
Dynamic Data Flow Analysis via Virtual
Code Integration (aka The SpiderPig case)

Piotr Bania

bania.piotr@gmail.com

November 2008

"I'm all alone

I smoke my friends down to the �lter

But I feel much cleaner

After it rains"

- Tom Waits, Little Drop Of Poison

Abstract

This paper addresses the process of dynamic data �ow analyzing using vir-
tual code integration (VCI) technique (often as dynamic binary rewriting).

This article will try to demonstrate all the techniques applied in the Spider-
Pig project [15]. It will also try to discuss main di�erences between methods
used in other available software and introduce other related works.

SpiderPig approach demonstrates very fast and enough transparent solu-
tion for providing reliable and usable data �ow analysis. It was created in
the purpose of providing a tool which would be able to help vulnerability
and security researchers with tracing and analyzing any necessary data and
it's further propagation. At the time of writing this article, SpiderPig of-
fers one of the most advanced solutions for data �ow monitoring. At the
current state it works on IA-32 platforms with Microsoft Windows systems

1

mailto:bania.piotr@gmail.com

and it supports FPU, SSE1, MMX and all of the IA-32 general instructions.
Furthermore it can be extended and cover other operating systems and archi-
tectures as well. SpiderPig also shows the usage of virtual code integration
(VCI) framework which asserts modifying target application code at the in-
struction level. In principle VCI framework allows custom code insertion,
original code modi�cation (that includes full customization of original appli-
cation's code, in other words deleting/modifying/replacing any original code
instruction is fairly easy and possible at request).

In the next sections the most important techniques used in SpiderPig
mechanism will be described.

Acknowledgments

Author would like to thank several people who have more or less helped
with writing this paper (random order): Rafaª Le±niak, Grzegorz Aksamit,
Julien Vanegue, Yash Ks, Rolf Rolles, Matt "skape" Miller, Jim Newsome and
Dawn Song (for giving author a chance to look at theirs excellent TaintCheck
[21]) and Adam Zabrocki (za sok pomara«czowy pod biaªorusk¡ granic¡).

1Some of the most heavily used SSE2 instructions are also supported.

2

Contents

1 Introduction . 5
1.1 History . 6
1.2 Goals and usage . 7

2 SpiderPig - Design and Implementation 7
2.1 The Exporter Module . 8
2.2 The Loader Module . 11
2.3 The Results Processor Module 15

3 Virtual Code Integration 17
3.1 De�nition of Code Integration 17
3.2 Division of Code Integration 18
3.3 The Virtual Code Integration Process 18

3.3.1 Compilation (assembly) Stages 20

4 The mechanism of Data Flow Analysis 22
4.1 The Packet Procesor . 22
4.2 Main De�nitions . 23
4.3 Monitored Memory Regions 24
4.4 Predicting Data Propagation 25

4.4.1 Preparing the
{
Ok

in, Ok
out

}
variants 26

4.4.2 Using the
{
Ok

in, Ok
out

}
variants 29

4.4.3 Disputable Objects . 31

5 Testimonials, Limitations and Potential Workarounds . . 34
5.1 Memory Usage . 34

5.1.1 Memory Usage Caused by Module Loading 34
5.1.2 Memory Usage Caused by Packet Recordings 35

5.2 Speed Results . 36
5.2.1 Exporting performance 37
5.2.2 Virtual Code Integration Performance 37
5.2.3 Analysis (Instrumentation) Performance 38

5.3 Data Flow Analysis Interferences 40
5.4 Communication Method . 40

6 Transparency . 42

7 Related Work . 44

8 Future Work . 45

3

9 Last Words . 46

4

1 Introduction

"You see, but you do not observe. The distinction is clear."
- Sherlock Holmes, A Scandal in Bohemia.

Examining data �ow is often the main and the hardest task in the vulner-
ability researching and vulnerability localization process. Frequently even if
the vulnerability is found, for example a fuzzed �le causes an access violation
in the target application the main questions still remain - Why the generated
data causes the application to fault? What was the in�uence of the gener-
ated data on original application? and �nally what really happened? And as
the modern applications become more larger and more complex the answers
for that questions in many cases became much harder too. Because of that
the time that is needed to fully identify a vulnerability has also increased
signi�cantly. So what about the appropriate answers? Can the data �ow
analysis give them? - Yes! So if it's a one-word answer where is the catch?
- That's a good question. Up till now there was no tool that was addressed
specially for the vulnerability researching process, a tool that could automate
the analysis, and in the end return reliable results in a way that they could
be easily processed. Even now the data �ow analysis is still mostly based on
manual work: spending days, weeks, months depending on the complexity
of a program to fully understand and to locate the answers for the questions
mentioned above. SpiderPig can not totally automate this process either
but it can dramatically decrease the time one must spend on manually per-
forming the same analysis and it can return the results in a highly viewable,
interactive graphics form.

At current state SpiderPig contains following features:

• operates on the binary level of any selected program

• low CPU usage2

• good performance2

• provides detailed informations about CPU context for each monitored
thread and module

• asserts either a dynamic (real time - while program runs) or static (at
any time) packet and data �ow analysis

2the results may vary, this will be further discussed in section 5

5

• elastic and portable; exports, imports all important informations in-
to/from the SQL database; working in network mode is also possible,
furthermore all of the SpiderPig modules (see Figure 1) can work in-
dependently and are able to share data using the SQL database

• provides independent means for processing exported data (interactive
clickable GUI, graph generation, code search at the instruction level)

• delivers full data propagation monitoring (includes monitoring of regis-
ters, e�ags, memory regions; providing accumulative information about
the history of data propagation and de�ned objects at any time of the
analysis)

• monitors all data requests, like time and place of: creation, destruction,
and reference

• provides easily customizable integration framework which allows addi-
tional code insertion at the instruction level and original code modi�-
cation (that includes full customization of original application's code,
including deleting/exchanging/rewriting any particular instruction)

1.1 History

The general idea of the data �ow tracer was bothering author since he has
started digging into security research. There were a lot of di�erent methods
and approaches that were implemented in the past. Speaking about the re-
sults from the time perspective gives one main conclusion - the past methods
author has used, produced either unstable results or so slow that practically
not usable. Some of the previously used methods were:

1. partial or semi-full emulation (includes single stepping approach)

2. page access protection (page access interception)

3. breakpoints controlled execution (int3 / debug registers / Model Spe-
ci�c Registers (MSRs))

Almost all of the presented items caused very high CPU usage and signif-
icant slowdown of the original application performance. Furthermore item
number 2 was not only causing major slowdown but was also responsible for
unstable application's behavior (specially when modifying the page protec-
tion of the stack space). Some of the listed techniques were mixed and used
together, some were also customized for example by hooking (intercepting

6

and redirecting) KiUserExceptionDispatcher3 function instead of monitor-
ing application exceptions indirectly from the debugger's loop. Even after
performing those optimizations the results were still not enough satisfying.

At the time when author managed to �nish the physical code integration
engine4 for an old project called Aslan [14] he didn't know similar approach
(well in fact a little bit di�erent) will be used in creating SpiderPig. When
it comes to specifying the exact date of birth of the SpiderPig project there
is no strict one. If anyone would ask how much time author spent on it, he
would say few weeks - where of course planning and debugging part was the
most time consuming.

1.2 Goals and usage

Main goal of the SpiderPig was to provide support for vulnerability re-
searching process and also show how the data �ow analysis can help in per-
forming such tasks. Additionally it is a good example of cooperation between
static and dynamic binary code analysis.

Author has successfully used SpiderPig for discovering and analyzing sev-
eral software vulnerabilities. Sample video demo (tutorial) which describes
the vulnerability identi�cation process with help of SpiderPig is available on
the project web site [15]. The Integrator element from the Loader Module
can be also used as a framework which allows injecting instrumentation code
(or editing the original instructions) and it also may provide support for 3rd
party plugins.

2 SpiderPig - Design and Implementation

SpiderPig is composed of three main modules. Each module is independent
(it can basically work alone) and has a strictly assigned objective. SpiderPig
is implemented as a standalone tool and unlike TaintCheck [21]5 it doesn't de-
pend on any additional binary instrumentation frameworks. Internal project
composition is illustrated in Figure 1.

As you can see the composition includes three modules (SpiderPig Ex-
porter, SpiderPig Loader, SpiderPig Results Processor) and a SQL database,

3KiUserExceptionDispatcher is a function responsible for calling the user mode struc-
tured exception handler (SEH) dispatcher. See [22, 20] for details.

4Part of the Aslan tool that allows physical code integration into any particular binary
Portable Executable (PE) �le including rebuilding of import table, export table, reloc, tls,
resource sections. The modi�ed PE �le preserves the properties of the original.

5TaintCheck is implemented either in Valgrind [12] or in DynamoRIO [3] framework.

