
NGSSoftware Insight Security Research 
 

 
 

A NGSSoftware Insight Security Research Publication 
 

 
 
 

 
 

Hackproofing Lotus Domino Web Server 
 

David Litchfield (david@nextgenss.com) 
21st October 2001 

www.nextgenss.com 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1

http://www.nextgenss.com/


NGSSoftware Insight Security Research 
 

Introduction 
 
Brief 
This document describes how to secure the web service that comes with Lotus Domino. It is 
written to show Lotus Domino administrators how an attacker would attempt to subvert the 
security of a Domino Web server and provide insight into the mind and modus operandi of a 
Domino hacker. The attacks are explained in detail to aid understanding and include information 
on how to prevent these attacks. Some of the preventative measures explained here may require 
upgrades or the application of security patches, whereas others simply require a modification in 
the Domino Directory or tightening of access control lists 
 
 
What is Lotus Domino and what are Notes Databases 
Lotus Domino is an Application server designed to aid workgroups and collaboration on projects. 
It provides services such as SMTP, POP3, IMAP, LDAP, HTTP and a Notes database server. All 
information is stored in Lotus Notes databases. For example when a mail is sent to a Notes user 
it is stored in a Notes database. When users use Domino's web service they navigate through 
Notes databases. These databases are not of the relational type such as Oracle or Microsoft's 
SQL server, but rather it is document based. Documents are grouped into views and are edited 
and created through the use of forms. 
 
The logical structure of a Notes Database could be described as in Figure 1: 
 
 
 

 
 
 
 
On the left hand side there are views, folders, forms and agents. Folders group views together 
and views contain documents. As we can see in the diagram View1 can see documents 1 
through 3*, View 5 can see documents 4 through 6*, whereas View3 can see all the documents. 
Views and folders can be considered as high level database objects and documents as low level  

 2



NGSSoftware Insight Security Research 
 
database objects. Forms and agents are more high level objects and are used to manipulate the 
low level documents. 
 
* As we will see later on in this document this is not strictly speaking true. Just because a 
document is not listed as being in a view it can still be accessed through that view which opens 
up a security hole. 
 
Notes databases are given the file extension .nsf and examples are names.nsf, the Domino 
Directory and log.nsf, the Notes Log. Notes databases can also have a .box file extension, and 
these usually indicate that they are mailboxes. When Domino is installed databases are stored in 
the lotus\domino\data directory. Non-database data such as HTML files are stored in the 
lotus\domino\data\domino\html directory. Further to Notes databases there are Notes template 
files that have a .ntf file extension and these are stored in the directory same directory as the 
Notes databases. (This has some relevance to the Domino web server’s security discussed 
further on into this document.) 
 
Notes Databases and the Domino Web Server 
 
Users interact with a Notes database over the web using commands in the query string of a URL. 
For example to open a database a user would request 
 
http://server/statrep.nsf?OpenDatabase 
 
It is important to note that query strings can be denoted with an exclamation mark (!) in Domino. 
For example 
 
http://server/statrep.nsf!OpenDatabase 
is equivalent to 
http://server/statrep.nsf?OpenDatabase 
 
Anyone setting up IDS systems for Domino should be aware of this feature. Besides the 
OpenDatabase command there are many more: OpenServer, OpenNavigator, ReadEntries, 
OpenView, ReadViewEntries, OpenDocument, EditDocument, CreateDocument, 
DeleteDocument, SaveDocument, ReadDesign, OpenForm, ReadForm, OpenAgent, 
SearchView, OpenIcon, OpenAbout and OpenHelp are some of the more common ones. Some of 
these have a major impact of the applications security, some only if the databases Access 
Control Lists are set improperly. We will examine these commands and describe what they do 
and why they can offer an avenue of attack by a potential hacker. Throughout this document we'll 
be using the Statistics Reporting database, statrep.nsf, as an example. We choose this database 
as, by default, there are no ACLs set on this database. In other words the default access is set to 
manager meaning that anonymous web users have complete control over this database - in itself 
a security risk. 
 

Application attacks 
 
Commands which act on the server as a whole 
 
The OpenServer command 
Example: http://server/?OpenServer 
This command will list the databases on a Domino Server. This has security implications because 
being able to list the databases on the system could alert an attacker to the presence of more 
sensitive databases on the system - for example "customers.nsf". By default database browsing 
is not allowed and a request for the OpenServer command will elicit a 403 Forbidden response 
from the server. If the command is successful and you want to disable it open names.nsf and edit 
the Servers document in the Server view. From the Internet Protocols tab set "Allow HTTP 

 3



NGSSoftware Insight Security Research 
 
Clients to browse databases" to No. This command doesn't affect a single database - it is a 
server-wide issue. 
 
