Generating runtime call graphs

Sebastian Krahmérahmer@suse.de

May 10, 2006

Abstract

This paper describes how function call graphs can be gesteratring run-
time. Solutions for C-programs and Perl scripts are shown.
It is recommended that one use a PDF viewer with high zoonajirability since
some graphs require in-depth zooming.
Keywords: Auditing, call graphs, function call graphs, dymic graph genera-
tion.
search engine tag: SET-krahmer-call-graphs-2005

1 Introduction

Generating call graphs from binary files to understand teacution flows has
a history in reverse engineering and binary auditing [Z], BIso in the source
code auditing world such call graphs can be very helpful. drtipular if one is
interested into analyzing which part of code is executeth wihich permissions
or whether certain functions are called prior to authetitcaroutines.

The newfinstrument-functionswitch of GCC allows for easy generation of such
call graphs for C-programs. Also scripting languages sisdReal have powerful
mechanisms which allow for the generation of call graphsiatime.

2 Reated Work

Much work has already been done to visualize software amtefiendencies and
structure. However most of the work covers static analy8gEL[L] or describes
theoretical approaches how to handle the software’s codtplsoftware main-
tenance and its graphs [12]. Also for host-based Intrusiete€lion Systems the
visualization and normalization of software is quite impot [11].

Representing running software as call graphs or in some btlrean-readable or
script-readable form seems to be an interesting topic amthvgome research.

1A preliminary version of this work has been presented in seweorkshops in 2005.

3 CALL GRAPHS FOR THE C LANGUAGE 2

3 Call Graphsfor the C language

There are commercial tools available which generate staligraphs from source
code files [3]. For dynamic call graphs, which are generategthd runtime, one
has to use special compiler features or debugger-like géaertools. The Open
Source GNU compiler collection (GCC) [1] offers various qula time features
which can be used to generate call graphs at runtime. Towahies goal, one
has to compile the source of the program to be observed watHfitistrument-
functionsswitch. This has to be done for every object file. If the pragia com-
piled in this way, GCC places a function-call t@yg _profile _func _enter
upon entering and a call tacyg _profile _func _exit upon leaving of every
functior? into the code. An example is shown in Figure 1.

Once the compiler has inserted the instrumentation codgribgrammer has
to define these functions. This task is very simple. The addoé the function
which is called is passed as argument to the instrumentétioctions. Hence
one can easily determine, via a symbol-table-lodkupe name of the function
and one can build, dynamically, a chain of the functionsech#ind then log this
to files. Along with this, appropriate information such as thiD, EUID or the
list of open files could be logged.

4 Tools needed

First of all, GCC has to support the instrument functions.ditidnally one can
obtain a sample implementation for generating call grapdma f4]. This requires
the graphvizpackage available from [5] to afford a translation of tet files
into .pdf files. Theinstrumentalpackage contains a C-file which has to be
modified to reflect the places of the log-files for tdet and the ASCII output.

It is then compiled via GCC:

user@linux:"> cc -fPIC -c instrumental.c
user@linux:™> Id -Bshareable instrumental.o -0 inst.so

on ELF32 architectures

user@linux:™> cc -m32 -fPIC -c instrumental.c
user@linux:"> Id -melf_i386 -Bshareable instrumental.o - 0 inst.so

on ELF64 (x8664) architectures. In the second case the program must also b
compiled with the-m32 switch. As an alternative there is an ELF64 version,
instrumental64.c , Shipped with [4] which can be compiled and linked into
ELF64 binaries as shown in the first example.

The output of this step is a shared object file which is theh pus-loaded via
LD_PRELOADwith the program one wants to analyze. The program has to be

2Every function called by the program and part of the progra®ince libc is usually compiled
without that switch, no monitoring is done for libc calls.
3Compilation with the-g switch is needed.

4 TOOLS NEEDED

Figure 1: How function f() is called using the instrumentdtians.

