pro-
fessional process for companies unfamiliar with vulnerability
disclosures. The discoveries are submitted to these platforms
that enable researchers to receive recognition and earn moral
rewards (e.g., appearing in the hall of fame) [14]. Compa-
nies that receive bug reports can prevent detailed information
about the vulnerability from being published publicly.

Several IoT device producers collaborate with bug bounty
programs '7-18

In the full vulnerability disclosure model [15], researchers
also publish a working exploit script in addition to vulner-
ability details. There are well-known outlets!?-20-2! where
multiple exploits are published daily. This practice has also
been regularly performed live at prestigious conferences
(e.g., Blackhat and Defcon). These are not illegal platforms
but are supported by vulnerability researchers leading the
industry. The objective here is not to back up the poten-
tial attackers but to share offensive security knowledge with
the community to allow vulnerability researchers to keep
advancing.

3.4.3 CVE

MITRE Common Vulnerabilities and Exposures (CVE)** is a
limited database of known security vulnerabilities of sys-
tems. Once a new vulnerability is discovered, a security
researcher may want to have a CVE-ID assigned to his new
finding?? for attribution. If the vendor is allowed to provide it,
the researcher first contacts the vendor to request a CVE-ID;
otherwise, the researcher applies to MITRE to obtain one.
Zero-day. The term Oday refers to a product vulnerability
that is unknown to its owner or manufacturer. The widespread
use of the product and the impact of the vulnerability play a
critical role in determining whether a vulnerability could be
categorized as zero-day [16]. They usually deserve a mon-
etary value, and both the manufacturer and the adversaries
are willing to pay for them. For example, although an unau-
thenticated code execution vulnerability is usually referred

17 https://bugcrowd.com/solutions/iot-and-web3/.

8

https://hackerone.com.

9 https://exploit-db.com.

20 hitps://packetstormsecurity.com/files/tags/exploit.

2 https://github.com.

22 https://cve.mitre.org.

23 hitps://cve.mitre.org/cve/request_id.html.

https://googleprojectzero.blogspot.com
https://bugcrowd.com/solutions/iot-and-web3/
https://hackerone.com
https://exploit-db.com
https://packetstormsecurity.com/files/tags/exploit
https://github.com
https://cve.mitre.org
https://cve.mitre.org/cve/request_id.html

PatrloT: practical and agile...

Table 4 Tested devices

Study Smart device Attack surface

1 Al robot Web

2 Ryze tello drone Radio—Network

3 Samsung smart fridge Network—Cloud

4 Xiaomi Mi home security camera Network—Firmware
5 Yale L3 smart door lock Mobile

6 Yanzi air quality sensor Radio

7 Xiaomi Mi home security camera Hardware

Table 5 Steps to execute IoT vulnerability research

Step

Decompose the device into seven attack surfaces

Conduct information gathering with the provided template to identify the functionalities of the device

Derive different use cases from the original purpose of the functions

Match each function to the items in the weaknesses compilation provided based on attack surfaces

Update the default impact values provided, if necessary, taking into account the functions of the product

Run automated tools to identify potential vulnerabilities and eliminate false positives

Check for known vulnerabilities in the public databases
Identify the relationships between vulnerabilities to chain them

Reuse findings from one surface on another attack surface

Develop attack paths according to the prerequisite relationship of vulnerabilities with each other

Calculate risk scores by determining the simplicity and reusing the default impact, coverage, and severity values

Start analysis with high-risk scores or high-impact vulnerabilities
Employ provided IoT-specific pentesting guidelines

Develop exploit code or use semi-automated tools

Get screen shots

Generate the penetration test report using the provided template

as zero-day, an information disclosure flaw is not considered
to belong to this category.

4 Evaluation

In the last two years, we have conducted pentests on more
than 30 IoT devices, identified dozens of vulnerabilities, and
presented thorough documentation of our findings [6]. We
have studied and reported the systematic application of this
methodology from start to end. In this section, we present the
results of our vulnerability research on seven IoT devices to
demonstrate the practical application of PatrloT (Table 4).

The threat models created for the seven chosen devices are
accessible as a separate document [3]. How these threat mod-
els are generated is found in the individual pentest reports.
Figure 5 shows the attack surfaces tested in each study, and
the vulnerabilities discovered by using our compilation of
weaknesses.

4.1 Robot

The first study explored the web and network attack surfaces
of an Al robot. Information gathering. First, nmap identified
an open HTTP port using network scanning. Then, dirbuster
discovered the website map, the web pages it actually con-
tains, and nikto allowed us to determine the development
technologies along with their versions. After examining these
outputs, it was observed that the HT TP service provides a web
service to authenticate users with password-based authenti-
cation. Vulnerability analysis. Given the information from
the enumeration phase, the threat model is based on authenti-
cation bypass and DoS scenarios. Exploitation. Examination
of the authentication process with Burp Suite revealed that
the communication was not encrypted. The password input
entered by the user was hashed on the client side and then
transmitted. Even though this provides a layer of security, the
hash value could still be cracked by rainbow table attacks.
As these problems relate to transport security, the weakness
was recorded as involving a lack of transport encryption.

@ Springer

E.Slren et al.