Commands which act on a database 
 
The OpenNavigator command 
Example: http://server/statrep.nsf/home?OpenNavigator 
Notes databases can have a navigator - similar to a user interface that exists to aid users to 
navigate to data and documents. Every database comes with a default navigator - called 
$defaultNav. This navigator simply shows a list of visible views and folders. When combined with 
the $defaultNav, the OpenNavigator command opens a security hole as it presents a list of visible 
views in the database: 
 
http://server/statrep.nsf/$defaultNav?OpenNavigator 
 
Note that the default Navigator will not show a list of hidden views - though there are other ways 
to get this information - see the section on Database Structure Enumeration. 
 
There is information freely available on how to prevent access to the default Navigator on the 
Notes web site (www.notes.com) - however their suggested fix doesn't work and can be easily 
by-passed. It describes how to create a URL to Redirection mapping (this part is right). Here is 
their fix: 
 
Open the servers view and then click on the Actions menu bar item then select Web -> Create a 
URL Mapping/Redirection. This will open up the Mapping/Redirection form. On the Basics tab you 
want to set up a "Url -> Redirection" action. If the server in question is a virtual server from the 
site information tab enter its IP address and optionally a comment. In the mapping tab enter in the 
"Incoming URL path" edit box "*/*.nsf/$defaltNav*". In the "Redirection URL string" edit box enter 
a url where you'd have the person redirected to - for example /. You need not enter anything in 
the "Administration" tab. Once this has been done save and close the document and issue from 
the Domino console the command tell http restart for the changes to take effect. 
 
There are two things wrong with setting the Incoming URL path to */*.nsf/$defaltNav* 
 
Firstly, if we make a request for the database using the ReplicaID  
 
such as http://server/8000000000000000/$defaultNav 
 
then the pattern matching will be broken. 
 
Secondly if we substitute any characters for their hex encoded equivalent, 
 
for example  /foo.nsf/$%64efaultNav 
 
then, again, the pattern matching is broken.  
 
 
A Domino administrator needs to create a URL redirection mapping for every possibility and when 
you consider /$%44efaultNav works just as well as /$%64efaultNav you have to take into case 
sensitivity. Because of this it would be far too impracticle to have a mapping for every variant. It is 
suggested therefore that only the first two characters be taken into consideration - $d.  

 4



NGSSoftware Insight Security Research 
 
This way only 8 mappings need to be created: 
 
*/%24D* 
*/%24d* 
*/%24%64* 
*/%24%44* 
*/$d* 
*/$D* 
*/$%64* 
*/$%44* 
 
Note that if you substitute the leading slash with %2F or %5C the redirection mapping still works: 
 
http://server/foo.nsf%2f$defaultNav 
produces a 500 Unable to process request response, 
 
whereas 
 
http://server/foo.nsf%5C$defaultNav 
 
performs the redirection. 
 
 
NGSSoftware Insight Security Research have also tested variants of double URL encoding and 
UTF-8 encoding and these seem not to work - i.e. an attacker cannot get access to the default 
Navigator. If you have a normal database view which starts with the characters "$d" then this fix 
will prevent access to this view from over the web as any request that contains with "/$d" will be 
redirected. To work around this you could set up an alias for this view. Once the changes have 
been made from the Domino Server console issue the command "tell http restart" to load these 
changes. 
 
Having said all this if access control lists are set properly on the database and its objects then 
even if someone were able to access the default navigator then this pose little risk. 
 
 
The ReadEntries command 
Example: http://server/statrep.nsf?ReadEntries 
This command returns an XML listing of visible views. This XML listing contains information such 
as the views' Universal NoteID (UNID) and the views' name. This command exists to allow Java 
applets to work out what view are accessible for its use. Essentially this command returns to an 
attacker the same information as a request to the default Navigator so if you've prevent access to 
the default Navigator but not prevent access to ReadEntries then it was for naught. Like with the 
default Navigator fix a URL to Redirection mapping should be created taking into consideration all 
possibilities. However in this case you must use ! and ? and R but also note that this will also 
prevent the ReadForm, ReadViewEntires and ReadDesign commands and therefore may not be 
viable. It is better to secure a database and its objects using proper ACLs. Note that if clients are 
to access this database using Java applets preventing the use of the ReadEntries command may 
cause the applets to cease form working. 
 
