GhostRace: Exploiting and Mitigating Speculative Race Conditions

Andrea Mambretti*
amb@zurich.ibm.com

Hany Ragab’™*
hany.ragab@vu.nl

TVrije Universiteit Amsterdam

Amsterdam, The Netherlands

Abstract

Race conditions arise when multiple threads attempt to ac-
cess a shared resource without proper synchronization, often
leading to vulnerabilities such as concurrent use-after-free.
To mitigate their occurrence, operating systems rely on syn-
chronization primitives such as mutexes, spinlocks, etc.

In this paper, we present GhostRace, the first security anal-
ysis of these primitives on speculatively executed code paths.
Our key finding is that a/l the common synchronization prim-
itives can be microarchitecturally bypassed on speculative
paths, turning all architecturally race-free critical regions into
Speculative Race Conditions (SRCs). To study the severity of
SRCs, we focus on Speculative Concurrent Use-After-Free
(SCUAF) and uncover 1,283 potentially exploitable gadgets
in the Linux kernel. Moreover, we demonstrate that SCUAF
information disclosure attacks against the kernel are not only
practical, but that their reliability can closely match that of
traditional Spectre attacks, with our proof of concept leaking
kernel memory at 12 KB/s. Crucially, we develop a new tech-
nique to create an unbounded race window, accommodating
an arbitrary number of SCUAF invocations required by an
end-to-end attack in a single race window. To address the new
attack surface, we also propose a generic SRC mitigation to
harden all the affected synchronization primitives on Linux.
Our mitigation requires minimal kernel changes and incurs
only ~5% geomean performance overhead on LMBench.

"There’s security, and then there’s just being ridiculous."
— Linus Torvalds, on Speculative Race Conditions

1 Introduction

Since the discovery of Spectre [44], security researchers have
been scrambling to locate all the exploitable snippets or gad-
gets in victim software. Particularly insidious is the first Spec-
tre variant (exploiting conditional branch misprediction [44]),
since any victim code path guarded by a source if statement

*This work was partially done at IBM Research, Zurich, Switzerland

Cristiano Giuffrida'
giuffrida@cs.vu.nl

Anil Kurmus*
kur@ zurich.ibm.com

*IBM Research Europe
Zurich, Switzerland

may result in a gadget. To identify practical Spectre-v1 gad-
gets, previous research has focused on speculative memory
safety vulnerabilities [41,44,52], use-after-free [40], and type
confusion [40]. However, much less attention has been de-
voted to other classes of (normally architectural) software
bugs, such as concurrency bugs.

To avoid (or at least reduce) concurrency bugs, modern
operating systems allow threads to safely access shared
memory by means of synchronization primitives, such as
mutexes and spinlocks. In the absence of such primitives,
e.g., due to a software bug, critical regions would not
be properly guarded to enforce mutual exclusion and
race conditions would arise. While much prior work has
focused on characterizing and facilitating the architectural
exploitation of race conditions [48], very little is known
about their prevalence on transiently executed code paths. To
shed light on the matter, in this paper we ask the following
research questions:

“How do synchronization primitives behave during
speculative execution? And what are the security implications
for modern operating systems?”

To answer these questions, we analyze the implementation
of common synchronization primitives in the Linux kernel.
Our key finding is that all the common (write-side) primi-
tives (i) lack explicit serialization and (ii) guard the critical
region with a conditional branch. As a result, in an adver-
sarial speculative execution environment, i.e., with a Spectre
attacker mistraining the conditional branch, these primitives
essentially behave like a no-op. The security implications are
significant, as an attacker can speculatively execute all the
critical regions in victim software with no synchronization.

Building on this finding, we present GhostRace, the first
systematic analysis of Speculative Race Conditions (SRCs),
a new class of speculative execution vulnerabilities affecting
all common synchronization primitives. SRCs are pervasive,
as an attacker can turn arbitrary (architecturally) race-free
code into race conditions exploitable on a speculative path—

mailto:hany.ragab@vu.nl
mailto:amb@zurich.ibm.com
mailto:kur@zurich.ibm.com
mailto:giuffrida@cs.vu.nl

in fact, one originating from the synchronization primitives’
conditional branch itself. While the effects of SRCs are not
visible at the architectural level (e.g., no crashes or deadlocks),
due to the transient nature of speculative execution, a Spectre
attacker can still observe their microarchitectural effects via
side channels. As result, any SRC breaking security invariants
can ultimately lead to Spectre gadgets disclosing victim data
to the attacker. To investigate the practical security impact of
SRCs, we focus on Speculative Concurrent Use-After-Free
(SCUAF), a subclass of speculative race conditions which con-
cerns all critical regions which, once speculatively executed,
can expose Use-After-Free (UAF) vulnerabilities.