7

Figure 1: General composition of SpiderPig project.

which is used for the data storage. This step makes SpiderPig portable and
elastic. Moreover it also enables working in a network mode even when each
of the presented modules (Figure 1) is being run on a di�erent machine.

Next few sections will provide technical details about each of mentioned
modules.

2.1 The Exporter Module

The SpiderPig Exporter Module as the name says is responsible for gather-
ing, coding and exporting all necessary informations required by the two re-
maining modules (Loader Module(see subsection 2.2), Result Processor Mod-
ule(see subsection 2.3)). In current state this module is a plugin for IDA
Pro [19] (see item 1 for details). The module consists of parts illustrated in
Figure 2.

Figure 2: Internal structure of SpiderPig Exporter Module with marked di-
rections of the data �ow.

As you can see this module consists of 5 internal elements and 1 external

8

element (not including the SQL database):

1. External Disassembler

This element's task is to deliver user speci�ed disassembly for further
processing. As it was mentioned before, currently the disassembly data
is being imported from IDA Pro. This particular external disassembler
was chosen because of couple of reasons:

• world's most popular disassembler

• provides a very large degree of automatic code analysis and other
important informations

• highly interactive

• works on multiple operating systems (Microsoft Windows, Linux,
Mac OS X, Windows CE)

• contains numerous support for very large number of processors
and compilers

• easily scriptable and provides excellent SDK

• version 4.9 is available for free

Even though IDA is the actual external disassembler of choice it is
quite possible to use any other one which will provide informations on
the similar level. Obtained data is being used in next element - Data
Parser.

2. Data Parser

This element is responsible for creating intermediate representation of
each single instruction. This developed intermediate representation is
stored in the IR Capsule, which makes it available for other elements.

3. IR Capsule (map)

IR (Intermediate Representation) Capsule is a simple container de-
signed for easy data storage and fast data reference. The data is stored
in special format (representation) used in the rest of SpiderPig mod-
ules. The main purpose of this module is to provide necessary data for
all requesting elements.

4. Data�ow Region Creator

9

Data�ow Region Creator is one of the most important elements in
SpiderPig project. It is responsible for creating so called data�ow re-
gions and extending actual intermediate representation of the selected
instruction. Data�ow regions are special forms of code representa-
tion. Each of such regions may consist of 1 to N instructions, where
N ∈ < 1, Nmax > and Nmax represents the total number instructions.
Each data�ow region structure is a bit similar to a basic block 6 structure
but it includes few major exceptions. Those di�erences are necessary
for performing the data analysis process. This will be further discussed
in section 4.

5. Internal Disassembler

Internal Disassembler's task is to provide special, extended informa-
tion about selected instruction. This information includes details about
destination objects, source objects and memory objects used by the in-
struction. Provided information is used in Data�ow Region Creator in
the process of forming the data�ow regions. In the current implemen-
tation this element is an entirely standalone x86 disassembler. More
detailed information about it's capabilities will be presented in sec-
tion 4.

6. SQL Exporter

This element is responsible for exporting all the previously prepared
data from the IR Capsule to the SQL database. Current implemen-
tation uses MySQL [24] database together with MySQL library which
provides the API for the communication purposes.

The testimonials describing the performance of exporting informations into
the SQL database will be discussed in section 5.

Module summary In short words Exporter Module is responsible for com-
puting data�ow regions, gathering instructions information and exporting
them to the SQL server.

6Typical basic block contains set of instructions which have a single point of entry and
a single point of exit for program control �ow.

10

2.2 The Loader Module

This module is responsible for performing the data �ow analysis of the
selected program. It also the biggest part (heart) of SpiderPig project.

Figure 3: Internal structure of SpiderPig Loader Module with marked direc-
tions of the data �ow.

In the current implementation this module is a plugin for OllyDbg [25], but
it can be used almost with any other debugger or suitable tool. OllyDbg
was chosen because of two facts - it provides excellent, intuitive graphical
user interface (check item 1 - Front-End (User Interaction) description for
details) and it is the most popular debugger nowadays.

Figure 3 shows the structure of SpiderPig Loader Module. As you can see
it is build by six internal elements and three external ones (not including
Shared Memory and Target Process blocks). All the elements are described
as follows:

1. Front-End (User Interaction)

This element is obliged to create easy and intuitive interface which
will establish the communication between user and SpiderPig Loader.
Current implementation uses OllyDbg [25] as the front-end element.
Practically any other debugger is suitable.

Please note: Although the debugger is used as the front-end element
it doesn't mean it is essential for the entire work of SpiderPig Loader.
The debugger is used mainly as the interface and it can be detached -
the analysis will still be performed without any problems. This element
was mainly introduced for increasing the comfort of work.

11

2. Data Reader (Importer)

This element (also known as Data Importer) is responsible for retriev-
ing all the necessary data from the SQL database. This data is then
stored into the Data Depot - that makes it available for other elements
in the module. The testimonials describing the performance of import-
ing informations from the SQL database will be discussed in section 5.

3. Integrator

The Integrator is one of the most complex elements in the project. It
is designed as a framework. It provides necessary means for additional
virtual code integration. It also enables original code modi�cation, like
full customization of originally provided code, including deleting, ex-
changing or rewriting any particular instruction. It supports plugins.
The integration process will be presented in section 3.

4. Data Flow Block Creator

This element is in fact a plugin for the previously mentioned integration
framework. The main task of this part is to generate speci�c blocks of
code into the provided instruction base. This will setup the internal
communication between original application's code and the SpiderPig
Injector. This will be further discussed in section 4.

5. Communication Server

The Communication Server listens for communication requests on a
speci�c channel7. This communication is performed between supervi-
sor (SpiderPig) and the target process (application that is being an-
alyzed). Speci�c packets (often referred as rpackets) are being sent
through the mentioned channel. Entire communication is synchronized
this protects from potential race conditions �aws. The �nal task of this
element is to choose if the Packet Processor should process the packet
in either dynamic or static way. The received packet becomes Packet
Processor's argument.

Furthermore Communication Server is capable of returning processed
packets to the Injector element, in example this feature is used for giv-
ing back a typically modi�ed CPU context data (basically a set of data

7It is currently implemented as shared memory section.

12

essential for context switching task). However due to nature of this
tool (which acts more like an observer) it is really insigni�cant and was
disabled mainly because of performance purposes.

Proposed communication method together with a small comparison
between other available communication methods will be presented in
subsection 5.4.

6. Packet Processor

The Packet Processor is the heart of the data �ow analysis process.
It allows two types of packet processing:

• static processing

This type allows the packets to be only gathered while the original
target program runs. The packet analysis process starts at user
request (typically after all important packets have been gathered).
This solution very signi�cantly increases the performance of an-
alyzing the data �ow of the target application (very low rate of
slowdown is observed between clear application run and the run
of monitored one).

• dynamic processing

In this option packets are being processed on the �y (as the orig-
inal program runs). Initially it was performed in real-time mode
(target application's execution was resumed after the process of
packet analysis). However this type of action caused much larger
slowdown rate, so in the current implementation the analysis is
still performed as the original program runs, but it works in back-
ground (target application does not need to wait for the packet
processing task to end). However the packet analysis still can be
injected into original code �ow, but of course this solution will be
much slower.

Each packet is identi�ed by a special, unique ID number. By default
the ID unique can handle 232 unique values but it can be extended to

13

cover 264 possible values. Limitations, potential problems and possible
workarounds for this implementation will be listed in section 5.

The sample comparison of those two methods (static and dynamic
packet processing) will be discussed in section 5. The process of data
�ow analysis will be described more deeply in the separate section (sec-
tion 4).

7. Data Depot

This is not a strictly formed element, it encompasses the most impor-
tant data containers used in the SpiderPig Loader module. It's main
task is to provide necessary data and additional storage place for other
elements.

8. Results Exporter

The Results Exporter as the name says is responsible for exporting
all the created (recorded) results into the SQL database. This makes
the created data available for Results Processor Module or any other
3rd party software. The results are exported in highly processable form
which describes almost every important state of analyzed code together
with the additional information about data �ow and it's propagation.

9. Injector

This part is injected into Target Process. This element's main objective
is to open the communication channel, prepare the synchronization ob-
jects and provide functions for the data transferring. The data will be
send to the the Communication Server.

This element is also responsible for the context switching, but like it
was mentioned earlier in Communication Server (item 5) due to nature
of this tool it is currently disabled. At this point it mostly takes care
about original CPU context value preserving.

10. Shared Memory

This element is in fact internal object provided by the operating system
(in current implementation it is Microsoft Windows). Shared memory
sections also known as �le mapping objects are typically used to share
a �le or memory between two or more processes. In our case two shared
memory sections are used:

14

(a) Code Section

This section is used to provide integrated code to the target pro-
cess. It is created with a speci�c size and strict page protection
options (typically they allow the section to be executed and read).
This memory section is also baked by the system paging �le.