.LCO:
.string "fO\n"
text
align 2

.globl f
type f,@function

f:
pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $4, %esp
subl $8, %esp
pushl 4(%ebp)
pushl $f
call __cyg_profile_func_enter
addl $16, %esp
pushl 4(%ebp)
pushl $f
call __cyg_profile_func_exit
addl $16, %esp
movl %ebx, %eax
movl -4(%ebp), %ebx
leave

ret

4 TOOLS NEEDED

compiled with the-g and -finstrument-functionswitches. The glibc contains
dummy stubs for the instrument functions so the program ewes without pre-
loading*. Alternatively one may linknstrumental.o statically into the pro-
gram.

Once the program has been run, the ASCll atat log-files with the call graph
appear at the place specified. Sample graphs generatedHeanot -files for
an SSH client and server and an HTTP client are shown in Fg2ird and 5.
Figure 5 is the ASCII versiohof the graph in Figure 4 while all the other figures
show graphs generated from tlaot -files. The ASCII version also contains
the caller’s UID/EUID and can bgreped more easily for certain call-sequences
which need to be found.

The.dot file, which is generated, is missing the last closjraince the package
does not intercepgxit() calls or aborts. One has to add it by hand. One can
then use the build-pdf script to generate thdf file.

Some of the graphs such as in Figure 2 can not be viewed inrc@F viewers
(not to speak about printed versions) because larger pregpoduce complex
graphs with a large amount of nodes. For this reason, a zoameetrsion of
Figure 2 is shown in Figure 3 just to show that the output i2@tluseful. The
edges between the nodes are colored differently to maksidrea follow call se-
guences. They have no special meaning such as clusterifigerghegraphviz
tool which actually draws the graph from thaot file is responsible for the
layout; clusters or sub-graphs may be misleading: the gpmptuced by the
instrumental package is flat.

41t does not produce any call graph in this case.
Sltis truncated to one page since the ASCII version is huge.

4 TOOLS NEEDED 5

Figure 2: Runtime call-graph of the OpenSSH client duringranect to a server. The
different coloring of the edges is only made to allow for easiacking of calls.

4 TOOLS NEEDED

4 TOOLS NEEDED

MR IO i 1
-\ /‘ |

- -m -mmg |

/

/

|
|
qim.) /B M] B)) L) mmmmm
4 | E AN AN
'm, ,‘) 1 e HE L LE
\| ,,_ =
Vom) m \ Bm i mEE Il
\ y :) 7 7
f X

Figure 4: Runtime call-graph efgetdownloading a HTML file.

4 TOOLS NEEDED

Figure 5: ASCII version of the runtime call-graph in Figure 4

~ [0000|0000|0000] -- main (0x8063120)

~ [0000|0000|0000] |- initialize (0x8062020)
~ [0000|0000|0000] | |-- xstrdup_real (0x8072b10)
~ [0000]0000|0000] xstrdup_real (0x8072b10)

~ [0000|0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000]0000]
~ [0000]0000|0000]
~ [0000]0000|0000]

|-
|-- file_exists_p (0x80722a0)
|-- home_dir (0x8061e00)

| |- xstrdup_real (0x8072b10)
|-- aprintf (0x8072980)

| |-~ xmalloc_real (0x8072bf0)
|-- xfree_real (0x8072a20)

|-- file_exists_p (0x80722a0)
|-- xfree_real (0x8072a20)

~ [0000]0000]|0000] -- set_progress_implementation (0x8 065570)
~ [0000]0000|0000] |-- bar_set_params (0x8065700)

~ [0000]0000|0000] -- rewrite_shorthand_url (0x806b6f0)

~ [0000]0000|0000] |-- url_has_scheme (0x806a050)

~ [0000]0000|0000] |-- xmalloc_real (0x8072bf0)

~ [0000]0000|0000] -- log_init (0x8062520)

~ [0000]0000|0000] -- retrieve_url (0x8068b20)

~ [0000]0000|0000] -- xstrdup_real (0x8072b10)

~ [0000]0000|0000] -- url_parse (0x806b8f0)

~ [0000]0000|0000] |-- url_scheme (0x806b840)

~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]

|-- scheme_default_port (0x806a120)
|-- xmallocO_real (0x8072c50)

|-- strdupdelim (0x8071700)

| |-- xmalloc_real (0x8072bf0)

|-- strdupdelim (0x8071700)

| |-- xmalloc_real (0x8072bf0)

|-- xstrdup_real (0x8072b10)

|-- xstrdup_real (0x8072b10)

|-- url_unescape (0x8069f50)