 
Commands which act on a View 
 
The OpenView command 
Example: http://server/statrep.nsf/view?OpenView 
This command lists documents within a view. Normally this command does not present a problem 

 5



NGSSoftware Insight Security Research 
 
and is integral to the way Domino operates. 
 
The ReadViewEntries command 
Example: http://server/statrep.nsf/view?OpenView 
Like the ReadEntries command the ReadViewEntries command returns an XML listing of 
documents within a view and is used by client-side Java applets to make use of documents in the 
database.  
 
The ReadDesign command 
Example: http://server/statrep.nsf/view?ReadDesign 
Like the ReadEntries command the ReadDesign command returns an XML listing, but this 
command returns a description of the structure of the view. 
 
 
 
Commands which act on Documents 
 
The OpenDocument command 
Example: http://server/statrep.nsf/view/doc?OpenDocument 
The OpenDocument command opens a document in read mode. 
 
The EditDocument command 
Example: http://server/statrep.nsf/view/doc?EditDocument 
If the ACLs on the document allow it, the EditDocument command opens a document in write 
mode. EditDocument returns an HTML form with fields in the document that can be edited. 
However, it is possible to change the other fields too. By saving the HTML page and editing the 
source an attacker can add the name of the field to be changed as a form input field and then 
submit the changes. 
 
For example, consider a document that had two fields, "foo" and "bar". On requesting the 
EditDocument command the HTML form returned only allowed the editing of the "foo" field. By 
adding the line: 
 
<INPUT TYPE="text" NAME="bar" VALUE="I shouldn't be able to change this but I can"> 
 
and then submitting the form both the "foo" and "bar" fields are changed. This of course only 
happens if the user has the permissions to edit that particular field. 
 
 
The SaveDocument command 
Example: http://server/statrep.nsf/view/doc?SaveDocument 
If the source of the HTML form is viewed from the EditDocument command, you can see that the 
form action is to the SaveDocument command. Providing the ACLs allow it on submitting the 
EditDocument form the SaveDocument command is executed. 
 
The DeleteDocument command 
Example: http://server/statrep.nsf/view/doc?SaveDocument 
As you would expect the DeleteDocument command deletes the document. If you don't want 
attackers stripping documents from your system it is advisable to setup ACLs correctly. 
 
 
The CreateDocument command 
Example: http://server/statrep.nsf/view/form?CreateDocument 
Notes Forms are used to create documents in a Notes database. If you open a form over the web 
and HTML form is returned with an action of CreateDocument.  

 6



NGSSoftware Insight Security Research 
 
 
 
For all these commands that act on Documents ensure that the ACLs are set correctly to prevent 
unauthorized tampering. 
 
 
 
Special Database Objects 
Notes database have special database objects. For example the default Navigator, $defaultNav, 
and the $searchForm template are two examples. Most of these have no security ramifications 
though it is helpful to know they exist and how they are used. 
 
The $icon object 
Example: http://server/statrep.nsf/$icon?OpenIcon 
This is the icon for the database. 
 
The $help object 
Example: http://server/statrep.nsf/$help?OpenHelp 
The $help object describes how to use the database. 
 
The $about object 
Example: http://server/statrep.nsf/$about?OpenAbout 
This object opens a page that tells you "about" the database. 
 
The $icon object 
Example: http://server/statrep.nsf/$icon 
This is the icon for the database. 
 
The $first object 
Example: http://server/statrep.nsf/view/$first?OpenDocument 
This opens the first document in a given view. 
 
The $defaultform object 
Example: http://server/statrep.nsf/$defaultform?OpenForm 
This returns the first form found in the database. 
 
 
Database Structure Enumeration 
 
Enumerating Views, Forms, Agents and Special Database Objects 
Objects in the database are tracked in many ways. There are Universal Note IDs (UNIDs) that are 
32 character long strings. For example the following URL: 
 
http://server/statrep.nsf/0a89ad68dd8b0187852561780077caf0/b937c60966dbb9dd80256a7400
059cc6 
 
shows a view with a UNID of 0a89ad68dd8b0187852561780077caf0 and a document with a 
UNID of b937c60966dbb9dd80256a7400059cc6. 
 
Another way to reference a database object is with its NoteID which is a much smaller number. 
For example, the NoteID of the view above has a NoteID of 136. A NoteID is basically the postion 
of the object in the database file, somewhat akin to a file pointer. As far as the author can tell 
there is no way to get the NoteID of a view remotely. However, for all Notes databases on all 
servers the way NoteIDs are issued is standard as higher level objects such as forms and views 
reside at roughly the same location between two database files. 