No ‘Web weaknesses Study 1 No Radio weaknesses Study 2 Study 6
1 Sensitive data exposure No 1 Lack of transport encryption No No
2 Lack of transport encryption Yes 2 Insecure SSL/TLS issues No No
3 Insecure SSL/TLS issues No 3 Lack of message integrity check No No
4 Authentication - Username enumeration No 4 Lack of signal replaying checks No No
5 Authentication - Weak credentials No 5 Lack of signal jamming checks No No
6 Authentication - Improper account lockout No 6 Lack of signals spoofing checks No No
7 Authentication - Weak password recovery No 7 Lack of Denial of service (DoS) checks No No
8 Authentication - Lack of two-factor authentication No
9 Authentication bypass - Web application to cloud No No Hardware weaknesses Study 7
10 Command injection No 1 Sensitive data exposure - Device ID/serial no No
11 Direct object references No 2 Firmware/storage extraction - Insecure external media interface:. No
12 Business and logic flaws No 3 Firmware/storage extraction - Download from the Web No
4 Firmware/storage extraction - Insecure SPI interface No
No Cloud weaknesses Study 3 5 Firmware/storage extraction - Insecure I2C interface No
1 Lack of transport encryption Yes 6 Firmware/storage extraction - Insecure UART interface No
2 Insecure SSL/TLS issues No 7 Firmware/storage extraction - Insecure JTAG interface No
3 Authentication - Username enumeration No 8 Firmware/storage extraction - Insecure SWD interface No
4 Authentication - Weak credentials No 9 Firmware/storage extraction - Insecure SoC No
5 Authentication - Improper account lockout No 10 Firmware/storage extraction - Insecure eMMC chip No
6 Authentication - Weak password recovery No 11 Backdoor firmware - Insecure UART interface No
7 Authentication - Lack of two-factor authentication No 12 Backdoor firmware - Insecure JTAG interface No
8 Vendor APIs - Inherent trust of cloud or mobile application No 13 Backdoor firmware - Insecure SWD interface No
9 Vendor APIs - Authentication bypass No 14 Grant shell access - Insecure UART interface Yes
10 Vendor APIs - Authorization bypass No 15 Grant shell access - Insecure SPI interface No
11 Vendor APIs - Undocumented backdoor API calls No 16 Change code execution flow - Insecure JTAG/SWD interface No
12 Vendor APIs - User data disclosure No 17 Reset to insecure state No
13 Vendor APIs - Device information leakage No
No Mobile weaknesses Study 5
No Firmware weaknesses Study 4 1 Sensitive data exposure - Hardcoded credentials No
1 Sensitive data exposure - Hardcoded credentials No 2 Sensitive data exposure - Encryption keys and algoritht No
2 Sensitive data exposure - Backdoor accounts No 3 Sensitive data exposure - Other sensitive information No
3 Sensitive data exposure - Encryption keys and algorithms No 4 Authentication - Username enumeration No
4 Sensitive data exposure - Other sensitive information No 5 Authentication - Weak credentials No
5 Sensitive data exposure - Static and same encryption keys No 6 Authentication - Improper account lockout No
6 Configuration - Lack of data integrity checks No 7 Authentication - Weak password recovery No
7 Configuration - Lack of wiping device No 8 Authentication - Lack of two-factor authentication No
8 Configuration - Insecure customization of OS platforms No 9 Authentication - Mobile application to cloud system No
9 Configuration - Lack of security configurability No 10 Insecure authorization No
10 Configuration - Insecure filesystem permissions No 11 Implicitly trusted by device or cloud No
11 Authentication bypass - Device to device No 12 Lack of transport encryption No
12 Authentication bypass - Device to mobile application No 13 Insecure SSL/TLS issues No
13 Authentication bypass - Device to cloud No 14 Insecure data storage No
14 Update mechanism - Missing update mechanism No 15 Outdated 3rd party libraries and SDKs No
15 Update mechanism - Lack of manual update No 16 Business and logic flaws No
16 Update mechanism - Lack of transport encryption No 17 Lack of health checks No
17 Update mechanism - Lack of signature on update file No
18 Update mechanism - Lack of update verification No No Network weknesses Study1 Study 2 Study 3 Study 4
19 Update mechanism - Lack of update authentication No 1 Sensitive data exposure No No No No
20 Update mechanism - Intercepting OTA update No 2 Lack of transport encryption No Yes No No
21 Update mechanism - Backdoor firmware No 3 Insecure SSL/TLS issues No No No No
22 Update mechanism - World writable update location No 4 Authentication - Username enumeration No No No No
23 Update mechanism - Lack of anti-rollback mechanism No 5 Authentication - Weak credentials No No No No
6 Authentication - Improper account lockout No No No No
No Study 7 Authentication - Weak password recovery No No No No
1 Can arobot’s confidentiality be trusted? 8 Privilege escalation No No No No
2 Hacking a Wi-Fi based drone 9 Authentication bypass No No No No
3 Ethical Hacking of a Smart Fridge 10 Denial of Service (DoS) Yes Yes No No
4 Are modern smart cameras vulnerable to yesterday's vulnerabilities? 11 Buffer overflow No No No No
5 Security analysis of a smartlock
6 Threat Modeling and Penetration Testing of an IoTproduct - A Survey on the Security of a Yanzi IoT Network
7 Penetration testing of 10T devices: The ethical hacking of a smart camera

Fig.5 Identified vulnerabilities

@ Springer

PatrloT: practical and agile...

Additionally, checking 11 network weaknesses contained in
our compilation indicated that the robot was running an old
Apache webserver with known DoS vulnerability.

4.2 Drone

The second study explored the network attack surface of
a Wi-Fi-based drone, Ryze Tello from DJI. Information
gathering. The airmon-ng identified that the Wi-Fi network
protocol is WPA2. A review of the documentation revealed
that the Wi-Fi network by default requires no passwords to
connect. However, the user has the option to configure the
use of a password. This means that any device with access
to the Wi-Fi network can send commands to the drone. Vul-
nerability analysis. Given the information from the previous
phase, the threat model highlights the risk of authentication
bypass, tampering with communication, and DoS scenar-
ios. Exploitation. First, airodump-ng and aircrack-ng can
perform brute-force attacks on devices with WPA2 authen-
tication. Second, an SYN flood with Aping could have the
result that the drone and controllers lose communication with
each other. Therefore, this was recorded as a DoS vulnera-
bility. Finally, an ARP spoofing attack using the arpspoof
tool allowed traffic to be rerouted to the attacker’s system,
resulting in intercepting the traffic between the drone and
controller using the Wireshark tool. This was recorded as
MitM vulnerability. Testing the device for the 11 network
weaknesses contained in our compilation indicated that the
communication was also unencrypted; hence, it was recorded
as a lack of transport encryption vulnerability.

4.3 Fridge

The third study was conducted to evaluate the network and
cloud attack surfaces of a smart fridge, Family hub, from
Samsung. Information gathering. Passive network sniffing
with Wireshark identified outgoing traffic from the fridge to a
cloud-based web service. Vulnerability analysis. Given the
information from the previous phase, the threat model was
based on tampering with communication. Exploitation. The
communication between the fridge and cloud components is
not only transmitted via HTTPS but also via HTTP, thus the
traffic can be intercepted in plaintext. This was recorded as
a lack of transport encryption vulnerability.

4.4 Camera

The fourth study evaluated the firmware and network attack
surfaces of a web camera, Home security camera 360° &
cloud from Xiaomi Mi. Information gathering. A docu-
mentation review revealed that webcams serve a webpage
for management purposes. In addition, they provide authen-
tication with a username and password, can be controlled

remotely, and offer live broadcasting over the RTP protocol.
Vulnerability analysis. Given the information from the pre-
vious phase, the threat model was based on authentication
bypass and communication tampering. Exploitation. The
previous version of this camera solution had various high-
severity security vulnerabilities. All of these vulnerabilities
seem to have been addressed in the latest version of the cam-
era, hence this product is secure according to our baseline.

