111 [[T— [T
HIGH-TECH BRIODGE

INFORMATION SECURITY SOLUTIONS

Inline Hooking in Windows

6 September 2011

Brian MARIANI
Senior Security Consultant

©2011 High-Tech Bridge SA — www.htbridge.ch

SOME IMPORTANT POINTS HIGH-TECH BRIOGE

* This document is the second of a series of five articles
relating to the art of hooking.

= As a test environment we will use an english Windows
Seven SP1 operating system distribution.

©2011 High-Tech Bridge SA — www.htbridge.ch

WHAT IS AN INLINE HOOK HIGH-TECH BRIDGE

"When an inline hook is implemented it will overwrite the
first bytes codes of a windows api in order to redirect code
flow.

*This kind of technique can be used in ring 3 or ring O
modes.

©2011 High-Tech Bridge SA — www.htbridge.ch

CHARACTERISTICS HIGH-TECH BRIOGE

INFORMATION SECURITY SOLUTIONS

Inline hooking is more robust than import address table (IAT)
hooks.

They do not have problems related to dll binding at runtime.
They can trap any function call, not just system calls.

No device driver is required.

They are widely used in many renowned professional
applications and well-known rootkits.

©2011 High-Tech Bridge SA — www.htbridge.ch

SOME GOOD UTILITIES HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

At the Defcon 17 Nick Harbour has presented a good tool
named apithief.

The tool launches a process in a suspended state.

It then injects a DLL and hook Win32 API functions.

The tool can then monitor the api behavior.

©2011 High-Tech Bridge SA — www.htbridge.ch

SOME BAD UTILITIES HIGH-TECH BRIOGE

INFORMATION SECURITY SOLUTIONS

* Well-known and widespread malware take advantage of
this kind of technique to hook key api windows
components Iin order to spy and steal sensitive
information from the user.

One of these famous malwares is Zeus, also known as

Zhot, PRG, Wsnpoem or Gorhax.

0:0003 u_71ab6233

w=d_ 3] end :

71abe233 29857908 E np 00b7dbbd

71abb238 51 e =y

7labe239 ol push [=Tma4

7labb2da 813d2840a=7148%4a071 cmp dword ptr [w=s2_ 32 | PrologFointer
71labb244 Gk push 2=l

7labfZ245 0f847£540000 je w=d_321W3ASend+0x14 (7labbbcal
7labbZ4b 8d45f47 lea zax, [ebp—-8]

7labbZdie &0 push Sax

ws2_32!WSASend AP| hooked

©2011 High-Tech Bridge SA — www.htbridge.ch

il alllin
Implementing an inline hook HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

We inject our dll into the process we want to hijack.

The first hytes of the target api are saved, these are the bytes
that will be overwritten.

We place a jump, call or push-ret instruction.

The jump redirects the code flow to our function.

The hook can later call the original api using the saved hytes of
the hooked function.

The original function will return control to our function and
then data can he easily tampered.

©2011 High-Tech Bridge SA — www.htbridge.ch

https://www.htbridge.ch/whitepaper/Userland%20Hooking%20in%20Windows.pdf

1 {1 anflfin
WHAT ARE WE GOING TO OVERWRITE HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

It is very important to determine what and where we are
going to overwrite the bytes codes.

Knowing exactly how much space we have at our disposal
is really important, otherwise we can destroy the logic of
the api, or write beyond his borders.

An unconditional jump will require 5 bytes.

We need to disassemble the beginning of the target api.

©2011 High-Tech Bridge SA — www.htbridge.ch

1 {1 anflfin
WHERE ARE WE GOING TO OVERWRITE HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

The start of a windows api function is usually the same.

After XP-SP2 Microsoft decided to change the windows api
preamble:

MOV EDI,EDI
PUSH EBP
MOV EBP,ESP

This allow for hot-patching, inserting a new code without the
need to reboot the box.

We can use these five bytes to insert our own set of
instructions.

©2011 High-Tech Bridge SA — www.htbridge.ch

1 {1 anflfin
WHERE ARE WE GOING TO OVERWRITE HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

Another reason why we select the start of the function is
because the more deeper into the function the hook is
located, the more we must be careful with the code.

If you hook deeper into the function, you can create
unwanted issues.

Things become more complex.

Keep it simple and stupid.

©2011 High-Tech Bridge SA — www.htbridge.ch

AN UNSUCCESSFUL HOOK HIGH-TECH BRIOGE

INFORMATION SECURITY SOLUTIONS

* |[f we try to hook every function in the same way we can
modify the logic of the function.

* In the picture below we have inserted an unconditional
jump that destroy the logic of the function.