~ [0000]0000|0000] |-- url_unescape (0x8069f50)

~ [0000]0000|0000] |-- url_string (0x806a640)

~ [0000]0000|0000] | |- full_path_length (0x806a200)
~ [0000]0000|0000] | |- xmalloc_real (0x8072bf0)

~ [0000]0000|0000] | |- full_path_write (0x806a280)
~ [0000]0000|0000] - http_loop (0x805f2a0)

~ [0000]0000|0000] -- cookie_jar_new (0x804f4d0)

~ [0000]0000|0000] |-- xmalloc_real (0x8072bf0)

~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]

-- make_nocase_string_hash_tabl e (0x8058a90)
|-- hash_table_new (0x8058980)
| |-~ xmalloc_real (0x8072bf0)
| |- prime_size (0x8058700)
| | |- xmalloc_real (0x8072bf0)
- url_file_name (0x806b270)
|-- append_uri_pathel (0x806b050)
| |-- xrealloc_real (0x8072b80)
|-- append_char (0x806afd0)

~ [0000]0000|0000] |-- unique_name (0x8072470)

~ [0000]0000|0000] | |- file_exists_p (0x80722a0)

~ [0000]0000|0000] -- sleep_between_retrievals (0x80 68960)
-- time_str (0x80728c0)

~ [0000]0000|0000] -- url_string (0x806a640)

~ [0000]0000|0000] |-- full_path_length (0x806a200)

~ [0000]0000|0000] |-- xmalloc_real (0x8072bf0)

~ [0000]0000|0000] |-- full_path_write (0x806a280)

~ [0000]0000|0000] -- logprintf (0x8062d60)

~ [0000]0000]|0000] -- check_redirect_output (0x8062 5f0)

~ [0000]0000]|0000] -- log_vprintf_internal (0x8062b 60)

~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]

|-- saved_append (0x80628b0)
| |-~ free_log_line (0x8062400)
|-- logflush (0x80627d0)
| | |- get_log_fp (0x80622f0)
-- xfree_real (0x8072a20)

|
|
|
| |- get_log_fp (0x80622f0)
|
|
|

~ [0000]0000|0000] -- gethttp (0x805cfc0)

~ [0000]0000|0000] -- xmallocO_real (0x8072c50)

~ [0000]0000|0000] -- xmalloc_real (0x8072bf0)

~ [0000]0000|0000] -- url_full_path (0x806a340)

~ [0000]0000|0000] |-- full_path_length (0x806a200)

~ [0000]0000|0000] |-- xmalloc_real (0x8072bf0)

~ [0000]0000|0000] |-- full_path_write (0x806a280)

~ [0000]0000|0000] -- request_set_header (0x805c370)
~ [0000]0000|0000] -- aprintf (0x8072980)

~ [0000]0000]|0000] |-- xmalloc_real (0x8072bf0)

~ [0000]0000]|0000] -- request_set_header (0x805c370)
~ [0000]0000]|0000] |-- xrealloc_real (0x8072b80)

~ [0000]0000]|0000] -- request_set_header (0x805c370)

~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]

:

|

|

|

|

|

|

|

|

|

|

| |- xrealloc_real (0x8072b80)
|-- search_netrc (0x8064bf0)
| |- home_dir (0x8061e00)
| | |- xstrdup_real (0x8072b10)
| |- xfree_real (0x8072a20)
|-- scheme_default_port (0x806a12 0)
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

~ [0000]0000|0000]

~ [0000|0000|0000] -- aprintf (0x8072980)

~ [0000]0000|0000] |-- xmalloc_real (0x8072bf0)

~ [0000]0000|0000] -- request_set_header (0x805c370)
~ [0000]0000|0000] |-- xrealloc_real (0x8072b80)

~ [0000]0000|0000] -- request_set_header (0x805c370)
~ [0000]0000|0000] |-- xrealloc_real (0x8072b80)

~ [0000]0000|0000] -- cookie_header (0x804e3c0)

~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]
~ [0000]0000|0000]