4.5 Door lock

The fifth study evaluated the network and mobile attack sur-
faces of a smart lock, L3, from Yale. Information gathering.
A documentation review revealed that the smart lock requires
authentication via a mobile app. Vulnerability analysis.
Given the information from the previous phase, the threat
model was based on authentication bypass and communi-
cation tampering. Exploitation. Network sniffing indicated
that the communication is encrypted, and reverse engineer-
ing of the mobile app does not yield sensitive information.
The previous version of this door lock device had several
vulnerabilities, but they were patched in the final version.
Therefore, this product is secure according to our baseline.

4.6 Air quality sensor

The sixth study evaluated the radio attack surface of an air
quality sensor, Comfort, from Yanzi. Information gather-
ing Sniffing the radio signals via HackRF identified the
radio protocol as 6lowpan. Vulnerability analysis. Given
the information from the previous phase, the threat model
was based on authentication bypass, communication tamper-
ing, and DoS scenarios. Exploitation. Network sniffing led
to the discovery that the communication is encrypted. Test-
ing the device against the 7 radio weaknesses contained in
our compilation indicated that the device passed all security
checks.

4.7 Camera 2

The seventh study evaluated the hardware attack surface of
a web camera, Home security camera 360° & cloud from
Xiaomi Mi. Information gathering. A physical examination
of the device board revealed that TTL pins (TX and RX) are
identifiable with a multimeter. Vulnerability analysis. Given
the information from the previous phase, the threat model was
based on granting shell access. Exploitation. Connecting to
the TTL pins using a buspirate allowed to gain root shell form
the Linux console. With this access, the entire firmware was
extracted from flash memory. Although a part of the firmware
is encrypted, the Wi-Fi password was observable in clear-text
with binwalk.

@ Springer

E.Slren et al.

4.8 Evaluation summary

First, before we had PatrloT, the reported findings did not
follow standard weakness naming conventions (e.g., Inter-
ception and modification vs. Man-in-the-Middle). Therefore,
even if the same vulnerability was discovered by different
researchers, we were not able to correlate the finding. PatrloT
fundamentally solved this problem. Second, we observed
that some specific vulnerabilities were never reported by
researchers. For example, when researchers failed to find a
valid password after performing an uninterrupted brute-force
attack, they did not report it as a weakness. If there is no
limit for failed attempts, PatrloT considers it an “Improper
Account Lockout” weakness. Third, some vulnerabilities
(e.g., DoS and ARP spoofing) were sometimes reported
as protocol vulnerabilities, causing inconsistencies. PatrloT
explicitly includes such weaknesses in its compilation of
top weaknesses to ensure researchers that the discovered
weaknesses are related to the device itself and not the pro-
tocol. Finally, our pentest report template document guides
researchers in documenting why an attack fails. In this way,
we can make sure that an attack has been performed in a
proper way but failed due to some type of prevention mech-
anism (e.g., intrusion prevention system).

5 Discussion

In this section, we discuss the benefits and limitations of
using the presented methodology. Recall that we observed
four shortcomings in IoT vulnerability research process,
which we addressed by introducing four key elements: log-
ical attack surface decomposition, compilation of the top
100 weaknesses, lightweight risk scoring, and step-by-step
pentesting guidelines. While addressing these limitations, we
also considered the typical research environment: dozens of
IoT devices being subjected to the pentest, high personnel
turnover, and a shortage of IoT security expertise. We then
developed a four-stage systematic methodology on top of
the four key elements to reveal the maximum benefit to be
obtained from pentesting studies.

5.1 Compilation of top weaknesses

Standardization. As we could not find standard guidelines
for testing IoT weaknesses, the purpose was to compile a
list that contains the minimum but major security tests that
need to be performed first. We developed a compilation for
100 weaknesses by matching OWASP IoT Top 10 to the CWE,
which allowed us to follow a standard in all studies. Defining
abaseline also brings in six benefits: (1) A shortlist motivates
researchers from the start because it is short and provides a
road map. (2) It enables us to easily benefit from the pre-

@ Springer

vious reports when pentesting the upgraded version of the
device or a similar device from a different vendor. Reusing
previous knowledge allows faster progress. (3) In addition,
researchers do not tend to document failed attacks; to a cer-
tain extent, using a standard template also prevents work that
has been carried out from being wasted and avoids potential
duplicate effort. (4) Even if we do not discover any vul-
nerabilities during a pentest, we can claim that the system
is secure against such specific attacks because we perform
the pentest following particular stages and document all the
results. (5) Moreover, performing the same tests enables the
security level of two similar devices to be compared (e.g.,
we can compare all home security cameras that were tested
and identify the weaknesses that are common to all the cam-
eras). (6) Performing and documenting the same security
tests also facilitate the generation of statistics to visualize
which vulnerabilities are more common in total and which
vulnerabilities are starting to trend.

Argument 1. Is the number of weaknesses to be tested suf-
ficiently broad to assist in performing all existing attacks for
IoT? Because our goal is to identify a high potential vulner-
ability in a limited period, it is not reasonable to perform all
the tests. It would make more sense to start with a shortlist of
the most common [oT weaknesses. Actually, this is why this
methodology is agile. On the other hand, suppose the result
of a pentest is not satisfactory (e.g., no vulnerabilities found).
In that case, the researcher extends the coverage by including
new potential weaknesses to test, and thus new attack vectors.
In the first step, it makes sense to refer to well-known indi-
vidual books on hardware hacking, firmware analysis, radio
hacking, etc. In addition, as previously mentioned, the CWE
database lists more than a thousand weaknesses and CAPEC
database contains more than a half-thousand attacks. Thus,
these databases can be beneficial to understand the remain-
ing weaknesses and attacks while extending the weaknesses
compilation.

Moreover, we strongly suggest documenting the per-
sonal knowledge and experience, preferably as a pentesting
guideline, gained from the vulnerabilities discovered dur-
ing research activities. In reality, times keep changing, and
threats evolve accordingly. Eventually, we would need to
update this compilation based on the information harvested
from the performed work. Extending the presented weak-
nesses will increase the number of attacks and extend the
duration of the study accordingly.