(b) Communication Channel Section

This section is used as the communication channel. It is used
by the Injector and Communication Server for transferring nec-
essary data between themselves. This section is also baked by the
system paging �le and it is created with read-write page protection
rights. This rights allow storing data to the section and reading
data from it.

The comparison between using shared memory section and other
available methods usable for interprocess communication will be
presented in subsection 5.4.

11. Target Process

This is basically a process that is being analyzed. In currently sup-
ported operating system this is a Portable Executable [7] �le designed
to work in user mode (ring 3). For obvious reasons SpiderPig can't
work with self modi�able programs. This statement will be discussed
in section 5.

Module summary In short words the Loader Module performs the data
�ow analysis of the target process and exports the results to the SQL server.
To achieve its goals module uses informations previously exported by Ex-
porter Module.

2.3 The Results Processor Module

The SpiderPig Results Processor Module is used for displaying and pre-
senting recorded results. It is the most customizable part of the SpiderPig
project. Following diagram (Figure 4) shows from which elements it is built:

The used elements are:

1. Front-End (browser)

15

Figure 4: Internal structure of SpiderPig Results Process with sample marked
directions of the data �ow.

It is a front-end (typically a web browser) chosen by the user. There are
practically no limitations here, however it is advisable that the chosen
browser should have a support for JavaScript and for processing dy-
namic html (DHTML) content.

2. Web Server

This element is necessary for providing the communication between
user and the rest of elements. In current implementation Apache [1]
server is used, together with additional modules for PHP [9] (version
5.2.5) and additional modules for MySQL support. This element is also
customizable, every other web server which provides necessary support
for PHP and MySQL should be able to work correctly too.

3. Report Generator

This part is responsible for generating reports from selected record-
ings. This element presents the recorded results in highly interactive
form using intuitive graphical interface. It allows the user to travel
through recorded packets and recorded results from the data �ow pro-
cess. It allows user to customize graphical skins which describe the
output format and the design of the report.

4. Graph Generator

The Graph Generator is using for graph generating. The created graph

16

is rendered by DOT [6]. It's main task is to provide the visualization of
the data �ow. Like every element listed here it can be also customized.

5. Results Finder

This element provides a very easy way to search for speci�ed data
in recorded results. In current implementation it supports searching
for speci�ed instruction in recorded packets and also linking the packet
to the speci�ed monitored regions. Future versions should be able to
search by using di�erent more advanced criteria.

Module summary The Results Processor is used for visualizing the results
of data �ow analysis which are received from the SQL server. It also provides
a graphical interface for the user which allows the user to interact with the
gathered results.

3 Virtual Code Integration

Code manipulation is surely a one of the most interesting �elds of research.
Through all the past years many di�erent approaches have been presented.
The code manipulation is rather a complex term and it also refers to other
sub-terms like: runtime code manipulation, binary instrumentation, binary
translation, dynamic compilation and so on. The code integration term seems
to be a sub-term of code manipulation. However it is bit hard to describe
it by the usage of other already presented sub-terms. Code integration pro-
vides support for code manipulation and binary instrumentation techniques.
However the terms like: runtime code manipulation or dynamic binary in-
strumentation does not really �t to the code integration process, it's more
like a static binary instrumentation approach.

3.1 De�nition of Code Integration

The term code integration is sometimes referred by using other terms like
binary code rewriting or as binary code manipulation. Since this entire terms
digression maybe not accurate at all author would like to notice he is re-
ferring to code integration as a method of disassembling binary code, trans-
lating it into some intermediate representation and �nally assembling it (re-
translating) again to speci�c instruction set of the speci�ed machine. From
the other hand this de�nition meets more or less the "The Proposed 1997

17

Architecture of a Retargetable Binary Translator" [18] too, however like it
was stated earlier the code integration term will be further used.

3.2 Division of Code Integration

Speaking about code integration two additional sub-terms should be pre-
sented: Physical Code Integration and Virtual Code Integration. In this
document all references to Physical Code Integration term describe a type
of code integration which causes psychical changes of the modi�ed �le and
it's internal format headers (typically this refers to Portable Executable �le
format). The Virtual Code Integration term describes a process where all
the changes are done virtually without any interference to program's format
internals.

Author have implemented both types of presented here code integration
types. The physical one was implemented in Aslan [14] where the virtual
one is implemented in SpiderPig. The VCI method is easier and produces
more stable results because of following properties:

• no modi�cation of �le format structure is needed

In Physical Code Integration together with the change of program's
code the internal Portable Executable �le structure should be updated
as well. This should include rebuilding the import table, export ta-
ble, reloc, tls, resource sections and so on. VCI method don't have
to implement those additional techniques because they are simply not
needed.

• no relocation of data is needed

The Virtual Code Integration method applied to SpiderPig does not
need to recompile original program together with data. The original
data used by the original application is stored in the exact place. This
increases the stability of the integrated application also no special re-
align methods need to be applied unlike in the Physical Code Integration
method.

3.3 The Virtual Code Integration Process

Virtual Code Integration process consists of three main steps:

18

1. decompiling (disassembling)

This step provides necessary information about the code which needs
to be modi�ed (in this case some basic intermediate representation of
instructions is used). In the SpiderPig project this point is covered
by SpiderPig Exporter module (see subsection 2.1). This is the most
important step in the procedure. Provided information must be very
reliable and any mistake about recognizing data as code or vise versa
may be fatal. This assumption is one of the answers for a question why
dynamic binary instrumentation software is typically far more reliable.
However fortunately for us IDA brings very reliable disassembly and
moreover it also allows the user to provide custom modi�cations (so
called interactive disassembler). Also some of the applications provide
additional Program Database �les (PDB [11]) which also help with the
disassembling process. Furthermore the decompiling process is also as-
sisted by the SpiderPig Loader (see Data Reader subsection 2.2) which
re�ects the changes done by the PE Loader to the original code (for
example relocations and o�sets modi�cation).

2. modifying

This step is generally an entry for a plugin. At this point deleting,
modifying, replacing any original code instruction is possible. Addi-
tional code can be injected as well to the original code �ow. In the
SpiderPig project the major modi�cations of the original code �ow are
done in the Data Flow Block Creator (see subsection 2.2).

3. compiling (assembling)

This item's objective is to assemble the modi�ed code in a way that
the generated output will be still functional as the original code. This
includes all further o�sets �xing (absolute o�sets, relative o�sets) to-
gether with additional code expansion for example expanding short
jumps or calls into a longer equivalent form. This will be further dis-
cussed in subsubsection 3.3.1.

The limitations, problems and potential workarounds for the Code Integra-
tion process will be described more deeply in the section 5.

19

3.3.1 Compilation (assembly) Stages

After the code is integrated it needs to be compiled (assembled) again into
appropriate (usable) form. In SpiderPig this is done in two stages:

1. stage 1

This stage is responsible for expanding code instructions into a longer
equivalent form and calculating new code locations if needed. It is ob-
vious that every modi�cation of the original code may highly disturb
it's integrity and further state. Stage 1 make sure the integrity is pre-
served and all necessary �xed are made. This stage is also recursive
which means when a code expansion happens the address values must
be calculated one more time.

When it comes to instruction expansion process it is fairly easy since
most of the IA-32 instructions that need to be expanded come with a
longer form. For example JCC (Jump if Condition is Met) or normal
JMP instructions have a short and long form of encoding. However this
doesn't apply to other potential troublesome instructions like: LOOP,
LOOPE, LOOPNE, JECXZ which must be emulated and encoded with two
or more correspondent instructions.

Only when stage 1 is completed, stage 2 can be executed.

2. stage 2

This stage gets executed only after completion of the previous stage.
This increases the performance of the virtual code integration process
since stage 1 is a recursive function unlike stage 2. This stage main
objective is to �x and update all the o�sets referenced by instructions
this includes absolute o�sets and relative o�sets �xing together with
Imported API functions addresses patching and so on. When this stage
is ready the created data represents completely functional original code
mixed with additional instructions.