 7



NGSSoftware Insight Security Research 
 
 
For any view, hidden or visible, form or agent the NoteID issued to that object is issued starting at 
around 0x11A and increments in 4. Try it out: 
Make 10 requests 
 
http://server/statrep.nsf/11A 
http://server/statrep.nsf/11E 
http://server/statrep.nsf/122 
http://server/statrep.nsf/126 
http://server/statrep.nsf/12A 
http://server/statrep.nsf/12E 
http://server/statrep.nsf/132 
http://server/statrep.nsf/136 
http://server/statrep.nsf/13A 
http://server/statrep.nsf/13E 
 
and so on. 
 
If the NoteID exists the page is returned. It may be a special database object such as $icon or 
$help, it might be a form or it might be a view. If the NoteID doesn't exist then the server will 
return an error, "Invalid or nonexistent document". There is one exception to this - if the server 
returns an "Unknown Command Exception" error then the NoteID belongs to an Agent - you can't 
call an Agent with its NoteID. By going all the way up from 0x11A to 0xFFF in increments of 4 
(only 953 requests) you'll have found the NoteID of every hidden view, visible view, agent, form 
and special object - thus the higher level database structure can be enumerated. 
 
Enumerating Documents 
Documents also have a NoteID. To get the NoteID of a document open a view with the 
ReadViewEntries command. 
 
http://10.1.1.28/statrep.nsf/3.+Events/?ReadViewEntries 
 
The NoteID of every document in this view will be returned in the XML listing. One of the peculiar 
things with Domino is that if you reference a document that exists in one view you can access it 
by requesting it through another view. 
 
For example go to  
 
http://server/statrep.nsf/136?ReadViewEntries 
 
select a NoteID at random (136 is the NoteID of the "3. Events" view) and then request it like so: 
 
http://server/statrep.nsf/136/8F6 
 
The Event document will be returned. Now request: 
 
http://server/statrep.nsf/$Alarms/ 
 
Normally with statrep.nsf there will be no documents in that view. However - now request 
 
http://server/statrep.nsf/$Alarms/8F6 
 
and the Event document is returned! 
 
 
This means that it is possible to gain access to documents in one view through another and 

 8



NGSSoftware Insight Security Research 
 
therefore it is possible to enumerate all the documents in a database by selecting 1 view and 
counting upwards from 0x8F6 in increments of 4. (As far as the author can tell document NoteIDs 
start at 0x8F6) 
 
http://server/statrep.nsf/$Alarms/8F6 
http://server/statrep.nsf/$Alarms/8FA 
http://server/statrep.nsf/$Alarms/8FE 
http://server/statrep.nsf/$Alarms/902 
http://server/statrep.nsf/$Alarms/906 
http://server/statrep.nsf/$Alarms/90A 
and onwards... 
 
When a 500 Invalid or nonexistent message is returned all of the documents have been 
enumerated. If the server returns a 404 it usually means the document no longer exists - for 
example it has been deleted. 
 
By-passing ACLs set on views 
The fact that you can request a document in one view through another view opens up a security 
hole. If ACLs are set on a view to give say only admins access, then any documents in that view 
may be access directly through another view - thus bypassing the access control. This works 
because the permissions allow access to the database, the fake view and the document in 
question. At each stage where permission checking takes place the authorization process 
succeeds. If the request was made through the real view then authorization would fail. Remember 
by requesting a NoteID you're simply asking for the contents from a position in the database file. 
 
To prevent against this, you must ensure that not only do you set ACLs on views but also on the 
documents that view is supposed to protect. 
 
 
 
 
Features of Domino that lead to security vulnerabilities 
 
Domino comes, by default with a Web Administrator database, webadmin.nsf. Anonymous users 
are not allowed to access this database, but they are allowed to access the template from which 
webadmin.nsf is derived, webadmin.ntf. Webadmin.ntf contains the same functionality as it's 
database child and resides in the same directory. Recalling from the introduction, database files 
(those with a .nsf, .ns4 and .box file extention) are served from the lotus\domino\data directory. 
Everything else is served from the lotus\domino\data\domino\html directory. Therefore if a user 
were to request  
 
http://server/webadmin.ntf 
 
Domino would search in the latter of these two locations, but as webadmin.ntf actually exists in 
the former location the server cannot find the file and returns a 404 file not found message. 
However, there are a couple of features of Domino that can allow a user to trick domino into 
searching in the right directory for webadmin.ntf. Firstly is the use of ReplicaIDs. A ReplicaID is 
used to maintain a database's consistency - if the database exists in two locations i.e. on two 
separate servers then Domino uses the ReplicaID to keep track of changes. It is completely legal 
to make a request to Domino for a database using its ReplicID.  