Argument 2. New measures are constantly being taken
against security vulnerabilities. How can PatrloT keep up
with this continuous evolution? There are many attack tech-
niques against just one weakness. While attack techniques
evolve as a result of countermeasures against vulnerabilities
(e.g., Authentication bypass in a specific product), the weak-
nesses (e.g., Authentication bypass via weak password reset)
usually remain the same to a certain extent. Therefore, we can

PatrloT: practical and agile...

assume that the emergence of new weaknesses is slower than
the development of new attack techniques. That is why the
compilation of weaknesses is affected over time. In other
words, the emergence of new attacks does not directly affect
the compilation of weaknesses. However, the situation differs
when new types of weaknesses emerge and spread, and they
enter the top 100 list after a while. In this case, the weaknesses
compilation must be updated. The precaution for this is that
we publicly share all the artifacts of PatrloT, including the
weaknesses compilation and penetration testing guidelines,
on GitHub [3]. In this way, we hope PatrloT will be a live
project, and it will be updated by its users.

Argument 3. Why did PatrloT not rank the vulnerabili-
ties in the entire CWE database in the order of priority rather
than selecting the top 100 weaknesses? The main reason for
this is that there is neither the time nor the budget to apply
all of these tests, even if we were able to sort them. Sorting
the entire corpus would be an unnecessarily and unimagin-
ably heavy workload, with the high potential of low payback.
Thus, we decided to distill the most common weaknesses
without sorting this large database, relying on the OWASP
IoT Top 10 project. This list provides the top 10 security
risks, which we mapped to the corresponding weaknesses in
CWE database. This is literally why we based our study on
the OWASP [oT Top 10 project.

5.2 Threat modeling

Decomposition. Logical decomposition makes it easy to
start building threat models for [oT products. First, PatrloT
recommends seven attack surfaces that simplify conceptual-
ization and ensure none of the components are overlooked.
Second, technology-based decomposition allows estimating
and categorizing threats with the help of our weaknesses
compilation. Third, it also enables dividing the tasks to enable
more specialized researchers on certain attack surfaces to
work. Correspondingly, it helps execute specific activities
efficiently and produce higher-quality outputs.

Recall that this study is based on OWASP IoT Top 10,
which has its limitations. Although we could extend the cov-
erage with our initiative, we did not consider that for the
following reasons. Firstly, humans may represent the weak-
est link in the cybersecurity chain, and consumer [oT devices
are usually configured by people who have less experience in
security. Therefore, it is reasonable to have an attack surface
related to social engineering. But as we mentioned, con-
trary to IT pentesting, [oT pentesting is often performed in
a laboratory setting, even if researchers obtain IoT products
from organizations. These environments contain tools spe-
cific to IoT analysis, such as hardware and radio analysis
kits. Additionally, since we do not choose to serve organiza-
tions directly, we cannot perform social engineering attacks
against real users. We believe it would also be not be credi-

ble to perform social engineering attacks with artificial users.
Therefore, social engineering attacks on IoT product users
are beyond our scope.

Secondly, this study describes the hardware as an IoT-
specific attack surface and handles it meticulously. However,
it does not cover some of the threats in a cyber and physi-
cal context. It does not consider, for example, what risks
would arise if the device (a physical entity) interacted with
the physical environment. As a concrete example, an attacker
compromises a speaker (actuator) and microphone (sensor)
to send voice commands to another sensor (e.g., an air con-
ditioner).

Last but not least, although PatrloT does introduce a
separate privacy attack surface, it includes sensitive data dis-
closure weaknesses in all attack surfaces. Therefore, it covers
personally identifiable information (PII) issues.

Categorization. The weaknesses compilation already
divides potential weaknesses into seven categories based on
their attack surfaces. Why is there another classification for
threats with a STRIDE-like approach?

As we previously mentioned, each STRIDE category has
aspecific impact. Impact value is important for researchers as
it allows them to filter specific impact categories. Recall that
the impact value is used in the calculation of the risk score
as well. Naturally, researchers’ priority is to start with vul-
nerabilities with high-risk scores and progress toward those
with low-risk scores. Impact categorization gives researchers
the flexibility to start with high-impact vulnerabilities. For
instance, we prefer spending more time on vulnerabilities
with an authentication bypass or code execution impact, even
if they have low-risk scores, than on vulnerabilities with a
denial-of-service impact, even if they have high-risk scores.

There are some advantages of designing threat models
using STRIDE-like categories. Threat models can be found
for many technologies which can be partially reused. Addi-
tionally, when a threat model is built, categories are checked
to see if anything is missing. On the other hand, the infor-
mation to be used during the exploitation stage is the attack
paths. It is hard to get accurate information from a STRIDE-
based model. For example, it is not easy to see where to start
an attack and which path to follow to exploit a potential vul-
nerability that prerequisites another exploit to be successful.
That is why we use STRIDE only for categorization but rely
on vulnerability data and attack paths in threat modeling.

Vulnerability analysis. Vulnerability data complements
our IoT attack surface decomposition. It helps identify the
relationships between vulnerabilities, reuse findings from
one surface on another attack surface, find ways to chain
vulnerabilities, and develop attack paths.

Reuse and familiarity. As threat models are designed
using the same technique, they follow a type of template. In
this way, we can easily benefit from the previous threat model
when we test a similar but new device. Reusing previous

@ Springer

E.Slren et al.

threat models allows for faster progress as well. Additionally,
it accelerates the comprehension of potential weaknesses for
those who review the threat models.

5.3 Lightweight risk scoring

Although our methodology promotes the most common
threats, starting pentesting with high potential weaknesses
increases motivation once again. There are some advantages
of using our risk scoring method. As we simplify the com-
monly known method, DREAD, we avoid risk scoring being
an overhead. Our equation contains only three parameters,
and it is easy to calculate. Additionally, we provide default
values for two parameters, impact and coverage. Naturally,
we cannot provide a default value for the simplicity parame-
ter, so we cannot know the exact risk score. However, based
on our IoT vulnerability research experience, we also pro-
vide default severity values for each weakness defined in the
compilation. Default values were assigned for convenience
only.

On the other hand, it is reasonable for a risk scoring
formula to have a parameter related to the possibility of
attack detection by security systems. Compared to the other
three parameters, we have experienced that predicting such a
parameter is much more difficult and prone to error. In addi-
tion, such prevention systems are still not common in IoT
products. Furthermore, since we built our model to simplify
the existing DREAD, we did not find it appropriate to add a
new parameter that does not exist in DREAD.

It is worth highlighting that our priority is to use CVSS
scores as long as researchers can calculate them or we obtain
them from CVE authorities. We recommend our alternative
method for researchers who experience difficulty in cal-
culating CVSS, OWASP, or DREAD scores. As usual, any
approach may have its flaws, but as long as we apply the same
technique to all, we can maintain some consistency among
the severity ratings. So we can correctly rank the estimated
threats first and then the vulnerabilities identified.

