Reversing Games Serie :

(Offline and Online Games)
| - Reversing Offline Games :

By Souhail Hammou (Dark-Puzzle)

Welcome to the first article of the serie “How to reverse games”. We’ll be covering in this serie
how to reverse both online and offline games . To start | will show a simple example on how to
locate the exact routines then do some edits to score more when you hit a certain object in the
game Pinball . | tought about starting with such a game that is available in almost every windows
XP so that everybody can practise what is explained in this article.

What will we need in this tutorial ?:

In this tutorial we will need CE (Cheat Engine) that is a free open-source tool that can be
downloaded from :

http://www.cheatengine.org/

this tool will help us locate the exact routine that is adding score gained when the ball hits a
certain object .

We will also need a debugger (OllyDBG , Immunity) in order to examine the disassembly and
also memory for arguments and instructions that gives us a score and also to save the new
patch into a new executable making the changes permanent.

What are we waiting for let’s get started !

- Finding addresses :

First we will need to locate the exact routine that adds the score when the ball hits whatever
object , it's simple open CE , attach pinball.exe process (PINBALL.exe is available by default
under this directory “C:\Program Files\Windows NT\Pinbal\PINBALL.EXE”, play a little bit until
the ball falls between the two bars or just use speed hack to pause the game to get a stable
score . Enter that score into CE in a form of a DWORD (4bytes) , the score will be searched . In
most cases you’ll find one address with the first scan .

Cheat Engine 6.2 Q@@

File Edit Table D30 Help

— 0000081 C-PINBALL EXE
|) V S|

Found: 1

Address Value
007E8A04 93250 | Settings

This list shows all the found addresses that matched your last scan i

—

Scan Type E wact Value v

Yalue Type

Memory Scan Options P T korniaee

| [[] Enable Speedhack

|
Add Address Manually

Active | Description Address Type Value

Advanced Options T able Extras

http://www.google.com/url?q=http%3A%2F%2Fwww.cheatengine.org&sa=D&sntz=1&usg=AFQjCNHVz_fSVRIagmv3GLDfKfGZALZI2w

If not play again then you will recognize that one of the addresses changes to your current score
. So that score will be at a certain address (007B8A04 in our case) , but that address is nothing
but the memory location where the score is stored , so we will use it to find where the program
exactly writes to that scores and adds what’s gained after the ball hits a certain object in the
game. To do so , we will need to add that address to the table (Double click the address) then
click “Find out what writes to that address” .

Value |ppe 4
Memarny Scan Options NV andomizar
[] Enable Spesdhack
=
|
Add Address Manually

Active Description Address Type Walue
[Hod A Byter gmezgEl

O07BRa04

ettt

Delete this record Del
Change record 4
Browse this memory region Chrl+B
Shaw as signed

Show as hexadecimal

Change Color

SetfChange hatkeys Chrl+H
Toggle Selected Records Space

Pointer scan for this address
Find out what accesses this address

Find out what writes to this address

Recalculate new addresses
Force recheck symbols

Cut Chrl+%

Copy Chrl+C

Paste Chrl+Y

Create Header

An empty box will pop up , that's because we need to hit another object with the ball to find out
what opcodes write the score / write to 007B8A04.
After playing another round an instruction will pop in that box.

The following opcodes write to 007BBAO4 X

C.. Instruction |
1 01013C98 - 89 08 - mov [eax].eck

|

01013C98 - 89 08 - mov [eax], ecx . what this instruction do is copy the value of ECX register
into a DWORD in the memory location pointed by EAX , this must be our total score right ? but in
this tutorial we will try to analyze what happens before all of this ! How this score is being
generated ? When the ball hits a certain object , how the score of hitting that certain object is
being set then passed to this routine to be added to the previous score.

To figure out all of this , all we have to do is keep that address in mind , switch to a debugger
(Immunity debugger in my case) then start doing things backward .

- Debugging the game :

Now, to successfully debug the game you have to detach it from CE , start it again or start a new
round and play for some seconds , then attach the process pinball.exe to the debugger . | found
a problem attaching it but | figured out this solution , it may be the case for you it may be not ,
who knows ? So after attaching the debugger to the game all we need to do is go to that address
that writes to 007B8A04 which is 01013C98 . Before you'll find yourself in a different Module
(ntdll) , go to Executable modules and double click Pinball.exe module . Now press “CTRL+G”
then paste the address 01013C98 to go directly to that expression. Now we will try to locate
ourselves inside of code , all we have to do is figure out where that routine starts. The main goal
from doing this is to go to the root of the calculation that sets the score gained whenever the ball
hits a certain object .