To investigate the resulting attack surface, we first present
new techniques to exploit SCUAF in practice. SCUAF ex-
ploitation carries with it all the exploitation challenges of
Spectre as well as those of architectural race conditions. The
latter alone is far from trivial, as reliable exploitation relies
on controlling and stretching the race window to fit the ex-
ploit [48]. Nonetheless, architectural exploits are typically
one-shot, i.e., with a single iteration of a (e.g., UAF) primitive
and thus a single (successful) race window. Spectre exploits,
in turn, typically require thousands or millions of iterations
to scan memory looking for the secret to leak [26]. As such,
with existing race window-stretching techniques [48], we
would need to win the race an overwhelming number of times,
hindering practical exploitation. To address this challenge,
we propose a new (architectural or speculative) UAF race
window-massaging technique to (i) surgically interrupt the
victim thread at the “right time” and (ii) create an unbounded
window. Our technique builds on and extends existing timer
interrupt-based techniques [80] to not only make SCUAF at-
tacks realistic, but accommodate a full end-to-end speculative
information disclosure attack in a single race window.

Second, to investigate the extent of the problem, we present
a SCUAF gadget scanner and apply it to the Linux kernel
to find 1,283 potentially vulnerable gadgets. By manually
reaching one of our identified (device-specific) gadgets, we
implement a Proof of Concept (PoC) which triggers a con-
current UAF on a speculative path to hijack the control flow
to disclosure gadget in the kernel, allowing an unprivileged
attacker to leak arbitrary kernel memory at the rate of 12 KB/s.

Finally, we present a mitigation to serialize the execution of
all the vulnerable synchronization primitives. Our mitigation
has general applicability and can completely close the attack
surface of not only SCUAF but SRC in general. Moreover, it
requires minimal kernel changes and incurs low performance
overhead (=5% geomean on LMBench).

Contributions. We make the following contributions:

1. We present a new exploitation technique to precisely
interrupt any (kernel) thread and create an architecturally
unbounded UAF exploitation window (Section 4.1).

2. We present Speculative Race Conditions (SRCs), a new
class of speculative execution vulnerabilities affecting
all common synchronization primitives (Section 4.2).

3. We study the security implications of SRCs on archi-
tecturally race-free critical regions in the Linux kernel,
demonstrating a Proof of Concept exploiting a Specu-
lative Concurrent UAF (SCUAF) and leaking arbitrary
kernel memory at a rate of 12 KB/s (Section 4.3).

4. We propose a gadget scanner to find 1,283 potentially
vulnerable SCUAF gadgets in the kernel (Section 5).

5. We propose a generic mitigation to harden synchroniza-
tion primitives against SRC, with a ~5% geomean per-
formance overhead on LMBench (Section 6).

The PoC code, the gadget scanner, and ad-
ditional information are publicly available at
https://www.vusec.net/projects/ghostrace.

2 Background

2.1 Transient Execution

if (x < arrayl_size){
y = array2[arrayl[x] * 0x1000 7];

Figure 1: An example of Spectre bounds check bypass. The
conditional branch (in red) with the attacker-controlled x spec-
ulatively bypassing the comparison with arrayl_size, the
first speculative load reading a secret byte at address (arrayl
+ x) (in blue), and the second speculative load referencing
the CPU cache with a secret-dependent address (in orange).

Since 2018, after the discovery of Spectre [44] and Melt-
down [49], transient execution attacks have become an in-
tensively studied area of research. Whenever a modern CPU
implements speculative optimizations (e.g., branch predic-
tion), it speculatively executes a sequence of instructions.
The two possible outcome for these instructions are that ei-
ther they are committed and made visible to the architec-
tural level or they are squashed due to mispeculation (e.g.,
misprediction)—Ileading to transient execution. When the in-
structions are squashed, the CPU rollbacks the state. Despite
the rollback, some microarchitectural side effects are left and
can be observed through one of the many side channels avail-
able (e.g., data cache [20,28,75,76], branch target buffer [51],
port contention [11], etc.) to leak sensitive information.