5.4 Step-by-step pentesting guidelines.

These practical documentations constitute a very goal-
oriented set of information compared with security risks or
hundreds of pages of books. As they directly support IoT
pentesting, they simplify the activities and reduce the time
required to conduct the study.

Although the penetration testing guidelines are one of the
extra contributions, it would be more beneficial to update
them with the new attack techniques in the long run. PatrloT
is compatible with MITRE, so the compilation of weaknesses
also refers to the CWE-IDs, which is the ID of the weak-
nesses provided by MITRE CWE. As CWE-IDs are mapped

@ Springer

to CAPEC-IDs, they can be utilized to keep up with new
attack techniques as well.

Oday discovery. In light of the Oday definition in Sect. 3.4.3,
how can the methodology support zero-day discovery?
PatrloT decomposes attack surfaces into seven logical com-
ponents. It highlights the findings on one surface can
contribute to another attack surface. It also emphasizes that
chained vulnerabilities can have higher impacts. In summary,
when the information obtained from one attack surface is
reused on another attack surface, and different vulnerabili-
ties are associated, it can lead to Oday vulnerabilities. The
step-by-step IoT pentesting guidelines [3] contain informa-
tion about interpreting findings and providing them as input
each other. For example, a Oday finding can be discovered
by obtaining information that will enable the authentication
bypass process and combining this vulnerability with a code
execution vulnerability. The compilation of the top 100 weak-
nesses contains records causing these types of vulnerabilities.

5.5 Automation

Why did PatrloT not introduce a tool that fully automates
the exploitation stage of this study? As mentioned in Sect. 1,
we need three resources for vulnerability research: people,
processes, and technology. In this study, our focus was on
developing a methodology rather than on developing a tool.
In addition, as mentioned in the exploitation stage, we use
multiple mature tools known by the community. Although we
prefer the use of automated attacks, this does not mean hitting
the start button and obtaining results. As PatrloT introduces
seven attack surfaces for IoT ecosystem, the findings (e.g.,
decryption key) on one surface could be reused for other
surfaces.

Moreover, a critical severity vulnerability can be discov-
ered only by chaining two or more vulnerabilities. It is worth
remembering that reusing a finding and linking vulnerabil-
ities requires serious manual intervention since it is not an
approach that automated tools can achieve.

5.6 Lessons learned

Initially, we planned to carry out this study in a different
way. That is, we would develop an automated tool, sort of
a webpage crawler. It would search for the keywords (e.g.,
smartwatch) in the CVE database parse and extract the infor-
mation from the retrieved webpage. We would extract the
information we provided within the scope of this study (name
of the vulnerability, type of the weakness, impact, severity,
CVSS score, CWE and CAPEC category matching with the
CVE, etc.). With the information we collected, we could
make a top 100 list. This way, the study would be both a
large-scale analysis and the top 100 list would be updated
frequently. Although the CVE database looks like a struc-

PatrloT: practical and agile...

tured structure, unfortunately, these fields are not mandatory,
so they are not filled. That is why we could not make it.

5.7 Challenges

The notable limitation of the present study is that the number
of weaknesses to be investigated is limited to 100. Recall that
the CWE database, containing thousands of types of weak-
nesses and constantly expanding, can be further examined
if more extensive tests are needed. However, this is a very
demanding task. For this reason, we suggest expanding the
weakness set in line with the findings obtained as a result of
the application of the present method.

Even if the methodology was entirely flawless, the quality
of work usually depends on the researcher’s competence. An
IoT vulnerability researcher would focus on the pentest by
prioritizing mostly IoT-specific attack surfaces (hardware,
firmware, and radio protocols). However, this requires a
background and skills specific to IoT, which means it is not
easy to shift from the IT pentester role to the IoT pentester.

5.8 Future work

One of the future tasks is keeping this weakness compilation
up-to-date. We have been employing PatrloT in our research
and will continue to validate it in future studies. But it will be
the most productive contribution if additional IoT vulnerabil-
ity research teams utilize this method and share their results.
That is why we share all artifacts in a public repository so
that other researchers can use this method more easily and
new ideas can be reported. With community support, this list
can be kept up-to-date over time.

6 Related work

Information technology (IT) pentesting, or traditional pen-
testing, is a well-studied topic covering mostly testing net-
works, operating systems, and web applications. Generally,
researchers [21-23] agree on a 5-step approach for pentest-
ing, which comprises (1) information gathering (e.g., open-
source intelligence (OSINT)); (2) network mapping (system
reconnaissance); (3) vulnerability scanning; (4) exploita-
tion; and (5) post-exploitation. In addition, the “Information
System Security Assessment Framework (ISSAF)” [4] and
the Open Source Security Testing Methodology Manual
(OSSTMM) [5] are often referenced and employed as penetra-
tion testing guidelines. Today, experiments with pentesting
techniques can be conducted on various cloud-based pen-
test practice platforms>#2> and there are several certification

24 https://hackthebox.eu.
25 https:/vulnhub.com.

options for demonstrating pentesting skills?®-%7 Finally, sev-
eral mature techniques and tools exist for conducting an IT
pentest.28

The traditional pentesting has been extensively detailed
over several years, yet the situation is not the same for the
IoT ecosystem. A methodical comparison of similar stud-
ies having an attacker’s perspective and calling themselves
IoT penetration testing or vulnerability research is shown
in Table 6. Two studies [2,24] are the closest to the phi-
losophy of PatrloT. The major shortcoming is their lack of a
methodological approach, more precisely, how to perform an
IoT pentest systematically from start to finish. Although the
authors [18,19] introduce an OWASP-compatible approach,
it only contains a handful of weaknesses. PENTOS [17]
combines existing security tools, and the major focus is
attacks, but not weaknesses. The approach used in studies
that develop virtual simulations instead of testing real-world
devices [25-27] is basically contrary to our approach, so
we could not evaluate such studies. The Common Criteria
(CC) [20] has a systematic method for IoT device evalua-
tion. However, its perspective is on security requirements
and protections rather than vulnerabilities and attack paths.