=

Routine starts

O O O O

= e e e e
=

ua s fun]

Returns

1
1
1
1
1

=

=

Ok, what to do now ? We will need to locate which calls are referencing to that beginning of the
routine , right click “MOV EDI, EDI” -> find references to -> selected commands. Before doing
this you will need to analyze code in order to locate all the calls , loops and routines ... by the
debugger , to do so press “CTRL+A” .

Okey after getting all the refering addresses as shown in this capture ,

Canmment

CALL PIMEAL
CALL PIMEA

| set a bp in all the calls referring to 01013C89 to locate the exact address that calls the routine
that we saw . In fact all those addresses are calling “MOV EDI, EDI” but we are just interested in
that call that is related to the score gained while hitting an object not while getting bonus ... etc
Let’s go playing a little bit now , the call that we want will be hit as soon as we will hit an object in
the game or go through some point where we get score (entering between the two small gates
when shooting the ball). Ok , now | broke into this address 01017598 , we will delete all the other

breakpoints as we don’t need them anymore in our task.
B1E17ES . 8918 HMOL OWaRD FTR O5: CEAXI, EOX
5 =N 5 FUSH DWORD PTR CERX] 7 [Elr--;u:-';'

PUSH DWORD FTR Argl
PIMEALL. ¢ PINEALL.51813CE9

& ECCEFFEF

So, basically before that call we have two arguments pushed into the stack, let's see what’s
going now under the hood with those arguments , so first a 4 bytes DWORD as known will be
pushed as a 2nd arguments basically because the stack works backwards So the stack will see
this as : CALL address --> Arg1 --> Arg2 means from ESP-4 to ESP+4 . This second argument
refers to a DWORD that is located in the memory location pointed by EAX , without going
through memory dump and searching for that address we will look a little bit up in that routine.
Before that, we can clearly see that 01017593 was reached by a short conditional jump after
comparing EDX to a value . before that jump and comparison there’s an instruction that moves
that DWORD in the memloc pointed by EAX into EDX so we can check EDX register and get the
2nd argument which is in my case : 0003EEDG6 which represents 257750 in decimal and that is
the total score that | will get. The 1st argument can be gathered by checking the memory dump
after the DWORD is pushed , after doing this | got : 0003ECEZ2 which represents 257250 , we’ll
see how to do this later in this tutorial . Now , the things are beginning to be clear 257750 -
257250 = 500 . which means 500 points. Then those arguments will be used in the first call that
we saw to put the total score into the game after some other routines...

Now all we have to do is to go more deeper , we will do as we did last time go to the starting of
this routine , check the referencing calls to the first address then set a bp on all those calls , after
that play the game a little bit again . Don’t forget to remove the previous breakpoint so when you
want to pass it the executable will continue normally without stopping you again.

[References in PINBALL:.text to 01017526

F
P

L
P
P
F
P
3
P
P

To spoil you a little bit about the importance of those calls , | can tell that each one refers to an
object inside the game (Right and left electro shocking object , those circle buttons ...etc) . So for
this tutorial | chose the Right electro shocking object to study , the suitable call in its routine from
this list is the CALL in this address 0100C4BD . Let's puta bp oniit.

Now make sure that you removed all other breakpoints , so when you hit another object than the
electro shocking object (situated at the bottom right of the pinball table) you won’t break at the
previous Calls.

%/ Pinball 3D pour Windows - Cadet de |'Espace

Partie Options 7

Here where the fun part comes , just keep on reading ... =)

After playing a little bit and hitting the electro shocking object we will suddenly break on the call,
all we have to do now is analyze that routine to get into what we want.

Here we are, | just broke at the CALL address 0100C4BD that is calling the previous routine that
we saw (just to remind you).

Here’s an capture showing the routine with some short comments explaining what the important
instructions do :

memory at 1BE1ATC

into the s
bitl

JORD PTR_DS: o Here where the magic happens =) be back to it in a bit

Just keep in mind the address pointed by ECX is 007CC280 . This address represents a
memory location that was set in EBP+C after the CALL DWORD PTR DS:[EAX] .