Spectre-PHT, also known as Spectre-v1, is the first known
attack of this kind, targeting the pattern history table and ex-
ploiting a code pattern such as the one shown in Figure 1.
As shown in the figure, the code checks for x to be in-bound

https://www.vusec.net/projects/ghostrace

before performing a double array access. For exploitation
purposes, the attacker can ensure x is out-of-bound and ar-
rayl_size is not present in the cache. In this scenario, instead
of waiting for arrayl_size to be loaded from main memory
to perform the comparison, the CPU speculates and starts to
transiently execute the instructions beyond the comparison. If
the comparison has been executed several times before with x
in-bound, the CPU is prone to speculate that x is once again
in-bound, hence transiently performing the out-of-bound ac-
cess of arrayl. When the not cached array? is accessed using
the byte retrieved from the out-of-bound access of arrayl, the
specific accessed location is loaded into the cache. The at-
tacker can complete the 1 byte leak by testing which location
of array2 can be accessed faster than the others. Its position
within the buffer reveals the secret byte value.

Notably, Spectre-PHT remains unmitigated in hardware.
Software developers remain responsible to harden potentially
vulnerable branches with mitigations (e.g., fencing to prevent
speculation), but the extent to which all the “right” branches
have been adequately hardened in large high-value codebases
such as the Linux kernel remains an open question.

2.2 Concurrency Bugs

Concurrency bugs are a category of bugs which affect mul-
tithreaded programs and occur due to the absence or the in-
correct use of synchronization primitives. Due to their non-
deterministic behavior, concurrency bugs are one of the most
elusive and difficult to triage classes of bugs. Under certain
conditions, concurrency bugs can also lead to memory error
vulnerabilities. In modern operating systems such as the Linux
kernel, one of the most common memory error vulnerability
caused by concurrency bugs is Use-After-Free (UAF).

In a UAF attack, the first step is generally to free a memory
object. This operation invalidates all the pointers to that object,
which become dangling. The second step generally involves
forcing the allocator to reuse the memory slot of the free
object for the allocation of a new object. This step reinitialize
the previously freed memory slot. The final step of the attack
is generally to force the victim to use one of the dangling
pointers, which now points to the newly allocated object. A
read from or write to such pointer to controlled data can be
used to exploit the bug in a variety of ways. An example
illustrated in Figure 2 is for instance to mount a control-flow
hijacking attack via a dangling function pointer.

When this attack is performed in concurrency settings, and
the free step and the use step are executed by distinct threads
sharing the underlying object. Such concurrent use-after-free
vulnerability is harder to exploit than the single-threaded UAF
case, since exploitation depends on thread interleaving and
the availability of a sufficient race window [48]. While the
community has invested significant effort in investigating tra-
ditional concurrency bugs and concurrent UAF—e.g., studies
demonstrating that more than 40% of the UAF vulnerabilities

©
©)
©

addr x %addr x %addr X

attacker controlled
through var_b

struct a { struct b {
int i[2]; : : m char data[4];
void (*p)(void);! : int num[4];
char 5 }
VICTIM ATTACKER

@ var_a = alloc(struct a)

@ free(var_a)
@ var_b = alloc(struct b)
var_b.num[1] = val

@ var_a.p()
Figure 2: Object reallocation in a UAF attack. First, the victim
allocates a heap object which is subsequently freed (steps /
and 2). Then, the attacker forces the allocation of an object
(var_b) reusing memory slot of the victim’s object, taking
control of the data referenced by the dangling pointer (step
3). Finally, the dangling pointer is dereferenced, ultimately
allowing the attacker to hijack control flow (step 4).

patched in Linux kernel drivers are concurrent UAF [8]—their
microarchitectural properties have largely been neglected. In
this paper, we study such properties and their security implica-
tions for the first time, uncovering a new class of speculative
execution vulnerabilities in the process.

3 Definitions and Threat Model

3.1 Definitions

A traditional data race entails two threads accessing the same
memory location, with one thread performing a write and no
synchronization primitive protecting the shared accesses. The
data race is referred to as a race condition when it impacts
the correctness of the program. We define that a Speculative
Race Condition (SRC) occurs when two threads access the
same memory location, with one thread performing an archi-
tectural write operation and another a transient access, with
an impact on the correctness of the speculatively executed
program. Intuitively, the synchronization primitive, such as
exclusive locking, can be bypassed by one of the two threads
due to speculative execution. Due to their security impact, we
specifically focus on Speculative Concurrent Use-After-Free
(SCUAF), the SRC equivalent of traditional concurrent user-
after-free [48]. Intuitively, because concurrent use-after-frees
are often escalated to control-flow hijacking [48], SCUAFs
are also likely to be escalated to speculatively control-flow
hijacking, a powerful speculative execution primitive [44].

struct nfc_hci_dev {

SHARED DATA struct heci_msg {

void (*cb)(...);
void *cb_context;

struct mutex msg_tx_mutex;
struct hci_msg* cmd_pending_msg;
) S)
THREAD 1
nfc_hci_msg_tx_work(hdev){

THREAD 2
nfc_hci_msg_tx_work(hdev){

mucex_Lock(&hdev->msg_tx_mutex);{:::)—mutex_Lock(&hdev->msg_tx_mutex)

hdev->cmd_pending_msg->cb(
hdev->cmd_pending_msg->
cb_context, NULL, -ETIME);
9 kfree(hdev->cmd_pending_msg);
10 hdev->cmd_pending_msg = NULL;
13 %} 3

Figure 3: The NFC gadget (net/nfc/hci/core.c:78)
found by our scanner and the three main challenges to mount
an end-to-end GhostRace attack.