FAI2ZAZE2 A0R ECH.ECH
SUB ECH.1
RETMN
NOP
NOP
MOU EDI .EDI
PUSH EBP
MOU EBFP.ESP
PUSH 38

JMP 6BAA11DA
RETH

NOP

NOP

MOU EDI .EDI

PUSH EBP

MOU EBP.ESP

PUSH 38

©2011 High-Tech Bridge SA — www.htbridge.ch

A SUCCESSFUL HOOK HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

* |n this particular example the prolog of httpsendrequest
APl has been hooked with a jump to our function.

Y731 EE?E 8BFF EDI .EDI
55 PUSH EEFP
8BEC EBP . ESP
83EC 48 ESP .48
53 PUSH EER

Y2I1EE?E EY? IBZ236EF4 JMP 6BAA11DA
Y731EEAR 83EC 48 ESP .48
53 PUSH EBX

= We have used the first 5 hytes of the target function to
place our jmp instruction.

©2011 High-Tech Bridge SA — www.htbridge.ch

il anllfin
INLINE HOOKING PRACTICAL EXAMPLE (1) HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

In this practical example our target is a simple chat system
using nc.exe, but every program using WS2_ 32.DLL!Send Api
could be used.

We want to hijack the sent messages from one of two users.

To accomplish this task we inject our DLL into nc.exe process
and we hook the aforementioned api.

Then we jump into our function and we change the stack
parameters, then we adjust our stack to avoid incovenients and
finally we jump again to WS2_32.DLL!Send api.

This hook example can be used to create more complex
scenarios.

©2011 High-Tech Bridge SA — www.htbridge.ch

INLINE HOOKING PRACTICAL EXAMPLE (2) HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

= Before hooking the WS2_32.dll'send APl we attach with
our debugger to the nc.exe process which is already
listening on port 9999. We can see the unhook prolog.

7651 CACE MOU EDI,EDI

7651 C4CA PUSH EBP

2651 CACE MOU EBP,ESP WS2 321Send
7651CACD SUB ESP.10 —
2651C4D0@ PUSH ESI

7651C4D1 PUSH EDI

7651C4D2 %OR EDI,EDI

7651C4D4 813D 48785376 3¢ CMP DWORD PTR DS:[765378481,4S2_32 7651
2651CADE 75 7B SHORT WS2_32.7651C55E

7651C4E@ 393D 7@785376 CMP DWORD PTR DS:[76537@7@1,EDI
7651CAE6 74 73 SHORT WS2_32.7651CG5E

7651C4E8 FF35 44785376 PUSH DWORD PTR DS:[765378441

7651CAEE FF15 48125176 DVORD PTR DS:[<&API-MS—Win—Core-Prc kernel3d2.T1lsGetUalue
7651C4F4 8945 F MOU . ERX

7651CAF? 3BC? CMP EAX,EDI

7651C4F? 74 60 SHORT WS2_32.7651C55B

7651CAFB 897D FC MOU LEDI

7651C4AFE FF75 B8 PUSH

7651C5@1 E8 GAGBFFFF Ws2_32.76513070

7651C506 8BF@ MOU ESI,ERAX

7651C5@8 3BF? CMP ESI.EDI

7651C50A @F84 C92AN000 WS2_32.7651EFDY

7651C510 8BAD FB MOU ECX.,

7651C513 MOU ERX.

2651C516 PUSH EBR

7651C517 ADD ECX,8

2651C51A LEA EDX.

2651C51D PUSH EDX

2651 C51E PUSH ECY

2651C51F PUSH EDI

©2011 High-Tech Bridge SA — www.htbridge.ch

11| (T se—|
INLINE HOOKING PRACTICAL EXAMPLE (3) HII.'-H-'I:lEl:H "BRIDI.'-ER

INFORMATION SECURITY SOLUTIONS

= Server is listening for inbound connections (upper image) and the client
connects (ower image). All is working normally and users are discussing
without any issues.

©2011 High-Tech Bridge SA — www.htbridge.ch

11| [se——
INLINE HOOKING PRACTICAL EXAMPLE (4) HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

= At this time we inject our DLL into the nc.exe process.

©2011 High-Tech Bridge SA — www.htbridge.ch

11| (T se—|
INLINE HOOKING PRACTICAL EXAMPLE (5) HII.'-H—TlEl:H lBRII.'.ll.'-ER

INFORMATION SECURITY SOLUTIONS

Let's check using the our debugger how’s things have
changed.

The APl preamble has been modified. It has been
replaced with a jump to our evil function.