 9



NGSSoftware Insight Security Research 
 
For example, on the author's system the ReplicaID of names.nsf is 80256A7100183ABF and 
access could be had to names.nsf through any of the following requests. 
 
http://server/80256A7100183ABF/ 
http://server/__80256A7100183ABF.nsf/ 
http://server/__80256A7100183ABF.ns4/ 
http://server/__80256A7100183ABF.box/ 
 
Each of the requests will cause Domino to look in the lotus\domino\data directory for a file with 
this ReplicaID. As names.nsf is created afresh with each new install the ReplicaID of the author's 
names.nsf file will probably be different to everyone else's names.nsf. However, the Web 
Administrator template file, webadmin.ntf is not created from scratch. It is shipped whole as part 
of the install and therefore the ReplicaID of the author's webadmin.ntf will be the same as 
everyone elses webadmin.ntf. Therefore by making a request for webadmin.ntf's ReplicaID an 
anonymous user can can access to the Web Administrator and use its functionality. To get the 
ReplicaID of the webadmin.ntf file open catalog.nsf holding Control, Shift and H down together 
whilst you open the catalog. (This key sequence will show all hidden views as well as visible of 
the database). The ReplicID can be found in the "$ReplicaID" hidden view. 
 
 
Another method of tricking Domino into opening the Web Administrator template is through the 
use of buffer truncation. By making the following request 
 
http://server/webadmin.ntf++++++_250_pluses+++++.nsf/ 
 
access to webadmin.ntf is granted. This works because Domino attempts to protect itself from 
buffer overrun attacks and chops a user request down to a safe size. In terms of events here's 
what happens. Domino receives the request and converts all the pluses to spaces and sees it has 
a .nsf file extention and therefore loads the database parser. The database parser chops the end 
off of the request, (thus removing the .nsf)  to prevent any buffer overrun and then looks in the 
lotus\domino\data directory for the file, webadmin.ntf<space><space><space>.... which it finds 
and then opens. Thus again the attacker can use webadmin.ntf's functionality. 
 
As far as securing against this goes the best solution is to delete the webadmin.ntf file. And 
probably best to remove the webamin.nsf file too. The buffer truncation issue will be fixed in 
Domino 5.0.9. Further to this the default permissions set on the Web Administrator template file 
will be modified. 
 
 
General Information Leakage 
 
Statrep.nsf Default Permissions 
The default permissions on the Statistics Report database (statrep.nsf) are set to Default with 
Manager level access. This means that an anonymous user can, not only browse the database 
for information, but also edit, create and delete documents. Many of the entries under the "3. 
Events" view can contain sensitive information pertinent to the system setup and its failures. This 
information can be used by an attacker when forming further attacks. Needless to say the 
permissions set on this database should be modified to prevent anonymous access. 
 
Domino Banners 
By default with every page sent by a Domino web server in response to a client request a banner 
is embedded at the top of the HTML. This banner details the version of Domino and the operating 
system type it is running on - such as Windows NT on Intel. This is not desirable, as this 
information can aid an attacker in building attacks against the server. To prevent this information 
from being sent, edit the notes.ini file adding a line "DominoNoBanner=1". Note that even if you 
set this value the server version will still be sent in the "Server:" HTTP response - however, the 

 10



NGSSoftware Insight Security Research 
 
operating system is omitted. With Domino 5.0.9 due to be released in November 2001 if the 
DominoNoBanner is set to 1 then the "Server:" HTTP header will no longer be sent as well. 
 
Physical Paths 
In older versions of Domino if a request was made to a nonexistent executable in the /CGI-BIN 
the physical path was revealed. More recent versions don't exhibit this behaviour. 
 
Common Misconfigurations 
Often, too many people allow anonymous access to sensitive databases such as the Domino 
Directory, names.nsf. This database controls the server’s configuration and also stores the user 
database. It would not be a good thing to allow anonymous users to download valid Notes users' 
userid files - with access to these an attacker will be able to masquerade as that user. Other 
databases that can commonly and wrongly be accessed include but is not limited to, catalog.nsf, 
domlog.nsf, log.nsf, statrep.nsf, bookmark.nsf and domcfg.nsf. 
 