3.2 Threat Model

We consider a typical cross-domain Spectre threat model, with
a local unprivileged attacker able to issue system calls to the
victim kernel. The attacker seeks to leak arbitrary kernel data
by exploiting a speculative race condition in an otherwise
architecturally-race-free critical region in the kernel. We as-
sume state-of-the-art mitigations against transient execution
attacks are all enabled and other classes of (e.g., software)
bugs are out of scope—for instance, subject to orthogonal mit-
igations. Hereafter, without loss of generality, we specifically
focus on the Linux kernel running on Intel x86-64.

4 GhostRace Attacks

The goal of a GhostRace attack is to disclose arbitrary ker-
nel data by exploiting a speculative race condition in an
otherwise architecturally race-free critical region. To illus-
trate the workings of an attack, we use one of the gad-
gets found in Linux kernel v5.15.83 by our gadget scanner
(net/nfc/hci/core.c:78) as a running example. Figure 3
depicts two threads both executing the gadget, at the core of
the nfc_hci_msg_tx_work function. Such function serves
as part of the implementation of the Host Controller Inter-
face (HCI) layer of the Near Field Communication (NFC)
driver core of the Linux kernel and processes pending mes-
sages to the NFC device. As we do not have the required
NFC hardware to natively execute this function, we added
a system call to reach this code path during our analysis.
The function contains a critical region (i.e., our gadget) op-
erating on the nfc_hci_dev hdev device and performing
the following operations. First, it locks the msg_tx_mutex
mutex to gain exclusive access to the device and enter
the critical region. Second, it checks whether the pending
hci_msg hdev->cmd_pending_msg command message to
process has a callback set. If so, the callback is invoked via

the hdev->cmd_pending_msg->cb function pointer. Third,
it frees the memory backing the command message and sets
the now-dangling hdev->cmd_pending_msg pointer to NULL.
Lastly, it exits the critical region by releasing the mutex.

Since the critical region can be concurrently accessed
by different user processes/threads sharing the NFC de-
vice, it is crucial for the mutex to guard the region, en-
forcing mutually exclusive access to the device and rul-
ing out any race conditions. Indeed, absent the mutex,
the code in question would be vulnerable to a concur-
rent Use-After-Free (UAF) vulnerability: as Thread 1 exe-
cutes Free code (in bold green), between the kfree of the
hdev->cmd_pending_msg pointer and the NULL update of
the pointer, Thread 2 may execute the Use code (in bold
red) and invoke the hdev->cmd_pending_msg->cb callback
of the pending message which was just freed. An attacker
able to control memory reuse can then trigger the Use with
a controlled callback value and escalate the vulnerability to
control-flow hijacking. Luckily, thanks to mutexes and other
synchronization primitives offered by modern operating sys-
tems such as the Linux kernel (spin locks, RW locks, etc.),
architectural exploitation of such race-free code is infeasible.

Unfortunately, as we will show, the same does not apply
in the speculative domain, where architecturally race-free ex-
ecution can still be (microarchitecturally) subject to SRCs.
Specifically, in our GhostRace attack, we exploit the NFC
gadget to craft a SCUAF primitive and ultimately disclose
data, with Thread I architecturally executing its critical re-
gion, i.e., architectural Free, and Thread 2 concurrently being
speculatively executed i.e., speculative Use. Moreover, we
need to ensure that Thread 1 is interrupted immediately af-
ter the Free, with a sufficiently large race window (or UAF
exploitation window) for practical exploitation. Finally, we
need to effect our SCUAF primitive several times to mount
end-to-end speculative information disclosure attacks.

In other words, to mount GhostRace attacks, we need to
address the following challenges highlighted in Figure 3:

@ Create a large, ideally unbounded, architectural UAF
exploitation window between kfree and the NULL
hdev->cmd_pending_msg pointer update to accommo-
date as many SCUAF primitive invocations as possible.