Below a sample comparison between original code and a virtually integrated
code (two nops after each instruction, no data o�sets a�ected) is provided:

00401000 BB 05000000 MOV EBX ,5

20

00401005 6A 00 PUSH 0

00401007 68 23104000 PUSH 00401023

0040100C B8 23104000 MOV EAX ,00401023

00401011 50 PUSH EAX

00401012 6A 00 PUSH 0

00401014 E8 17000000 CALL <JMP.& USER32.MessageBoxA >

00401019 4B DEC EBX

0040101A 75 E9 JNZ SHORT 00401005

0040101C 6A 00 PUSH 0

0040101E E8 13000000 CALL <JMP.& KERNEL32.ExitProcess >

Listing 1: Original Code

003 D0002 BB 05000000 MOV EBX ,5

003 D0007 90 NOP

003 D0008 90 NOP

003 D0009 6A 00 PUSH 0

003 D000B 90 NOP

003 D000C 90 NOP

003 D000D 68 23104000 PUSH 401023

003 D0012 90 NOP

003 D0013 90 NOP

003 D0014 B8 23104000 MOV EAX ,401023

003 D0019 90 NOP

003 D001A 90 NOP

003 D001B 50 PUSH EAX

003 D001C 90 NOP

003 D001D 90 NOP

003 D001E 6A 00 PUSH 0

003 D0020 90 NOP

003 D0021 90 NOP

003 D0022 E8 14000000 CALL 003 D003B

003 D0027 90 NOP

003 D0028 90 NOP

003 D0029 4B DEC EBX

003 D002A 90 NOP

003 D002B 90 NOP

003 D002C 75 DB JNZ SHORT 003 D0009

003 D002E 90 NOP

003 D002F 90 NOP

003 D0030 6A 00 PUSH 0

003 D0032 90 NOP

003 D0033 90 NOP

003 D0034 E8 0A000000 CALL 003 D0043

003 D0039 90 NOP

003 D003A 90 NOP

003 D003B FF25 49003 D00 JMP DWORD PTR DS:[3D0049]

003 D0041 90 NOP

003 D0042 90 NOP

21

003 D0043 FF25 4D003D00 JMP DWORD PTR DS:[3D004D]

Listing 2: Virtually Integrated Code

The red color indicates a changed o�set, the blue one indicates the con-
stant one (in this case doesn't require �xing but for example in Physical
Code Integration case it would be �xed too). Both codes provide the same
functionality even if it is not visible at �rst glance.

4 The mechanism of Data Flow Analysis

Data �ow analysis is the second most important thing in SpiderPig project.
The data �ow analyzer must be able to detect any memory references (usage)
and moreover be able to predict it's further propagation. This chapter should
introduce general techniques used in SpiderPig. The de�nitions, algorithms
are represented in abstract form. Please note that not every aspect of the
data �ow analysis will be briefed deeply.

4.1 The Packet Procesor

Packet Processor is a part of SpiderPig Loader module and also the heart of
data �ow analysis. Please remember that generating Data�ow Regions, dis-
putable objects, instruction descriptors and also the in-out variants objects
are created only once in SpiderPig Exporter module - Packet Processor just
uses the data. The data �ow analysis is performed in the following way (for
every processed packet):

GetThreadData();
if PredictableInstruction then

ProcessStandardInstruction();
else

ProcessNonStandardInstruction();
end
if PossibleFurtherDataPropagation then

ProcessInOutVariants();
if DisputableObject then ProcessDisputableObject();

end

Algorithm 1: Pseudo algorithm used for performing the task of data
analysis.

Where:

22

• PredictableInstruction describes a typical instruction which uses mem-
ory operand.

• ProcessStandardInstruction is a function responsible for analyzing the
data �ow process within a speci�c instruction which can be fairly easily
predicted (MOV, XOR, ADD and so on but of course they must use a
memory operand).

• ProcessNonStandardInstruction refers to instructions which are not eas-
ily predictable but they are also using memory operands. For example
instructions like: MOVSB, STOSB, LODSB etc.

• PossibleFurtherDataPropagation states that there is a further data prop-
agation possible within the Data�ow Region.

• ProcessInOutVariants is a function designed for calculating the data
propagation within a Data�ow Region the details are presented in sub-
subsection 4.4.2.

• DisputableObject indicates that there is a possible disputable object.

• ProcessDisputableObject is a function that processes the disputable ob-
ject (see subsubsection 4.4.3 for details).

4.2 Main De�nitions

In order to employ the techniques described in this section, there are a few
de�nitions about the process that should be introduced. Notations presented
below are custom.

De�nition 1 (Oarch). Let Oarch be an abstract object and also let Oarch be
described as follows: Oarch = {o1, o2, o3, ..., on}. Where every element of the
set represents internal element of a speci�ed CPU architecture and also every
element may represent a further subset.

For example in IA-32 architecture this object would be de�ned as follows:

OIA−32 = {oeax, oebx, oecx, oedx, ..., oxmm0, oxmm1, ..., odf , oof , }
where oeax = {ohigh, oax} ∧ oax = {oah, oal} (...)

23

In current IA-32 implementation all generals registers, XMM registers, MMX
registers, ST (FPU) registers, debug registers, control registers and all user-
mode �ags are elements of OIA−32.

De�nition 2 (Oi
src and Oi

dest). The Oi
src and Oi

dest are called i-instruction
descriptors. Where Oi

src and Oi
dest ⊆ Oarch. See Proposition 1 for details.

De�nition 3 (Ddr - Data�ow Region). The Data�ow Region structure is
very similar to basic block structure, with one main exception - every in-
struction that refers to memory location (in a direct or indirect way) must be
treated as terminator of the current Data�ow Region and potential start of
the next one. Each Data�ow Region should be considered as side-e�ect free.
Also unlike normal basic blocks the Data�ow Regions contain information
essential for predicting data propagation (see subsection 4.4 for details).

De�nition 4 (Odisputable). Odisputable is called a disputable object and it may
occur within every Data�ow Region. Disputable object represents colliding
elements within group of Oi

dest objects (Oi
dest ⊆ Oarch). Please refer to sub-

subsection 4.4.3 for details.

De�nition 5 (Pmr). Pmr is called a monitored memory region set. Mon-
itored memory regions contains list of request, child and information about
instructions that created or destroyed the actual monitored memory region.

De�nition 6 (Odefined). Odefined is called a de�ned object. A de�ned object
is a set of elements which are marked as tainted in the current analysis (in
this paper "de�ned" has the exact meaning as "tainted").

4.3 Monitored Memory Regions

As it was previously stated monitored memory region is a region which was
previously de�ned (tainted). To achieve fast access to monitored memory
regions a mechanism similar to Shadow Memory [21] is provided. The main
idea of the shadow memory is to track the taint status of every byte in
the speci�ed memory space. Every change of state of the original memory
user is interested in, causes the change of the corresponding shadow memory
location. SpiderPig monitored memory regions include information about
the packets and instructions which created, reference or deleted the speci�ed
region together with lists of child regions. This provides the researcher all
the necessary information for performing future analysis.

24

4.4 Predicting Data Propagation

In this section general propositions regarding the data �ow analysis and
propagation process will be introduced. Methods presented in this section
can be treated as an symbolic execution approach, where the main idea is to
use symbolic values instead of actual data together with representing program
variables as symbolic expressions.

General Propagation Policy:
Every element created by the previously de�ned element (no matter if it was
a register or memory) should be marked as a de�ned element also. However
as further deliberations will show some exceptions states are needed to be
taken into consideration.

Proposition 1 Every instruction can be statically described by two main
objects: Osrc and Odest (see De�nition 2 for details). Where Osrc describes
the source object used by the instruction and Odest represents the destination
object also used by the instruction.

For example Table 1 shows sample representation for a few of IA-32 in-
structions:

Instruction Osrc Odest

1. mov ebx,eax {oeax} {oebx}
2. adc ebx,eax {oeax, oebx, ocf} {oebx, oof , osf , ozf , oaf , ocf , opf}
3. fxch st4 {ost0, ost4} {ost0, ost4}8
4. push 11223344h {oesp} {oesp}
5. nop {∅}9 {∅}13

Table 1: Sample Osrc and Odest representations for some of the IA-32 instruc-
tions.

Proposition 2 Data propagation within the Data�ow Region can be pre-
dicted and statically described by providing k pairs of objects:

{
Ok

in, Ok
out

}
.

Generally there are two ways of predicting the data propagation within the
block of instructions. First way is to instrument every instruction that is
marked as crucial for the data propagation process. Typically this includes

12SpiderPig does not care about the state of C0, C1, C2, C3 �ags.
13Because empty set is also a subset of Oarch (∅ ⊂ Oarch).

25

instrumentation of every instruction that refers to memory (in a direct or
indirect way) or uses internal CPU structures (like registers, �ags etc.). The
second way is to predict the data propagation via using k pairs of speci�ed
objects -

{
Ok

in, Ok
out

}
. This approach eliminates the necessity of instrument-

ing every instruction within the instruction block.

4.4.1 Preparing the
{
Ok

in, Ok
out

}
variants

Current question is: How to correctly describe the data propagation within
a Data�ow Region only by using k pair of objects? In order to make this idea
usable a proper formula (algorithm) must be presented. The

{
Ok

in, Ok
out

}
vari-

ants objects are generated only once inside of the SpiderPig Export module.
The algorithm used for generating the variants is shown below (see Algorithm
2). Where it's input and output parameters are:

• (Input) Ddr, Oi
dest, Oi

src are the objects presented in De�nition 2 and
De�nition 3.

• (Input) Odest_full is basically a
imax⋃
i=0

{Oi
dest}, where imax indicates the

number of instructions located in Data�ow Region.