To date, some reports have been published with a per-
spective of the standardization of security measures in IoT
devices. Those studies mostly appeal to manufacturers. The
Baseline Security Recommendations for IoT document from
European Union Agency for Cybersecurity (ENISA) reports
the security requirements of IoT, mapping critical assets and
relevant threats, assessing possible attacks, and identifying
potential good practices and security measures to apply in
order to protect IoT systems [28]. The IoT Security Con-
trols Framework introduces the base-level security controls
required to mitigate many of the risks associated with an
IoT system [29]. The Code of Practice for Consumer loT
Security aims to support all parties involved in the develop-
ment, manufacturing and retail of consumer IoT with a set of
guidelines to ensure that products are secure by design and
to make it easier for consumers to stay secure in a digital
life [30]. The National Institute of Standards and Technol-
ogy Interagency or Internal Report (NISTIR 8200) document
evaluates the international cybersecurity standards develop-
ment for [0T [31]. The Cyber Security for Consumer IoT:
Baseline Requirements (ETSI EN 303 645) report aims to
support parties involved in the development and manufactur-
ing of consumer IoT with guidance on securing their products
[32]. The Common Criteria (CC) provides IoT protection
profile aiming to standardize the security requirements of an
IoT secure element to be used in an IoT device [20].

26 nhitps://offensive-security.com/pwk-oscp.
27 https://giac.org/certification/penetration-tester-gpen.

28 hitps://six2dez.gitbook.io/pentest-book.

@ Springer

https://hackthebox.eu
https://vulnhub.com
https://offensive-security.com/pwk-oscp
https://giac.org/certification/penetration-tester-gpen
https://six2dez.gitbook.io/pentest-book

E.Slren et al.

Table 6 Comparison of similar

studies Study PatrloT [2] [17] [18] [19] [20]
Information inquiry templates 4 4 X X X 4
Attack surface decomposition™ 7 5 3 4 3 6
Compilation of top weaknesses 4 X X v v X
Compatibility” v X + + + X
Penetration testing guidelines v v X X v X
Risk scoring v X X X X v
Pentesting report template v X X X X X
Vulnerability disclosure report 4 X X X X X
Evaluation 4 v 4 4 4 4
Tools developed X v 4 X X X

*: e=QWASP v'=OWASP + MITRE
+: Number of attack surfaces covered

7 Conclusion

The effects of insecurity in the IoT landscape have raised
the need for loT-specific vulnerability research capabilities.
We identified significant shortcomings regarding the process
dimension and challenges regarding the human resources
dimension upon examining IoT penetration test reports.

The overall purpose of this study was to introduce an
approach that allows faster adoption (efficiency) of new
researchers to the research method and team and delivers
higher quality (effectiveness) to IoT pentesting.

To achieve our overall objective, we developed a system-
atic and agile methodology, PatrloT, for IoT vulnerability
research that incorporates four key elements: logical attack
surface decomposition, compilation of top 100 weaknesses,
lightweight risk scoring, and step-by-step pentesting guide-
lines. We also explained how to systematically perform the
IoT pentesting activities in four stages. While we rely on
existing guidelines for web, network, cloud, and mobile
attack surfaces, we developed guidelines for hardware,
firmware, and radio attack surfaces. Additionally, we suggest
identifying the relationships between vulnerabilities, reusing
findings from one surface on another attack surface, finding
ways to chain vulnerabilities, and accordingly developing
attack paths.

In addition to this publication, we provide many external
publicly available documents via GitHub [3]: a comprehen-
sive spreadsheet with a compilation of the 100 common
weaknesses, a sample document explaining how we decom-
pose attack surfaces, step-by-step penetration testing guide-
lines, a standardized template for [oT information gathering,
an [oT pentest report template, and a vulnerability disclosure
report template.

PatrloT has been evaluated with multiple IoT products
in our laboratory. The empirical results show that it allows
rapid advancement in vulnerability research activities and
eliminates the risk of overlooking critical steps.

@ Springer

PatrloT standardizes the way to work, making newcom-
ers’ orientation easy, which results in increased efficiency.
It also defines a baseline that maintains the quality of the
research output, which ensures effectiveness. Overall, it sim-
plifies such a complex research process and enables the work
to be completed in a standardized manner, quickly and accu-
rately. Therefore, it has the potential to allow the maximum
benefit to be obtained from the security studies.

Such a systematic solution is intended to help vulnerability
researchers who periodically pentest multiple IoT devices
by allowing them to discover new vulnerabilities, including
zero-day, in time or ensure that the system is secure against
certain attacks; it is also assumed to raise the bar for threat
actors.

IoT penetration testing is perceived as unattainable to
many novice researchers. In fact, the main reasons for this are
the lack of widespread resources, as in IT pentesting domain.
The methodology we have shared here is actually a summary
of a wealth of information. It’s easy to read as it’s just a hand-
ful of pages, not the size of a book. We hope it will remove
barriers and encourage people who may want to enter this
research area.

The compilation of weaknesses will also help organiza-
tions that require IoT pentesting services. It can be used
to define minimum requirements to be tested in terms of
weaknesses within the scope of the IoT pentesting service.
Likewise, it can be used to measure the quality of IoT pene-
tration test reports.

Acknowledgements This project has received funding from the Euro-
pean Union’s H2020 research and innovation programme under Grant
Agreement No. 832907, Swedish Governmental Agency for Innovation
Systems (Vinnova), and the Swedish Energy Agency.

PatrloT: practical and agile...

Funding Open access funding provided by Royal Institute of Technol-
ogy.

Declarations

Conflict of interest Authors Siiren, Heiding, Olegard, and Lagerstrom
declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Research data policy and data availability Data supporting the findings
of this study are available on our public Github [3] repository.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Appendix |

See Tables 7, 8, 9, 10, 11, 12, and 13.

Table 7 Weaknesses of IoT physical interfaces

ID Hardware weakness

T001 Sensitive data exposure—Device ID/serial no
TOO2Firmware/storage extraction—Insecure external media interfaces
TOO3Firmware/storage extraction—Download from the Web
TO004 Firmware/storage extraction—Insecure SPI interface

TOO05 Firmware/storage extraction—Insecure 12C interface
TOO6Firmware/storage extraction—Insecure UART interface
TOO07Firmware/storage extraction—Insecure JTAG interface
TOO8Firmware/storage extraction—Insecure SWD interface
TOO9Firmware/storage extraction—Insecure SoC
TO10Firmware/storage extraction—Insecure eMMC chip
TO11Backdoor firmware—Insecure UART interface
TO12Backdoor firmware—Insecure JTAG interface
TO13Backdoor firmware—Insecure SWD interface