 
 
User Authentication 
Domino supports two methods for authenticating users over the web. The first, and default 
method, is to send a 401 Unauthorized HTTP response back to a client if they attempt to access 
a resource they are not authorized to do so. This response will cause the user’s web browser to 
pop up a window prompting for a user ID and password. With the initial 401 server response also 
comes a realm – the realm describes the protected resource and upon successful authentication 
every time the user requests anything in that realm (i.e. anything to do with that resource) their 
browser will automatically send with the request the user’s credentials. This type of web 
authentication is known as Basic Authentication and the scheme used to obfuscate the user id 
and password is base 64 encoding. This is not encryption. A base 64 encoded character string 
can be easily converted into its original. Anyone with a network sniffer on the wire between the 
user and the Domino server will be able capture this information. 
 
The second type of authentication used if forms based authentication. Here, when a user makes 
a request for a resource they are not allowed to access the server returns a 200 OK HTTP 
response but rather than returning the page, it returns a login form. The user would enter their ID 
and password in this form and submit it. If authentication is successful the server generates a 
cookie that is used in future requests made by the user. The server maintains a list in memory of 
all active sessions and uses this cookie for authorization purposes. If no activity has taken place 
in a given amount of time, half and hour by default then the server times out the session and the 
user will have to authenticate again. Like with Basic authentication the user id and password are 
sent over the network wire in clear text and anyone with a sniffer will be able to access this 
information. 
 
With both methods it is suggested that if you are going to allow users to authenticate over the 
web it should be done over secure socket layer (SSL) as this will prevent anyone from with a 
sniffer from capturing credentials as the traffic is encrypted. As a side note, with Domino 5.x, SSL 
version 2 is disabled and only SSL version 3 is. SSL2 should be left disabled as SSL 2 is much 
more easy to break than SSL3 and if an attack is successful the attacker will be able to derive the 
server’s private key. 
 
 
A Note on Notes Access Control Lists 
 
Many times in this document we have drawn attention to setting ACLs correctly. Before we delve 
into ACLs it’s important to understand the difference between authentication and authorization. 
Authentication describes when a user passes over some credentials such as a user ID and 
password to be allowed access. Authorization describes what that user can do after they have 
been authenticated. Just because a user has be authenticated does not mean they have the 

 11



NGSSoftware Insight Security Research 
 
authorization to perform a certain task or access a resource.  
 
As far as the web server is concerned the Domino server performs 4 authorization checks: firstly 
on the database itself, then the view, then the document and finally fields within the document. 
Even if a user is listed as having access to a view or document if they’re not included in the 
database ACLs then they will not be given access and will be prompted to authenticate. 
Successful authorization needs to be successful with the first three of the four checks. If the user 
is not authorized to access a field in a document, but they are authorized on the database, view 
and document, then the document is still displayed, though the field they’re not authorized to 
access will be omitted. If a user has permission to access a database and a document, but not 
the view the document exists in, then an illegal argument exception error is generated by the 
server when the user attempts to access this document. As has already been noted, though, it is 
possible to by-pass this view permission issue by requesting the document through another view 
so this is one thing to be wary of. 
 
 
Conclusion 
As can be seen there are many issues to tackle before a Domino web server should be exposed 
to the Internet and what is key to the security of the Domino server and its applications is the 
correct access controls being set on databases. Whilst this document contains up to date 
information as of October the 21st 2001 it may be out of date in a week if a new Domino 
vulnerability is discovered. It is suggested that Domino and Notes administrators keep abreast of 
current Domino security issues. The Notes website (www.notes.com) contains a wealth of 
security information and likewise www.dominosecurity.com. Subscribing to security mailing lists 
such as bugtraq (www.securityfocus.com) can help keep those who need to know in the know. 
NGSSoftware will also maintain a vigil and we will endeavour to keep our website 
(www.nextgenss.com) up to date and we have written and provide a security management tool, 
DominoScan, that is continually updated to help protect Domino web servers. More information 
about this audit tool is available from the NGSSoftware website. 
 
 
--------------------------------------------------------------------------------------------------------------------------------- 

A NGSSoftware Insight Security Research Publication 
www.nextgenss.com 

© 2001 NextGenSS Ltd 
 
 
 
 

 12


	Hackproofing Lotus Domino Web Server
	Introduction
	Brief
	Notes Databases and the Domino Web Server
	
	A NGSSoftware Insight Security Research Publication