• (Output) Ok
in, Ok

out are the generated variants and k indicates the num-
ber of generated variants.

26

Input: Ddr, Oi
dest, Oi

src, Odest_full.
Output: Ok

in, Ok
out, k.

Odone = ∅;
k ← 0;
foreach instruction i of Ddr do

while (Osingle = GetSingleElement(Oi
src)) do

if ((Osingle ∩Odone) 6= ∅) then continue;
Oin ← Osingle;
Oout ← Osingle;
foreach instruction j of Ddr do

if ((Oout ∩Oj
src) 6= ∅) then

Oout ← Oout ∪Oj
dest;

else

Oout ← Oout \Oj
dest;

end
if (Oout = ∅) then break;

end
Odone ← Odone ∪Osingle;
if (Oout 6= ∅) then

Odest_full ← Odest_full \ (Oout ∪Osingle);
if (Oin 6= Oout) then

Ok
out ← Oout;

Ok
in ← Oin;

k ← k + 1;
end

end

end

end
if (Odest_full 6= ∅) then

Ok
in ← Odest_full;

Ok
out ← ∅;

k ← k + 1;
end

Algorithm 2: Algorithm used for calculating possible ways of data
propagation and generating Ok

in and Ok
out variants for a speci�ed

Data�ow Region (basic version).

Please note: Presented algorithm is an abstract and limited representa-
tion of the algorithm implemented in SpiderPig which additionally provides

27

support for such IA-32 instructions like CMOVCC, FCMOVCC or SETCC. Also spe-
cial care is taken for a speci�ed IA-32 idioms like XOR REG,REG which always
zeroes the destination register regardless of the original REG value. For such
instructions the object which describes the source object used by the instruc-
tion (Oi

src) is nulli�ed. That means that the destination object is always lost
(because it does not depend on the source object).

Example output: Consider following block of pseudo-instructions which
are located in a single Data�ow Region:

ADD EAX ,DWORD PTR [memory]

ADD EBX ,EAX

ADD ECX ,EBX

Listing 3: Sample code block.

And the generated Ok
in and Ok

out are:

k [#] Ok
in Ok

out

0 {oeax} {oeax, oecx, oebx, ocf , opf , oaf , ozf , osf , oof}
1 {oebx} {oecx, oebx, ocf , opf , oaf , ozf , osf , oof}
2 {oecx} {oecx, ocf , opf , oaf , ozf , osf , oof}

Table 2: Sample generated Ok
in, Ok

out variants.

Lets take more complex example (please don't care about the logic here, it
is just to show the general concept):

ADD EDX , [DELTA]

MOV ESI , EAX

MOV EDI , ESI

SHL ESI , 4

SHR EDI , 5

XOR EDI , ESI

ADD EDI , EAX

MOV ESI , EDX

SHR ESI , 11

AND ESI , 3

Listing 4: Fragment of XTEA block cipher implementation.

And the generated Ok
in and Ok

out are:

And the last example (treat SETZ instruction as a bonus):

28

k [#] Ok
in Ok

out

0 {oeax} {oeax, oedi}
1 {oedx} {oedx, oesi, ocf , opf , oaf , ozf , osf , oof}

Table 3: Sample generated Ok
in, Ok

out variants.

MOV EAX , [DELTA]

MOV EBX , EAX

XOR EAX , EAX

SUB EDI , EBX

SUB EDX , EAX

TEST EDX , EDX

SETZ CL

MOV EDI , 1234567h

Listing 5: Sample code block.

And the generated Ok
in and Ok

out are:

k [#] Ok
in Ok

out

0 {oeax} {oebx}
1 {oedx} {oedx, ocl, ocf , opf , oaf , ozf , osf , oof}
2 {oedi} {∅}

Table 4: Sample generated Ok
in, Ok

out variants.

As it was shown, presented algorithm is capable of describing a speci�ed
Data�ow Region with a k pair of objects {Ok

in, Ok
out}. Please also consider

the fact that for some Data�ow Regions there will be no generated objects
at all, that mostly depends on the types of instructions used in the block.
Also please note this speci�c method must be used in a speci�c way to bring
correct results. The usage of this technique will be further discussed in sub-
subsection 4.4.2.

4.4.2 Using the
{
Ok

in, Ok
out

}
variants

At this point the
{
Ok

in, Ok
out

}
variants were generated but the mechanism

for using them was not introduced yet. In other words SpiderPig must know
how to predict what would be the �nal (output) set OdefinedY when the in-
put was OdefinedX , so basically how to determine the out de�ned object's

29

elements basing on the
{
Ok

in, Ok
out

}
variants?

Figure 5: If X is the input how the output (Y) would look like?

Lets take a one more look to following code (it was already presented above):

MOV EAX , [DELTA]

MOV EBX , EAX

XOR EAX , EAX

SUB EDI , EBX

SUB EDX , EAX

TEST EDX , EDX

SETZ CL

MOV EDI , 1234567h

Listing 6: Sample code block.

Now get back to the Ok
in and Ok

out variants described in Table 4, they should
be read as follows:

1. Variant: If (oeax ∈ Odef∗)→ Odef = Odef ∪ {oebx}.

2. Variant: If (oedx ∈ Odef∗)→ Odef = Odef ∪ {oedx, ocl, ocf , opf , oaf , ozf , osf , oof}.

3. Variant: If (oedi ∈ Odef∗)→ do nothing.

Please treat def as a synonym of defined (for example: Odef and Odefined

etc).

Where on input:

1. Odef∗ is a copy of Odef and it consist of de�ned elements in the current
moment.

2. Odef = Odef \ (
kmax⋃
i=0

{Oi
in, Oi

out}), where this step is performed after

Odef∗ is initialized.

30

So it simply means if on input (oeax ∈ Odef∗) then Odef = Odef∪{oebx} (please
note that oeax /∈ Odef), but if this condition will not be met (oeax /∈ Odef∗)
then Odef = Odef \ {oeax, oebx}, because Odef was properly changed already
(see Odef de�nition on input). Following algorithm (Algorithm 3) illustrates
the technique together with history list support :

Input: H, Odefined, Ok
in, Ok

out, kmax.
Output: H, Odefined.

H∗ ← H;
Odefined∗ ← Odefined;

Os ← (
kmax⋃
i=0

{Oi
in, Oi

out});

Odefined ← Odefined \Os;
EraseObjFromHistoryList(H, Os);

for i = 0 to kmax do
if (((Oi

in ∩Odefined∗) 6= ∅) ∧ (Oi
out 6= ∅)) then

Ho =GetObjHistoryList(H∗, Oi
in);

SetObjHistoryList(Ho, Oi
out);

Odefined ← Odefined ∪Oi
out;

end

end

Algorithm 3: Algorithm used for predicting data propagation basing
on Ok

in, Ok
out and Odefined objects of speci�ed Data�ow Region.

4.4.3 Disputable Objects

As it was mentioned before SpiderPig is capable of calculating the data
propagation. It means that if instruction x will initialize element odef∗ by
referencing to a speci�ed monitored memory region pmr then any further el-
ement created by odef∗ in a direct or indirect way will be also analyzed. Of
course the newly created odef∗ element will be marked as a child of pmr. But
lets consider a more untypical situation, lets look to the following line of code:

ADD ECX ,EBX

As you can see it is a simple addition operation. Two general cases exist (for
a de�ned object situation):

31

1. if (oebx ∈ Odefined)→ Odefined = {oebx,oecx}.

2. if (oecx ∈ Odefined)→ Odefined = {oecx}.

But what if those cases are both true at the same time? As it was previously
mentioned ∀(odef ∈ Odefined)∃Hodef

, where H is called history of parents
(contains the list of parents which created speci�ed element). Generally if
those two cases would be true at the same time one of the parents would be
not stored into the H. So in conclusion one parent object will be omitted, that
means that the results wouldn't show that oecx was partially created by oebx

(by the parent of oebx to be strict). From a vulnerability researcher point of
view this is often a terrible mistake. To resolve this issue a disputable object
(Odisputable) was introduced. Following algorithm (Algorithm 4) is used for
calculating the Odisputable:

Input: Ok
in, Ok

out, kmax.
Output: Odisputable.

Odisputable = ∅;
for i = 0 to kmax do

for j = 0 to kmax do

if ((i 6= j) ∧ ((Oi
out ∩Oj

out)) 6= ∅) then
Odisputable = Odisputable ∪ (Oi

out ∩Oj
out);

end

end

end

Algorithm 4: Algorithm used for calculating Odisputable object for a
speci�ed Data�ow Region.

k [#] Ok
in Ok

out

0 {oecx} {oecx, ocf , opf , oaf , ozf , osf , oof}
1 {oebx} {oecx, oebx, ocf , opf , oaf , ozf , osf , oof}

Table 5: Sample generated Ok
in, Ok

out variants applied as a part of input data
for Algorithm 4.