TO014Grant shell access—Insecure UART interface

TO15Grant shell access—Insecure SPI interface

T016Change code execution flow—Insecure JTAG/SWD interface

TO17Reset to insecure state

Table8 Weaknesses of IoT firmware

ID Firmware weakness

TO18 Sensitive data exposure—Hardcoded credentials

TO19 Sensitive data exposure—Backdoor accounts

T020 Sensitive data exposure—Encryption keys and algorithms
T021 Sensitive data exposure—Other sensitive information
T022 Sensitive data exposure—Static and same encryption keys
T023 Configuration—Lack of data integrity checks

T024 Configuration—Lack of wiping device

T025 Configuration—Insecure customization of OS platforms
T026 Configuration—Lack of security configurability

T027 Configuration—Insecure filesystem permissions

TO028 Authentication bypass—Device to device

T029 Authentication bypass—Device to mobile application
TO030 Authentication bypass—Device to cloud

TO31 Update mechanism—M issing update mechanism

T032 Update mechanism—Lack of manual update

TO033 Update mechanism—Lack of transport encryption

T034 Update mechanism—Lack of signature on update file
TO35 Update mechanism—Lack of update verification

T036 Update mechanism—Lack of update authentication
TO37 Update mechanism—Intercepting OTA update

TO038 Update mechanism—Backdoor firmware

T039 Update mechanism—World writable update location
T040 Update mechanism—Lack of anti-rollback mechanism

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

E.Slren et al.

Table9 Weaknesses of IoT network services

ID Network weakness

TO041 Sensitive data exposure

T042 Lack of transport encryption

T043 Insecure SSL/TLS issues

T044 Authentication—Username enumeration
TO045 Authentication—Weak credentials

T046 Authentication—Improper account lockout
T047 Authentication—Weak password recovery
T048 Privilege escalation

T049 Authentication bypass

TO050 Denial of Service (DoS)

TO51 Buffer overflow

Table 10 Weaknesses of IoT web application

ID Web weakness

T052 Sensitive data exposure

TO053 Lack of transport encryption

TO054 Insecure SSL/TLS issues

TO55 Authentication—Username enumeration

T056 Authentication—Weak credentials

TO57 Authentication—Improper account lockout

TO058 Authentication—Weak password recovery

T059 Authentication—Lack of two-factor authentication
TO60 Authentication bypass—Web application to cloud
TO61 Command injection

T062 Insecure direct object references (IDOR)

T063 Business and logic flaws

Table 11 Weaknesses of IoT cloud services
ID Cloud weakness

T064 Lack of transport encryption

TO065 Insecure SSL/TLS issues

T066 Authentication—Username enumeration
TO067 Authentication—Weak credentials

TO068 Authentication—Improper account lockout

TO069 Authentication—Weak password recovery

TO70 Authentication—Lack of two-factor authentication

TO71 Vendor APIs—Inherent trust of cloud or mobile application

T072 Vendor APIs—Authentication bypass

TO73 Vendor APIs—Authorization bypass

TO074 Vendor APIs—Undocumented backdoor API calls
TO75 Vendor APIs—User data disclosure

TO76 Vendor APIs—Device information leakage

@ Springer

Table 12 Weaknesses of IoT mobile application

ID Mobile weakness

TO77 Sensitive data exposure—Hardcoded credentials
TO78 Sensitive data exposure—Encryption keys and algorithms
TO079 Sensitive data exposure—Other sensitive information
TO80 Authentication—Username enumeration

TO81 Authentication—Weak credentials

T082 Authentication—Improper account lockout

TO83 Authentication—Weak password recovery

TO084 Authentication—Lack of two-factor authentication
TO85 Authentication—Mobile application to cloud system
TO86 Insecure authorization

TO87 Implicitly trusted by device or cloud

TO88 Lack of transport encryption

TO89 Insecure SSL/TLS issues

T090 Insecure data storage

T091 Outdated 3rd party libraries and SDKs

T092 Business and logic flaws

T093 Lack of health checks

Table 13 Weaknesses of IoT radio communication

ID Radio weakness

T094 Lack of transport encryption

T095 Insecure SSL/TLS issues

T096 Lack of message integrity check

T097 Lack of signal replaying checks

T098 Lack of signal jamming checks

T099 Lack of signals spoofing checks

T100 Lack of Denial-of-service (DoS) checks
References

1. Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E.,
Cochran, J., Durumeric, Z., Halderman, J. A., Invernizzi, L., Kallit-
sis, M., et al.: Understanding the Mirai botnet. In: 26th USENIX
security symposium USENIX Security 17), pp. 1093-1110 (2017)

2. Gupta, A.P: The IoT Hacker’s Handbook: A Practical Guide to
Hacking the Internet of Things. Apress (2019)

3. PatrloT artifacts. https://github.com/beyefendi/penbook/.
Accessed: 06 Dec 2021 (2021)

4. Rathore, B., Brunner, M., Dilaj, M., Herrera, O., Brunati, P., Subra-
maniam, R., Raman, S., Chavan, U.: Information systems security
assessment framework (ISSAF), Draft 0.2 B 1 2006 (2006)

5. Herzog, P.: Osstmm 3 the open source security testing methodology
manual. Contemporary security testing and analysis, ISECOM-
Institute for Security and Open Methodologies

6. Kth pentest reports. https://bit.ly/38FoGbL. Accessed 06 Dec 2021
(2020)

7. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.:
A design science research methodology for information systems
research. J. Manag. Inf. Syst. 24(3), 45-77 (2007)

8. Cvss - common vulnerability scoring system. https://nvd.nist.gov/
vuln-metrics/cvss/v3-calculator. Accessed 06 Dec 2021 (2021)

https://github.com/beyefendi/penbook/
https://bit.ly/38FoGbL
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

PatrloT: practical and agile...

9.