~ A AL AN AL A A A A

|-- count_char (0x806c560)

|-- hash_table_count (0x8058380)
-- request_set_header (0x805c370)
-- connect_to_host (0x804bc40)

|-- lookup_host (0x80591e0)
|-- logprintf (0x8062d60)
| |-- check_redirect_output (0x8 0625f0)
| |-~ log_vprintf_internal (0x80 62b60)
| | |- get_log_fp (0x80622f0)
oo =

..... L M AL A

|
|
|
|
|
|
|
|
|
|
|
I
|
|
I
I
|
|
[
[
[
[
[
[
[
[
[
[
|
|1
|1
|1
|1
||
|1
[
|
|
|
|
|
|
|
|
|1
|1
|1
|1
~ [0000]0000|0000] (|
|1
|1
[
|
[
[
[
[
[
[
[
[
[
|
|
|
|
|
|
|
|
[
[
[
[
[
[
[
[
[
[
|
|
|
|
|
|
|
[
[
[
[
[
[
[
[
[
|

5 CALL GRAPHS FOR SCRIPTING LANGUAGES 9

5 Call graphsfor scripting languages

Some programs for which a call graph might be useful comegrtuniately, not
in the C language but in some scripting language such as @lerlThis is, in
particular, true for CGlI scripts and web administratioreifdces such ag/ebmin
[7]. Since Perl is a scripting language, it is not possiblprtaiuce the call graphs
as just described for the C language. On the other hand Rers & powerful
method of function re-definition at runtime, tAdJTOLOADnechanism. This
allows tricks likeautoload.pl

#!/usr/bin/perl

sub Hello

{
}

print "Hello world\n";

sub AUTOLOAD

{
print "You tried to call $AUTOLOAD, lets try Hello() instead An";
return Hello();

}

Hellau();

which will produce the following output:

linux: > perl autoload.pl

You tried to call main::Hellau, lets try Hello() instead.
Hello world

linux: >

Whenever an undefined function is called, #t¢TOLOABubroutine is called
instead with the name of the requested function in tA&JBOLOADvariable.
To make a call graph from this feature is straight forward. piese the script,
substitute every subroutine definitionsib X by sub CALL_X and therefore
have all calls toX undefined. Then a specially prepar®d TOLOABubroutine is
called which records the call for the graph and calls theimaldCALL X function
afterwards. Such a graph, generated from the info2html| @€btsis shown in
Figure 6. Another example, a graph from the Webmin mini-weeler is shown
in Figure 7.

CALL GRAPHS FOR SCRIPTING LANGUAGES

main__DeEscape

root

———| main_ FindFile

Figure 6: Runtime call-graph for thefo2htmlPerl script while it was translating a

file.

main__DirnameCheck

main__ReadIndirectTable

main__ReadTagTable

main__GetFileAndOffset

main__max

main__ParsHeaderLine

main__PrintHeader

main__InfoNode2HTML

main__ParsHeaderToken

main__ParsCrossRefs

main__PrintFooter

main__PrintLinkinfo

main__Escape

main__Menultem2HTML

main__Tab2Space

5 CALL GRAPHS FOR SCRIPTING LANGUAGES

miniserv_to_ipaddress

miniserv_log_error

miniserv_allocate_pipes.

root miniserv__get_socket_name

7

miniserv__handle_request

miniserv_ close_all_sockets

miniserv__make_datestr

miniserv_log_request

miniserv_write_kdata

miniserv__readeep_alive

miniserv__read_|_line

miniserv_simpine

miniserv__getlfy_path

miniserv_ write_niserv_handle_request

miniserv_http_date

miniserv_ write_dniserv_handle_request

N

miniserv_read_line

miniserv_check_user_ip

miniserv_get_type.

miniserv__TIEHANDLE

miminiserv__handle_request

miniserv__PRINTF

__PRINT

miniserv_wite_to_sock

miniserv__PRINT

miniserv_byte_count

miniserv_ getiserv_handle_request

miniserv_simplity_path

miniserv_write_ddata

miniserv_write_k_type

miniserv_close_all_pipes

miniserv__read_lroot

miniserv__DESTROY

11

miniserv_ write_keep_alive

miniserv_write_data

miniserv_reset_byte_count

Figure 7: Runtime call-graph of thé&/ebminminiserv.pl Perl script during a admin

session.