In our case it will produce following Odisputable
14:

14Please note that in the current implementation CPU �ags are not considered as ele-
ments of Odisputable, mostly because of performance reasons and lack of worthwhileness.

32

Odisputable = {oecx}

In other words it means that every time SpiderPig will face such situation
while doing the data �ow analysis it would consider joining n history lists of
parent objects into a separate history list specially for a disputable element.
Because of this no potential parent object will be lost. So for example if
SpiderPig will take and try to analyze this block of code:

MOV ECX ,DWORD PTR DS :[401015]

MOV EBX ,DWORD PTR DS :[401019]

ADD ECX ,EBX

MOV DWORD PTR DS :[40101D],ECX

With the assumptions that at the start Pmr = {pmr401015, pmr401019}, new
element of Pmr - (pmr40101D) will be obtained, where it's parents are illustrated
in the Figure 6:

Figure 6: Sample graph illustrating the relation between child object and
parent objects before and after resolving the disputable object situation.

The algorithm that handles the disputable objects was presented below (Al-
gorithm 5):

33

Input: H, Odefined, Odisputable.
Output: H, Odefined.

if ((Odisputable ∩Odefined) 6= ∅) then
while (Osingle = GetSingleElement(Odisputable)) do

Ho =GetObjHistoryList(H, Osingle);
SplitObjAndAppendHistoryList(Ho, Osingle);

end

end

Algorithm 5: Algorithm used for management of history lists for
Odisputable objects of a speci�ed Data�ow Region.

5 Testimonials, Limitations and Potential Workarounds

This section will try to describe all the limitations and problems which
have appeared while developing SpiderPig. Together with the problems po-
tential workarounds will be provided too. Problems described here involve
such areas like: memory usage, speed and reliability. Additional testimonials
will be also provided.

Current tests were performed with custom build of SpiderPig with partially
disabled FPU, SSE, MMX analysis support.

5.1 Memory Usage

Memory usage is often a very important factor. In this section evaluation
of memory usage caused by SpiderPig will be presented. This section was
split by two separate issues, which were found the most challenging when it
comes to memory requirements.

5.1.1 Memory Usage Caused by Module Loading

Memory usage heavily depends on one main factor: the number of se-
lected modules for analysis or to be more speci�c their's code size. Following
example (Table 6) shows memory used for loading three common libraries:

Where:

• columns: {MUi, MUiir , MUimr , Total} are expressed in Megabytes
[MB] of memory. This values don't include containers internal size.

34

Module [#] Icount [#] MUi MUiir MUimr Total
1. KERNEL32.DLL 127775 0.408988 4.5999 2.695065 7.703953
2. USER32.DLL 109062 0.33751 3.926232 2.219823 6.483565
3. GDI32.DLL 79294 0.239788 2.854584 1.637807 4.732179

Total 316131 0.9863 11.3807 6.5527 18.9197

Table 6: SpiderPig Loader's memory usage in example of three common
modules.

• Icount is the number of instruction found in the module.

• MUi represents total memory size occupied by every single instruction
in other words this is the sum of instructions length.

• MUiir is the total size of memory used for describing all of the module
instructions (intermediate instruction representation).

• MUimr represents the size of memory used for storing the region infor-
mation (see Data�ow Region Creator subsection 2.1 for details).

Note: The memory required for additional "code lands" insertion is not
included in the presented calculations. However the conclusion presented
below is still applied.

Conclusion: In typical situation only one up to a few modules are pro-
vided for analysis (loaded), in this case SpiderPig should handle them with-
out any major memory usage (of course memory resources highly depend on
the actual machine con�guration and it's state).

Future Workaround: Even though the memory usage in this case is not
a big issue there is an example solution for decreasing it's usage. Instead of
loading whole modules the researcher may select only a procedure he wants
to analyze. Due to that fact only the selected piece of code will be loaded (of
course together with all the code references from inside of it). This solution
may limit the memory usage and moreover speed up the integration process.
This solution should be surely taken into consideration in further SpiderPig
releases (see Future Work - section 8).

5.1.2 Memory Usage Caused by Packet Recordings

As it was stated before in Communication Server, Packet Processor de-
scription (subsection 2.2) speci�ed packets are being recorded while analyzing

35

the target application. Each packet is identi�ed by a speci�c ID number. In
theory up to 429496729515 possible packets can be stored. In previous imple-
mentation recorded packets were stored into the heap space. Typically each
packet is 60 bytes long, so as an example for 100000 packets 6MB of addi-
tional heap memory would be needed. However the idea of storing recorded
packets in a heap space was abandoned mostly because it was slow. Instead
it was decided to store the recorded packets directly into a mapped �le. This
has one big advantage - speed. The packet storage operation is performed by
the SpiderPig Injector unlike in the previous implementation - the SpiderPig
Server. This greatly increases the �nal performance. However the bad sides
of this solution is that memory mapped �les can't grow up (the mapped
size is strictly limited, no easy resize operation can be performed) and they
disturb the program address space. In current implementation the mapped
�le reserved for packet storage is a 50MB �le (should be able to cover about
833333 packets). Few future workaround ideas have been presented below.

Conclusion: Typically the number of recorded packets is not even close
to 100000 (6MB of memory needed) in the directed research, so the memory
exhaustion problem is not an important issue, however like it was previously
mentioned that mostly depends on the actual machine state and con�gura-
tion). Potential workarounds ideas have been provided.

Future Workaround: For larger number of packets a larger memory
mapped �le should be provided. Since this may greatly a�ect the program's
address space only a needed fragment of �le should be mapped at once. This
solution would require creating a custom memory manager which will provide
necessary interface for facing such situations.

5.2 Speed Results

Following subsection will provide speed results for the most important
parts of SpiderPig. In some cases potential speedup workarounds will be
provided.

All the tests were performed on laptop with Intel T7200 2GHz processor
and 2GB of RAM memory. MySQL server is installed on the same machine.

15Actually there is no strict limit, this value is a default range and it is typically enough.

36

5.2.1 Exporting performance

This section will provide example results of SpiderPig Exporter module work.
As it was mentioned in subsection 2.1, SpiderPig Exporter is responsible
for gathering, coding and exporting all necessary informations required by
the two remaining modules. Following table (Table 7) shows the results for
exporting three common Windows modules:

Module [#] Records [#] Size in database [MB] Time elapsed [s]
1. KERNEL32.DLL ∼135303 ∼17.5 23.162298
2. USER32.DLL ∼118815 ∼14.528 22.168556
3. GDI32.DLL ∼88265 ∼10.432 19.594906

Table 7: SpiderPig Exporter's results for exporting three common modules.

5.2.2 Virtual Code Integration Performance

Code Integration process enables original code modi�cation, like full cus-
tomization of originally provided code, including deleting, exchanging or
rewriting any particular instruction. All of the necessary instructions are
stored in the special representation form. This form is saved in a special list.
Typically each instruction is one element in the list. The lists are mostly used
for recalculating virtual addresses (for searching purposes a map container
(balanced binary tree) is provided). The entire Virtual Code Integration
process requires the list to be iterated at least two times. The upper border
di�ers and mostly depends on the instructions characteristics. Iterating over
the list takes linear time, in other words the required time is directly propor-
tional to the number of elements in list. Table 8 shows the results depending
on the size of the list:

Case Nf [#] Tdf [s] Ts1 [s] Ts2 [s] Ttotal [s]
C1 493298 0.176340 0.100890 0.041941 0.3192
C2 904594 0.333504 0.188808 0.081884 0.6042
C3 1193877 0.433810 0.237508 0.101464 0.7728

Table 8: Virtual Code Integration results depending on the number of ele-
ments in list.

Where:

• Nf is the �nal number of elements stored in list.

37

• Tdf represents the time elapsed for generation and inserting data �ow
code lands.

• Ts1 is the time elapsed for performing stage 1 of virtual code integration
process (see section 3 for details).

• Ts2 is the time elapsed for performing stage 2 of virtual code integration
process (see section 3 for details).

• Ttotal is the total time elapsed (sum of Tdf , Ts1 and Ts2).

• C1 is an example case where only instructions from KERNEL32.DLL are
integrated.

• C2 is an example case where only instructions from KERNEL32.DLL and
USER32.DLL are integrated.

• C3 is an example case where only instructions from KERNEL32.DLL,
USER32.DLL and GDI32.DLL are integrated.

Conclusion: It is undeniable fact that lists are not the fastest containers
when it comes to iterating through all elements. From the other hand lists
provide e�cient moving, insertion and element removal anywhere in the con-
tainer (constant time) - that is really necessary for code integration process.
Like every solution this one also have good and bad sides. As sample results
showed (Table 8) this solution is still highly usable and in typical work it
plays out quite well. Anyway potencial future workarounds have been pro-
vided as well.