?651C4C8 E9 B34D5AFY

765104l B3EC 1M ESP.109 WS2 32!Send
7651C4DB 56 PUSH ESI —

?651C4D1 57 PUSH EDI

P651C4D2 33FF EDI .EDI

7651C4D4 813D 48785376 3¢ DWORD PTR DS:[76537@481.

Pe51C4DE 75 7B

7651C4ER 393D 70785376 DWORD PTR DS:[76537@781.EDI

Pe51C4E6 P4 P73

7651C4E8 FF35 44785376 PUSH DWORD PTR DS:[765378441

P651C4EE FF15 48125176 DWORD PTR DS:[<&API-HMS5—UWin—Core—-Pri kernel32.Tl=GetUalue
7651C4F4 8945 F8 .EAX%

P651C4AFY 3BCT? EAX . EDI

7651C4F9? 74 6B

7651C4FB 897D FC .EDI

7651 CAFE PUSH

©2011 High-Tech Bridge SA — www.htbridge.ch

INLINE HOOKING PRACTICAL EXAMPLE (6) HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

= Let’s check our function at address Ox6FAC11DO.

6FAC11DE
6FAC11D1
6FAC11D3
6FAC11D6
6FAC11DE
6FAC11DE
6FAC11ES
6FAC11ER
6FAC11E?
6FAC11EC
6FAC11ED
6FAC11EE
GFAC11FA
6FAC11F1
6FAC11F3
6FAC11F4
6FAC11FS
6FAC11F6G
6FAC11F?
6FAC11F8
6FAC11F?
6FAC11FA
GFAC11FRE
6FAC11FC
6FAC11FD
6FAC11FE
6FAC11FF
6FAC12080
6FAC1281
6FAC12A2

2c PUSHFD

8BEC ERP.ESP

83EC B8 ESF.8

BE BAAZIAACEF EAx. ASCITI "You friend
8845 FF

C745 F8 28000808(

POP Efx
POP Efx
EDI .EDI

PUSH EEBP
ESP.ERP

78
E? CGLB2ASA6

©2011 High-Tech Bridge SA — www.htbridge.ch

11| (T se—|
INLINE HOOKING PRACTICAL EXAMPLE (7) HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

* The behavior of the chat has changed too]

23| Administrateur : Console - nc -vip 9999

©2011 High-Tech Bridge SA — www.htbridge.ch

DETECTING INLINE HOOKING (1) HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

Detecting inline hooks is pretty simple.

Rootkits detectors like gmer, or BlackLight from Fsecure do a good job.

Let’'s do an injection test into Internet Explorer 8.0 in Windows 7 and
hook wininet!HttpSendRequestW Api.

#include <windows.h>
#include <stdio.h>
#include <winsock.h>

__declspec (naked) MyHttpSendRequest ()
[

__asm("Rop")

__asm("nop"):

__asm("nop");

__asm("mop") ;

asm("nop”);

__asm("nop”):

__asm("nop")
3

BOOL APIENTRY D11Main (HINSTANCE hInst, DWORD reason,LPVOID reserved)
{

char JmpCpcode[1] = TxEST;

char SavesOpcodes[5] "AXI0\KRIONKIO\RIO\KIO";

DWORD 1pflCldProtect 0:

HMODULE HandleModule;

DWORD AddressAPI:

DWORD AddresseFakefpi;

DWORD calculatedMP, JMP_TO, Trampoline;

switch (reason)

<
case DLL_PROCESS_ATTACH:
HandleModule = GetModuleHandle (TEXT ("wininet.dll"});
AddressAPI = GetProcAddress (HandleModule, "HrtpSendRequesti™) ;
AddresseFakefpi = (LPDWORD)&MyHttpSendRequest;

memcpy (SavesCpcodes, AddressAPI, 0xS) ;

calculateJMF = AddresseFakelpi - AddressAPI;

JMP_TO = calculatedMP - 5:

VirtualProtect (AddressAPI, 0x2, PAGE_READWRITE, £lpflOldProtect);
memcpy (AddressAPT, JmpOpcode, 0x1) ;

memcpy (AddressAPI+1, 8JMP_TO, 0x4) ;

asm("int3");

©2011 High-Tech Bridge SA — www.htbridge.ch

DETECTING INLINE HOOKING (2) HIGH-TECH BRIDGE

* The hook is in place]

4. Immunity Debugger - iexplore.exe - [CPU - thread 00000004, module WININET]
@ File View Debug Plugine Immlib Options Window Help Jobs