6 SUMMARY

6 Summary

With [4] one has a good starting point for generating dynaoait graphs. For
larger and more complex programs tpef file will grow and may fast become
unreadable. Further research would be needed to split g#ghgrobtained and
make it possible to follow code paths easily. With the AS@ision of the graph
however, this is already possible.

The work done in this paper can be understood as the first bagis towards
automatic detection of certain vulnerabilities such agiéscriptor leaks or usage
of wrong privileges. Although graphs for medium sized ogéaprograms are
nearly complete useless for human eyes, tools of mathesnedic be used to
analyze the program at runtime and maybe to classify celtaiavior. Even
the input or the data processed by the program at runtimetrbghecovered by
carefully observing the call sequences of the program. &albhethe generation
of cryptographic keys or large prime numbers (MontgomergilR&on) show
patterns which might leak information about input bits.

12

REFERENCES 13

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

GCC (last access 02-08-2005):
http://gcc.gnu.org

Sabre-security (last access 02-08-2005):
http://sabre-security.com

aisee (last access 02-08-2005):
http://aisee.com

instrumental:
http://www.suse.de/"krahmer/instrumental
graphviz (last access 02-08-2005):
http://lwww.research.att.com/sw/tools/graphviz
Perl (last access 02-08-2005):
http://www.perl.com/

Webmin (last access 02-08-2005):
http://www.webmin.com/

OpenSSH (last access 02-08-2005):
http://www.openssh.com/

J.Bergeron, M. Debbabi, M.M.Erhioui, B. KtarBtatic Analysis of Binary
Code to Isolate Malicious Behavigré PagesLSFM Research Group,
Computer Science Department, Science and Engineeringltifadiaval
University Quebec, Canada

Eric Moretti, Gilles Chanteperdrix, Angel OsoridNew Algorithms for
Control-Flow Graph Structuring In Proceedings of the Fifth European
Conference on Software Maintenance and Reengineering 32001

David Wagner, Drew Dearintrusion Detection via Static Analysi Pro-
ceedings of the IEEE Symposium on Security and Privacy (286)

Shruti Raghavan,Rosanne Rohana,David Leon,Andyiséy Vinay Au-
gustine: Dex: A Semantic-Graph Differencing Tool for Studying Chemng
in Large Code Basesn Proceedings of the 20th IEEE International Con-
ference on Software Maintenance (ICSM) 2004

A CALL GRAPHS AND CODE PRIVILEGE CHANGES 14

A Call graphsand code privilege changes

Although security is not the main topic of this paper or willl graphs in gen-
eral, they offer an interesting and, in most cases, helpéw wf the program.
Especially, system programs written in C are reviewed beethey run with su-
per user privileges. Code running as root is potentiallyggaous. More complex
programs such as OpenSSH [8] use to drop the superuseegasibefore they
handle untrusted input. This so callBdvilege Separatioomechanism separates
the code which handles dangerous input from code which nieeds as root
such as looking up user credentials. In case the code hgrttiéninput contains
a buffer overflow, an attacker can only execute code as ulgged user.

When generating a function call graph for such a session kesiaense to mark
the functions running as root differently from the funcsorunning with user
privileges. Thanstrumentalpackage is able to highlight functions (nodes) called
with a EUID of 0 in red. Function names are assembled of the founction name
appended by the EUID. If the functiaio _authenticate() is called as root
for example, the node name will lbe _authenticate 0. If two functions are
called with different EUIDs there will appear a separateenfmt each of them in
the graph. Sample graphs are shown in Figures 8 and 9.

A CALL GRAPHS AND CODE PRIVILEGE CHANGES 15

Figure 8: The OpenSSH server including OpenSSL cryptorybealls during a client
login. Caller EUID is used within the nodes, functions calés root are marked red.

A CALL GRAPHS AND CODE PRIVILEGE CHANGES 16

Figure 9: ssh-rand-helper when called during SSH servetugta Again, functions
called as root marked red.