Future Workaround: The most general solution would be to limit the
number of instructions applied for code integration. Like it was already men-
tioned: instead of loading whole modules the researcher may select only a
procedure he wants to analyze. This should decrease the list elements and
speedup the whole process.

5.2.3 Analysis (Instrumentation) Performance

First of all it's hard to compare SpiderPig between any already known in-
strumentation software. That's because SpiderPig was designed as a speci�c
tool and for speci�c objectives. The Virtual Code Integration process itself
does not cause any slowdown in program working, mostly because the inte-
grated code is almost identical with original one. Integrated code runs near

38

the native speed of original application. In fact it is always faster than any
DBI approach but this discussion will be not continue in this work, because
like it was earlier mentioned those two approaches should be completely sep-
arated. Due to the reasons explained above only a simple test was performed.

Test application's performance

A simple application was used to perform performance test between Spi-
derPig, DynamoRIO Plugin and OllyDbg RunTrace. Sample program's al-
gorithm was to perform a simple bubble sort for the 1000 same numeric
elements and measure the time between the start of the sorting procedure
and the end of it. The task of the analysis was to gather and save a CPU
context for each executed instruction. For each case the analysis was per-
formed 6 times and then the average result was calculated. Obtained results
are presented in Table 9.

Case Average Time Elapsed [s] Average Slowdown [x]
Clean Application 0.001045 -
SpiderPig 0.139695 133.679426
DynamoRIO Plugin 0.282660 270.487560
OllyDbg RunTrace16 179.065781 171354.814354

Table 9: The performance comparison of instrumenting a simple bubble sort
program.

As you can see in this test SpiderPig was the fastest tool. OllyDbg Run-
Trace was the slowest one and it is almost completely unusable in real world
applications. DynamoRIO plugin was approximately 2 times slower then
SpiderPig.

Like it was mentioned earlier it is hard to �t in a exact performance
results, because they depend on a few factors like: number of instrumented
instructions, CPU con�guration, free memory supplies and so on.

In one of the private talks when author was talking a bit about the per-
formance stu�s with Julien, he asked me a very important question: Is the
speed acceptable for you? Author said that indeed it is, so he replied, So it
so must be good enough. And with this sentence author would like to �nish
this subsection.

16Olly RunTrace was runned with minimal trace options although the additional amount
of time was spent on formating and displaying the results in a text form.

39

5.3 Data Flow Analysis Interferences

In current implementation Packet Processor is unable to detect data �ow
analysis interferences. It means that for example if an unknown exceptions
happens and the execution will be transfered via indirect way Packet Proces-
sor may be not able to calculate the data propagation correctly. The issues
also includes calling unknown code locations via using indirect CALL or JMP
instructions. Corresponding �xes for this issue should be attached to the
next SpiderPig release.

5.4 Communication Method

At the time SpiderPig was being developed it was certain that suitable
communication method will need to be chosen. In general there were three
available options for performing this process: sockets, named pipes and
shared memory sections. This section will answer what method is used for
performing communication between Injector and Communication Server (see
subsection 2.2) and why it was chosen. This dispute will start with the com-
parison of two most "popular" elements: sockets and named pipes.

Sockets vs Named Pipes

In Microsoft Windows systems named pipe is basically a named, one-way
or duplex pipe for communication between the pipe server and one or more
pipe clients. Pipes generally work like normal sockets. Named pipes unlike
sockets can be accessed much like a �le (by using typical APIs provided for �le
operations), but let's get to the point. Appending to [8] in fast area network
(LAN) Transmission Control Protocol/Internet Protocol (TCP/IP) Sockets
and Named Pipes clients are comparable in terms of performance. How-
ever, the performance di�erence between the TCP/IP Sockets and Named
Pipes clients becomes apparent with slower networks, such as across wide
area networks (WANs) or dial-up networks. From the other hand when it
comes to running locally, local named pipes work in kernel mode and are
extremely fast. So remembering that Injector and Communication Server
need to transfer data only through the local machine (locally) sockets are
not the good choice, but are the named pipes the best available option?

Shared Memory vs Named Pipes

As stated in subsection 2.2 shared memory sections also known as �le map-
ping objects are typically used to share a �le or memory between two or more

40

processes. Due to lack of comparison between theirs performance versus the
named pipes performance author decided to run his own tests: Three sample
sets of applications were created:

1. client + server (local communication via named pipes)

Client requests speci�ed data through a request which is sent to the
server application via the named pipe. Server reads the request, gets
the selected data and sends the results back, also through a named
pipe.

2. client + server (local communication via shared memory section)

Client requests speci�ed data through a request which is sent to the
server application via shared memory section. Server reads the request,
gets the selected data and sends the results back, also through a shared
memory section.

3. clean application (internal communication only)

This application does almost the same thing as the upper ones, however
it does not use any form of interprocess communication. The requests
operations are processed in the same application. It was used to show
the rate of potential slowdown which may occur in the �rst two pre-
sented items.

Each of described program has processed 20000 requests. The time was
measured between each start of sending the request and getting the result.
Clean application was used as a neutral point of reference. First application
(item 1) was additional optimized by using Native API [13]17 calls and by
not using any additional synchronization. Second application (item 2) was
using normal API calls and was synchronized by using the Event Objects [5].
The results are presented in Figure 7 and Table 10.

The results showed (Table 10) that using shared memory section for inter-
process communication (locally) is about ∼6.037453 times faster then using
named pipes for the same task. In this case using shared memory section
caused very low slowdown (about ∼1.974907 times) comparing to named
pipe method where slowdown was about ∼11.923407 times.

17Using Native API calls speeded the process by about 1 time.

41

Figure 7: Performance comparison between communication methods: Shared
Memory method (green) and Pipes method (red) in the reference to clean
application (blue).

Application Type [#] Average Response Time [msec] Slowdown [%]
1. Named Pipes 0.025022 11.923407
2. Shared Memory 0.004145 1.974907
3. Clean Application 0.002099 -

Table 10: Performance of Communication Methods.

Important note: Regarding the synchronization methods, please note
that using Event Objects for interprocess synchronization purposes together
with shared memory sections may really overwhelm the �nal performance
(especially when they are heavily used). SpiderPig does not use Events for
the synchronization process.

6 Transparency

It is clear that SpiderPig should not interfere with semantics of a analyzed
program while it is executed. Implementing full transparency in "monitor-
ing" software is often impossible task specially when executing inside the
same process. From the other hand SpiderPig as well many other binary
instrumentation software was not designed to work with aggressive or self-
modifying code. This section will try to describe how the transparency prob-

42

lem is solved in SpiderPig and what issues need to be solved in the future.

As it is stated in DynamoRIO's thesis [16] there are couple of transparency
issues that need to be addressed. This section will focus only at the most
important ones from the authors point of view:

1. Heap Transparency

SpiderPig should not share any heap allocation routines with the mon-
itored application. This is really signi�cant specially when it comes to
researching heap over�ow vulnerabilities. SpiderPig does not use own
custom memory manager to achieve heap transparency. It is not needed
because SpiderPig does not need any additional heap space from the
application - that's because every recorded information is transfered
into Communication Server (subsection 2.2) which resides in di�erent
program. At this point SpiderPig provides full heap transparency.

2. Input/Output Transparency

The data sharing is performed through the shared memory section (as
stated in subsection 5.4). Due to that fact SpiderPig does not interfere
with the application's bu�ering.

3. Library Transparency

SpiderPig shares only one module with the original application. This
module is default general library - KERNEL32.DLL. After the SpiderPig
Injector is initialized no API functions are needed and executed. All
the synchronization methods used in SpiderPig rely on internal imple-
mented mechanism which doesn't need any external libraries.

4. Thread Transparency

SpiderPig does not create any additional threads, instead it is exe-
cuted by the original thread(s) created by the application - it's a part
of new code �ow. The CPU state is preserved when the SpiderPig code
is executed.

5. Data Transparency

SpiderPig does not modify any of original application's data. SpiderPig
avoids interfering with the original application's data layout.

43

6. Stack Transparency

Current implementation uses application's stack for temporary data
storage. Typically this is not a problem, even when whole module's
code is monitored. However it appears that in some rare cases like in
Microsoft O�ce application (see [16] for details) it may cause serious
problems. Such unexpected behavior can occur in application that uses
the stack space in a not typical way, for example in application that ref-
erences the data located beyond the top of stack. Potential �x for this
issue would be to use own scratch space, this should be implemented
in the nearest future.

Some of the other transparency issues like Error Transparency or more ac-
curate implementation of Address Space Transparency are not yet avail-
able. However the lack of support for this issues may not cause any problems
at all but of course it doesn't mean they should not be implemented in the
future.