So now , we have to set a bp on the starting of that routine again 0100C48D and step over each
instruction . After the CALL DWORD PTR DS:[EAX+8] we will notice that the value of EAX has
changed to 000001F4 which represents 500 in decimal . This is the score relative to hitting that
object . Now after knowing which call is exactly controlling the score “500” after hitting the electro

because of the previous JHP

“OR EQ
FOP EEF
A 4

Return to the previous routine

So we noticed before that after this call EAX was containing our score , the last instruction in that
call moving something to EAX that something is our “Magic Instruction” that we will deal with it
with an interesting way in order not to play with memory and ruin other instructions that may call
those locations. Before doing that | will explain what this instruction does :

So ECX was set in the previous call as we noticed : ECX = 007CC280 and EAX =00000000 as
the DWORD in [EBP+8] = 00000000 , And 56 which is 86 in decimal is added to that memory
location address at ECX , all of that happens for one purpose copying an existing DWORD at
[ECX+56] to EAX . We can already say that this value is 000001F4 which is represented by F4
01 00 00 in memory (So it's automatically converted to little endian by the debugger).

So to know where exactly to look we will add 56 to the actual value of ECX , EAX isn’t important
cause 0*4 = 0. Let’s do the calculation : 007CC280 + 56 = 007CC2D6 and this is the address
that will be in EAX after that instruction (MOV EAX, [ECX+EAX*4+56]).

Our mission now is to change this instruction and make our score higher than 500 , our objective
is to follow 007CC2D6 in memory dump , look for another DWORD already available in memory
dump higher or lower than 007CC280 so we can put either (-) or (+).

To do so, a capture is describing how :

BiBlEEBEI . =123 F MORD _PT kS The Magic Ins

Copy pane ko clipboard
Maodify data

Address [Hed dum Follow address in Dump
Appearance b

This will take us in the Hex Dump windows directly to this :

Ok now , | took a look a little bit down to find another DWORD that has a greater value from 500
to increase our score .

| came across that address 007CC3C9 which has : C9 7C 00 00 --> little endian 00007CC9 and
in decimal 31945 .

So now we have to know the difference between the two addresses 007CC280 and 007CC3C9 .
So we’ll do this calculation 007CC3C9 - 007CC280 = 149 .

Now it's time to assemble that instruction and make a patch :

MOV EAX,DWORD PTR DS:[ECX+EAX*4+149]

which will add a score of 31945 instead of 500 =) .

And all this without editing any value in memory.

Now to save all those changes , remove all the breakpoints then right click anywhere in CPU -->
Copy to executable --> All modifications then click yes and save it wherever you like.

This is how to make our changes permanent so you can benefit from a huge score whenever

you play .

P.S:

the positive thing that you can also benefit from is that this small routine is called by other
routines referring to different objects, raising the value added to [ECX] from 56 to 149 will make
us benefit more and more certainly if the value of [ECX] is different from our case which will call
another DWORD that may help us gain 1 millions or 2 millions of score.

And also , this tutorial makes the task a little bit hard and long because we can just edit the score
at the first step using Cheat Engine and make it infinite , but the purpose of this paper is to know
that cheating is more than editing memory , it’s is also about analyzing routines , instructions
which makes it more fun.

About the author :

Souhail Hammou known as Dark-Puzzle is a security researcher and a reverse engineering fan
from Morocco. He discovered many Oday vulnerabilities in many software of famous companies
(Tonec Inc , Huawei , FLstudio , Microsoft , Mozilla, Safari ...) and he’s also working on
webapplication vulnerabilities in his free-time. Souhail made a blog where he’s submitting his
latest research , lessons and news and is available at http://www.dark-puzzle.com/.

You can contact him at : dark-puzzle@live.fr

Or : https://www.facebook.com/dark.puzzle.sec

http://www.google.com/url?q=http%3A%2F%2Fwww.dark-puzzle.com%2F&sa=D&sntz=1&usg=AFQjCNFqdQF3Q0jopL59dcIHS3ETVSIGVw
mailto:dark-puzzle@live.fr
https://www.google.com/url?q=https%3A%2F%2Fwww.facebook.com%2Fdark.puzzle.sec&sa=D&sntz=1&usg=AFQjCNHPpAxqXEtboew7atEasC980O-T4w