O EE ax» I Wi+ 1 emtwhcPkob

YSAFEE?R MOU EDI . EDI
YSAFEE?D PUSH EBP
YSAFEE?E MOU EBFP.ESP
YSAFEERA ESP.48
YSAFEEA3 PUSH EBX
YSAFEER4 PUSH ESI
YSAFEEAS PUSH EDI
YSAFEEAG

YSAFEEAS

YSAFEEAA

YSAFEEAD PUSH
YSAFEERE PUSH
YSAFEEAF

YSAFEER1

4. Immunity Debugger - iexplore.exe - [CPU - thread 00000004, module WININET]

File View Debug Pluging ImmLib Options Window Help Jobs
O EE Maxp Il MYeliado 1l emtwhcPkob

'SAFEE?R
Y>AFEEAA
YSAFEEA3
'">AFEEA4
YSAFEEAS
Y>AFEEAG
SAFEEAS
Y>AFEEAA
YSAFEEAD PUSH
'"2AFEEARE PUSH
SAFEEAF
Y2AFEEBR1

©2011 High-Tech Bridge SA — www.htbridge.ch

DETECTING INLINE HOOKING (3) HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

But it has been successfully detected by gmer anti-
rootkit.

O GMER 1.0.15.15641

Rootkit/Malware | vy |

Tye | Name [value

et ntkinlpa.exelkiDispatchintermupt + 542 B24B9092 19 Bytes [E0,OF BA, F0,07, 73,09, . J{LOORNZ 0x11; MOY EDW, 0x37307A0; MOV CR4, EA.
text ntkmipa.exelRHSidHashLoakup + 230 82400890 4 Bytes [CR, 64, D2, 8D]

et ntkiripa.exel RS idHashLookup + 2C8 82400928 4 Butes [98, 72, D2, 80]

et ntkiripa exel RS idHashLaokup + ZEC B24C094C 4 Bytes [C0, 76, D2, 8D] {SAL BYTE [ESI-0x2e], 0xAd}

et ntkiripa.exelRtiSidHashLookup + 308 82400968 4 Butes [3C, B4, D2, 80]

text ntkmipa.exelRHSidHashLookup + 32C B240094C 4 Bytes [BC, 69, D2, 8D]

et

? C:hwindows'S ystem 32 Drivers\SafeBaat sys Le processus ne peut pas accéder au fichier car ce fichier est ullisé par un autre processus.
et altochk exe 002071ES 4 Bytes [3C, 37, CC, 32)

st autochk.exe (02011EF 3 Bytes (30, BF, 02]

et autachk, exe 00201204 4 Bytes [00, 00,00, 00 {ADD [EA%], AL; ADD [E&X], AL}

st autochk.exe (020120C1 Byte [00]

et altochk exe 002012107 Bute [00]

: j (i Firafouti j {la Firaforfirefox exe [FirefonMozila Corporation)
C HProgram Flles‘slnternet Explorer‘uexplore exe[SSDD] WININET dliHttpSendRequesti/ ?EQFEESB] Eytes JMP 003411 DD [HUsersHbmanamHDesktop\Zeuste\Zeuslee dl

©2011 High-Tech Bridge SA — www.htbridge.ch

CONCLUSION HIGH-TECH BRIDGE
Inline hooks can be very useful when trying to reverse
malware.

Paradoxically nowadays malcode use this technique to
change the behavior of the operating system in order to
steal personal information.

By understanding and identifying hooks, thought, you will
be able to detect most public rootkits and malwares.

We hope this document help you understand and master
inline hooks.

Demo video: Inline Hooking in Windows

©2011 High-Tech Bridge SA — www.htbridge.ch

http://www.youtube.com/watch?v=39G3EVllqWI

TO BE CONTINUED HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

* In future documents we will introduce Kernel Hooking.

©2011 High-Tech Bridge SA — www.htbridge.ch

REFERENCES HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

Subverting the Windows Kernel (Greg Hoglund & James Butler)
Professional Rootkits (Ric Vieler)

Programming application for Microsoft Windows fourth edition
(Jeffrey Ritchter)

http://msdn.microsoft.com/en-us/magazine/cc301805.aspx

Programming Windows Security (Keith Brown)
http://support.microsoft.com/kb/19757 1

http://www.youtube.com/watch?v=2RJyR9igsd]

http://community.websense.com/blogs/securitylabs/archive/tags/
Zeus/default.aspx

http://www.ibm.com/developerworks/linux/library/l-ia/index.html
http://www.gmer.net/

©2011 High-Tech Bridge SA — www.htbridge.ch

T[] [T S—] .
Thank-you for reading HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

Thank you for reading
Your questions are always welcome!

Brian.mariani@htbridge.ch

©2011 High-Tech Bridge SA — www.htbridge.ch