7 Related Work

It's hard to describe similar tools like SpiderPig when it comes to overall
comparison, because of that this section will only introduce some of the
related works in more or less exact �elds:

• Dynamic Binary Instrumentation

Dynamic Binary Instrumentation is a speci�c method of analyzing a
binary application on the �y (why the application runs). To achieve
this goal instrumentation code is injected into original application code.
The DBI approach unlike code integration does not have to worry about
the correctness of provided disassembly. Generally Dynamic Binary
Instrumentation implementations can be divided into two main cate-
gories: light-weight an heavy-weight DBI. The example of heavy-weight
DBI is Valgrind [12], is in essence a virtual machine using just-in-time
(JIT) compilation techniques. From the other hand tools like: Pin [10],
DynamoRIO [3] are the examples of light-weight DBI approach. Please
note that a quite massive number of other DBI tools exist.

• Memory Leaks Detecting

44

Valgrind's Memcheck is a tool for detecting memory management prob-
lems in programs by adding some extra instrumentation code for this
purposes. Memcheck checks all reads and writes of memory and in-
tercepts calls to malloc / new / free / delete. It can detect: mem-
ory leaks, use of uninitialized memory, reading/writing o� the end of
malloc'd blocks, reading/writing memory after it has been freed, read-
ing/writing inappropriate areas on the stack etc.

• Other

TaintCheck [21] is one of the most similar tools available in comparison
to SpiderPig. Although it's main objective is to detect most types of
software exploits automatically rather then provide a general tool for
data �ow analysis. It uses so called dynamic taint analysis to detect
potential exploits and attacks and it can also provide additional in-
formation about the attack. TaintCheck is implemented as a plugin
for either in DynamoRIO or Valgrind frameworks. TaintBochs [17] is a
tool created for measuring data lifetime. It is implemented in X86 open
source emulator called Bochs [2]. It is able to taint the guest's main
memory and the X86 eight general-purpose registers only (debug reg-
isters, control registers, SIMD (MMX, SSE, FPU) registers, and �ags
are not applied into the analysis); Libelfsh [4] is a very good exam-
ple of ELF binary manipulation library. Libelfsh allows custom code
injections into Executable & Linking Format (ELF) binary �les. The
entire ERESI [4] project (Reverse Engineering Software Interface) is
a very complex approach which includes static and runtime analysis
capabilities.

Some of the other techniques and strategies related to data �ow analysis
like for example the null segment interception technique can be found
in the Matt's Miller paper [23].

8 Future Work

At current state SpiderPig is still an experimental software. Started for
fun and developed for fun. There are many things that were implemented
and much more things that still need to be implemented. At this moment
author is trying to not ignore anything. Some initial ideas were made about
implementing the data �ow analysis into the DynamoRIO but it seems this
is another story.

45

There are a couple of things that should be taken into consideration in the
future releases, for example:

• support for delayed import tables

• strict monitoring for unresolved imports

• manager for shared memory sections

• more support for transparency issues

• support for FPU stack operations and more main support for analyzing
FPU, SSE, MMX instructions

• general speed optimizations

• user friendly con�guration interface

• clickable graphs

At present author is unable to declare any exact date for the next SpiderPig
release. However please visit the project web-site [15] to be up-to-date.

9 Last Words

Author hopes he has managed to introduce the reader the SpiderPig project
together with the mechanisms it uses. Author also hopes that reader enjoyed
the article and found it useful. As always if the reader have any suggestions,
advice or any other matter feel free to contact the author. Thanks for read-
ing.

46

References

[1] Apache HTTP Server. http://httpd.apache.org.

[2] Bochs IA-32 Emulator Project. http://bochs.sourceforge.net/.

[3] DynamoRIO. http://www.cag.lcs.mit.edu/dynamorio/.

[4] ERESI. http://www.eresi-project.org/.

[5] Event Objects. http://msdn.microsoft.com/en-us/library/

ms682655(VS.85).aspx.

[6] Graphviz - Graph Visualization Software. http://www.graphviz.org.

[7] Microsoft Portable Executable and Common Object File Format
Speci�cation. http://www.microsoft.com/whdc/system/platform/

firmware/PECOFF.mspx.

[8] Named Pipes vs. TCP/IP Sockets. http://msdn.microsoft.com/

en-us/library/aa178138(SQL.80).aspx.

[9] PHP. http://www.php.net.

[10] Pin. http://rogue.colorado.edu/pin/.

[11] Program Database (PDB). http://en.wikipedia.org/wiki/

Program_database.

[12] Valgrind. http://valgrind.org/.

[13] Piotr Bania. Windows Syscall Shellcode. http://www.securityfocus.
com/infocus/1844/1.

[14] Piotr Bania. Aslan (4514N) Metamorphic Engine. http://www.

piotrbania.com/all/4514N/, 2006.

[15] Piotr Bania. SpiderPig - The Data Flow Tracer Project Homepage.
http://www.piotrbania.com/all/spiderpig, 2008.

[16] Derek L. Bruening. E�cient, Transparent, and Comprehensive Runtime
Code Manipulation. PhD thesis, Massachusetts Institute of Technology,
2004.

[17] Jim Chow, Tal Gar�nkel Ben Pfa�, Kevin Christopher, and Mendel
Rosenblum. Understanding data lifetime via whole system simulation.
Stanford University Department of Computer Science.

47

http://httpd.apache.org
http://bochs.sourceforge.net/
http://www.cag.lcs.mit.edu/dynamorio/
http://www.eresi-project.org/
http://msdn.microsoft.com/en-us/library/ms682655(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682655(VS.85).aspx
http://www.graphviz.org
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://msdn.microsoft.com/en-us/library/aa178138(SQL.80).aspx
http://msdn.microsoft.com/en-us/library/aa178138(SQL.80).aspx
http://www.php.net
http://rogue.colorado.edu/pin/
http://en.wikipedia.org/wiki/Program_database
http://en.wikipedia.org/wiki/Program_database
http://valgrind.org/
http://www.securityfocus.com/infocus/1844/1
http://www.securityfocus.com/infocus/1844/1
http://www.piotrbania.com/all/4514N/
http://www.piotrbania.com/all/4514N/
http://www.piotrbania.com/all/spiderpig

[18] Cristina Cifuentes, Mike Van Emmerik, Norman Ramsey, and Brian
Lewis. The University of Queensland Binary Translator (UQBT) Frame-
work. 1996-2001.

[19] Hex-Rays. Interactive Disassembler Pro. http://www.hex-rays.com/

idapro/idadownfreeware.htm.

[20] Ken Johnson. A catalog of NTDLL kernel mode to user mode call-
backs, part 2: KiUserExceptionDispatcher. http://www.nynaeve.net/
?p=201.

[21] James Newsome and Dawn Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. 2004-2005.

[22] Matt Pietrek. A crash course on the depths of win32 structured ex-
ception handling. Microsoft Systems Journal, 1997. http://www.

microsoft.com/msj/0197/exception/exception.aspx.

[23] Matt "skape" Miller. Memalyze: Dynamic analysis of memory ac-
cess behavior in software. Uninformed Journal vol 7, 2007. http:

//uninformed.org/?v=7&a=1.

[24] Sun Microsystems, MySQL AB. MySQL - open source database. http:
//www.mysql.com.

[25] Oleh Yuschuk. OllyDbg. http://ollydbg.de/.

48

http://www.hex-rays.com/idapro/idadownfreeware.htm
http://www.hex-rays.com/idapro/idadownfreeware.htm
http://www.nynaeve.net/?p=201
http://www.nynaeve.net/?p=201
http://www.microsoft.com/msj/0197/exception/exception.aspx
http://www.microsoft.com/msj/0197/exception/exception.aspx
http://uninformed.org/?v=7&a=1
http://uninformed.org/?v=7&a=1
http://www.mysql.com
http://www.mysql.com
http://ollydbg.de/

	1 Introduction
	1.1 History
	1.2 Goals and usage

	2 SpiderPig - Design and Implementation
	2.1 The Exporter Module
	2.2 The Loader Module
	2.3 The Results Processor Module

	3 Virtual Code Integration
	3.1 Definition of Code Integration
	3.2 Division of Code Integration
	3.3 The Virtual Code Integration Process
	3.3.1 Compilation (assembly) Stages

	4 The mechanism of Data Flow Analysis
	4.1 The Packet Procesor
	4.2 Main Definitions
	4.3 Monitored Memory Regions
	4.4 Predicting Data Propagation
	4.4.1 Preparing the { Okin, Okout } variants
	4.4.2 Using the { Okin, Okout } variants
	4.4.3 Disputable Objects

	5 Testimonials, Limitations and Potential Workarounds
	5.1 Memory Usage
	5.1.1 Memory Usage Caused by Module Loading
	5.1.2 Memory Usage Caused by Packet Recordings

	5.2 Speed Results
	5.2.1 Exporting performance
	5.2.2 Virtual Code Integration Performance
	5.2.3 Analysis (Instrumentation) Performance

	5.3 Data Flow Analysis Interferences
	5.4 Communication Method

	6 Transparency
	7 Related Work
	8 Future Work
	9 Last Words

