
Exploit Command Injection Router via
reverse firmware technique - Paper

Submit by: SunCSR (Sun* Cyber Security Research)

Abstract

Router definition:
A router is hardware device designed to receive, analyze and move incoming
packets to another network. It may also be used to convert the packets to another
network interface, drop them, and perform other actions relating to a network.

A router may have interfaces for different types of physical layer connections, such
as copper cables, fiber optic, or wireless transmission. It can also support different
network layer transmission standards. Each network interface is used to enable data
packets to be forwarded from one transmission system to another. Routers may also
be used to connect two or more logical groups of computer devices known as
subnets, each with a different network prefix.

Router Structure:
Hardware​ : Linux
Firmware​ : Software installed base on hardware (Written by C program language)

Reverse firmware

Prepare:

Firmware​: Router ONT
Tool​: binwalk on Kali Linux, ubidum (​https://github.com/nlitsme/ubidump.git​), IDA

Extract firmware to binary

1. Using binwalk on Kali Linux 2020.1 to extract firmware

We have a ubi file (read only file system) and jffs2 file (store volatile variables)

Now, we need extract 420000.ubi file to get binary firmware.

2. Using ubidump tool to extract ubi file to binary firmware

Clone and setup tools:

git clone https://github.com/nlitsme/ubidump.git

pip install -r requirements.txt

Extract firmware to binary:

python3 ubidump.py -d 420000.ubi -s ./

https://github.com/nlitsme/ubidump.git

Folder rootfs_ubifs is created that contains binary firmware
Firmware analysis

Focus on folder bin which contains executable files of firmware. Here is some
binary files:

Now using IDA to analyse http binary file. Why http? Because http binary file

is to run some web function of router such as: config ip, config dns, manage cronjob,
manage users…

Detect command injection vulnerability

Using IDA to analyse http binary file:

Using search function of IDA to find dangerous function. To detect command

injection vulnerability, we find code that call to system() function. Why we find
system() function? Because the C library function ​int system(const char
*command)​ passes the command name or program name specified by command to
the host environment to be executed by the command processor and returns after
the command has been completed.

cgiPingTunnel_igd() function using system to execute some command that is passed
from user via web interface
Using IDA to find cgiPingTunnel_igd() function definition, it receive input param via
fputs function without any validation.
It related to add, remove or enable/disable IPSec tunnel on router (figure below)

Input from user via web interface is pass to ​fillIPSecInfo() function

After that, input to pass to system() function to execute command. User input is
passed to %s as a string, and it is used as a part of command.

IPSec Tunnel allow create an ipsec tunnel on router, before creation, it will ping to
host that user input to check if it is alive or not. Because, %s is passed to function,
so user can user ; or | to separate command to 2 other command.
Example in normal case:
Uer input is: ​8.8.8.8
The system will executes as bellow:
system(“ping 8.8.8.8”)
Example arbitrary command:
Uer input is: 8.8.8.8 | cat /etc/passwd
The system will executes as bellow:
system(“ping 8.8.8.8 | cat /etc/passwd”)
There are two command will be executed here:
ping ​ping 8.8.8.8​ and ​cat /etc/passwd​. User can change cat ​/etc/passwd​ to
any command what they want.

Demo
Attack on IPSec Tunnel

Using Burpsuite to capture request and edit input:

Command will read content ò etc/passwd file and reverse back to server
192.168.1.2.
And this is result:

Conclusion
Never trust user input. ​If your application calls out to the operating system, you need
to be sure command strings are securely constructed, or else you risk having
malicious instructions injected by an attacker. This section outlines a few approaches
to protecting yourself.

Injection vulnerabilities occur when untrusted input is not sanitized correctly. If you
use shell commands, be sure to scrub input values for potentially malicious
characters: ​; & | `