10.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

OWASP risk rating methodology, https://owasp.org/www-
community/OWASP_Risk_Rating_Methodology. Accessed 06
Dec 2021 (2021)

Johnson, P., Lagerstrom, R., Ekstedt, M., Franke, U.: Can the com-
mon vulnerability scoring system be trusted? A Bayesian analysis.
IEEE Trans. Dependable Secure Comput. 15(6), 1002-1015 (2016)

. Felderer, M., Biichler, M., Johns, M., Brucker, A. D., Breu, R.,

Pretschner, A.: Security testing: a survey. In: Advances in Com-
puters, Vol. 101, pp. 1-51. Elsevier (2016)

Xiong, W., Lagerstrom, R.: Threat modeling—a systematic litera-
ture review. Comput. Secur. 84, 53-69 (2019)

Xiong, W., Legrand, E., Aberg, 0., Lagerstrom, R.: Cyber security
threat modeling based on the MITRE enterprise ATT&CK matrix.
In: Software and Systems Modeling, pp. 1-21 (2021)

Ruohonen, J., Allodi, L.: A bug bounty perspective on the disclo-
sure of web vulnerabilities. arXiv:1805.09850 (2018)
Nmap—full disclosure. https://nmap.org/mailman/listinfo/
fulldisclosure. Accessed 06 Dec 2021 (2021)

Bilge, L., Dumitras, T.: Before we knew it: an empirical study of
zero-day attacks in the real world. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS *12,
pp- 833-844 (2012). https://doi.org/10.1145/2382196.2382284
Visoottiviseth, V., Akarasiriwong, P., Chaiyasart, S., Chotivatunyu,
S.: Pentos: Penetration testing tool for internet of thing devices. In:
TENCON 2017-2017 IEEE Region 10 Conference, pp. 2279-2284
(2017)

Lally, G., Sgandurra, D.: Towards a framework for testing the
security of IoT devices consistently. In: International workshop
on emerging technologies for authorization and authentication, pp.
88-102. Springer (2018)

Nadir, I., Ahmad, Z., Mahmood, H., Shah, G.A., Shahzad, F,
Umair, M., Khan, H., Gulzar, U.: An auditing framework for vul-
nerability analysis of [oT system. In: IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW), 2019, pp. 3947
(2019)

Common Criteria: IoT Secure Element Protection Profile. https://
www.commoncriteriaportal.org/files/ppfiles/pp0109b_pdf.pdf.
Accessed 06 Dec 2021 (2019)

Engebretson, P.: The Basics of Hacking and Penetration Test-
ing: Ethical Hacking and Penetration Testing Made Easy. Elsevier
(2013)

Weidman, G.: Penetration Testing: A Hands-On Introduction to
Hacking. No Starch Press, San Francisco, California, US (2014).
https://nostarch.com

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Kim, P.: The Hacker Playbook 3: Practical Guide to Penetration
Testing. Independently Published, The Hacker Playbook Series
(2018)

Guzman, A., Gupta, A.: IoT Penetration Testing Cookbook:
Identify Vulnerabilities and Secure Your Smart Devices. Packt Pub-
lishing Ltd, San Francisco, California, US (2017). https://nostarch.
com

Chu, G, Lisitsa, A.: Penetration testing for internet of things and
its automation, in: 2018 IEEE 20th International Conference on
High Performance Computing and Communications; IEEE 16th
International Conference on Smart City; IEEE 4th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pp. 1479-1484 (2018)

Mahmoodi, Y., Reiter, S., Viehl, A., Bringmann, O., Rosenstiel, W.:
Attack surface modeling and assessment for penetration testing of
IoT system designs. In: 2018 21st Euromicro Conference on Digital
System Design (DSD), pp. 177-181 (2018)

Yadav, G., Paul, K., Allakany, A., Okamura, K.: Iot-pen: A pene-
tration testing framework for IoT. In: International Conference on
Information Networking (ICOIN), 2020, pp. 196-201 (2020)
ENISA Baseline Security Recommendations for
https://www.enisa.europa.eu/publications/baseline-security-
recommendations-for-iot. Accessed 06 Dec 2021 (2017)
CSA IoT Security Controls Framework.
cloudsecurityalliance.org/artifacts/iot-security-controls-
framework/. Accessed 06 Dec 2021 (2019)

Code of Practice for Consumer IoT Security. https://www.gov.
uk/government/publications/code-of- practice-for-consumer-iot-
security. Accessed 06 Dec 2021 (2018)

NISTIR 8200: International Cybersecurity Standardization for
the IoT. https://csrc.nist.gov/publications/detail/nistir/8200/final.
Accessed 06 Dec 2021 (2018)

ETSI EN 303 645: Cyber Security for Consumer IoT: Base-
line Requirements. https://www.etsi.org/technologies/consumer-
iot-security. Accessed 06 Dec 2021 (2020)

ToT.

https://

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
http://arxiv.org/abs/1805.09850
https://nmap.org/mailman/listinfo/fulldisclosure
https://nmap.org/mailman/listinfo/fulldisclosure
https://doi.org/10.1145/2382196.2382284
https://www.commoncriteriaportal.org/files/ppfiles/pp0109b_pdf.pdf
https://www.commoncriteriaportal.org/files/ppfiles/pp0109b_pdf.pdf
https://nostarch.com
https://nostarch.com
https://nostarch.com
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://cloudsecurityalliance.org/artifacts/iot-security-controls-framework/
https://cloudsecurityalliance.org/artifacts/iot-security-controls-framework/
https://cloudsecurityalliance.org/artifacts/iot-security-controls-framework/
https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security
https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security
https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security
https://csrc.nist.gov/publications/detail/nistir/8200/final
https://www.etsi.org/technologies/consumer-iot-security
https://www.etsi.org/technologies/consumer-iot-security

	PatrIoT: practical and agile threat research for IoT
	Abstract
	1 Introduction
	2 Design of methodology
	2.1 Problem
	2.2 Objective
	2.3 Design and development
	2.3.1 Element 1: Attack surface decomposition
	2.3.2 Element 2: Compilation of top weaknesses
	2.3.3 Element 3: Lightweight risk scoring
	2.3.4 Element 4: Step-by-step pentesting guidelines

	3 Application of the methodology
	3.1 Stage 1: Planning
	3.1.1 Scoping
	3.1.2 Information gathering
	3.1.3 Enumeration

	3.2 Stage 2: Threat modeling
	3.2.1 Attack surface decomposition
	3.2.2 Vulnerability analysis
	3.2.3 Risk scoring

	3.3 Stage 3: Exploitation
	3.3.1 Known vulnerabilities
	3.3.2 Exploit development
	3.3.3 Post-exploitation

	3.4 Stage 4: Reporting
	3.4.1 Report template
	3.4.2 Vulnerability disclosure
	3.4.3 CVE

	4 Evaluation
	4.1 Robot
	4.2 Drone
	4.3 Fridge
	4.4 Camera
	4.5 Door lock
	4.6 Air quality sensor
	4.7 Camera 2
	4.8 Evaluation summary

	5 Discussion
	5.1 Compilation of top weaknesses
	5.2 Threat modeling
	5.3 Lightweight risk scoring
	5.4 Step-by-step pentesting guidelines.
	5.5 Automation
	5.6 Lessons learned
	5.7 Challenges
	5.8 Future work

	6 Related work
	7 Conclusion
	Acknowledgements
	Appendix A: Appendix I
	References