@ Turn our architecturally race-free gadget into a
speculative race condition, crafting a SCUAF prim-
itive speculatively dereferencing the (dangling)
hdev->cmd_pending_msg->cb function pointer.

@ Use the building blocks above to mount end-to-end in-
formation disclosure attacks against the kernel.

4.1 Creating an Unbounded UAF Window

To address @, we need a strategy to interrupt an arbitrary
thread in the Linux kernel for a large and ideally unbounded

VICTIM CORE

<nfc_hci_msg_tx_work>:

@ set_timer() E
* nfc_hci_msg_tx_work(hdev) | <kfree>:

<__slab_free>:

IPI STORMING
CORES

() P

MEMBARRIER_IPI(|
VICTIM_CORE)

©
©)

1 nfc_hci_msg_tx_work(hdev){ e S | | d o | 1 1 .
2 cee call <_raw_spin_lock_irgsave> % m""m
3 mutex_Llock(&hdev->msg_tx_mutex); ce)
. __call <list_del> 5 TIMER MEMBARRIER
N g
Z -§ call <_raw_spin_unlock_irqrestore> §‘ IPI IPI STORM
7 2| lea rsp,[rbp-0x28] T T |
8 @ pop rbx timer_IPI
: - (T handlexr()
9 kfree(hdev->cmd_pending_msg); L pop rl2 2 -
10 hdev->cmd_pending_msg = NULL; »E pop rl3 2
11 550 5 Interruptable g
2 &| pop ri4 UAF window is £ P
—=| pop rl5 8 instrs. wide = 0 S
133 2 Int.-handler-wide | infinite_
‘S| Pop rbp UAF window ' ‘membarrierilPI
= Larger but 1
o ret (-arger _handlers()
L. still limited) : u
i
1
1

e mov gword ptr [rax], @

....... User/Kernel Space Boundary

@ Unbounded UAF window

Figure 4: From eight instructions-wide to unbounded architectural Use-After-Free exploitation window. Steps 1 and 6 run in
user mode, issuing syscalls to trigger the relevant kernel code. The other steps run in kernel mode.

period of time. We can then use this strategy to create an ar-
chitectural unbounded UAF window in the victim Thread
1 for the attacker Thread 2 to exploit. Our case study is
particularly challenging as the “original” UAF exploitation
window is very small: the attacker must be able to use the
hdev->cmd_pending_msg pointer (at line S in Thread 2) af-
ter the hci_msg memory object is freed (line 9 in Thread 1)
and before the pointer is nullified (line 10 in Thread I). In
other words, the time between kfree freeing the object and
the NULL update of the hdev—->cmd_pending_msg pointer is
the only span Thread 2 could exploit to craft a UAF primitive.

A Tiny Window. To precisely quantify the original UAF
exploitation window, one can inspect the implementation
of kfree. As shown in Figure 4, under the hood, the
default (__slab_free) implementation frees the object
(1ist_del) and then releases an interrupt-safe spinlock
(_raw_spin_unlock_irgrestore) immediately before re-
turning control to the caller. Since such spinlock runs with
interrupts disabled (i.e., the CPU cannot be interrupted), the
original (interruptible) UAF exploitation window is as tiny
as eight instructions—accounting for the time between spin-
lock release and the NULL pointer update at line 10. To stretch
such a tiny window, we can build on existing interrupt-driven
techniques [48, 80]. Nonetheless, this is challenging as such
techniques were not designed to produce race windows that
would reliably accommodate several UAF invocations. More-
over, other techniques relying on a high-priority user thread
to preempt the victim kernel execution [33] are not applicable
to stock kernels, which run with preemption off by default
(i.e., CONFIG_PREEMPT unset).

From Tiny to Unbounded. To address these issues, we
propose a new strategy based on a combination of techniques.
First, drawing from the timerfd-based technique proposed
in [80], we rely on high-precision hardware timers [25] to
interrupt the victim thread at the right time and slightly am-
plify the original UAF window. Note that, in our setting, the
original timerfd-based technique [80] becomes more effec-
tive, since we can exploit the interrupt-disabled behavior of
kfree to more precisely interrupt the victim thread at the right
time. Second, we rely on user interfaces to trigger an (inter-
processor) interrupt (IPI) storm to (less precisely) interrupt
the victim thread in the amplified window and stretch such
window indefinitely. This is possible since the victim CPU
is stuck handling IPIs until the attacker so wishes. Figure 4
illustrates the steps of our strategy.

As shown in the figure, the attack starts with (D the at-
tacker scheduling a high-precision hardware timer [25] on
a victim core. The attacker calibrates the timer to expire at
some point in the future, at nanosecond resolution. Next, @
the attacker starts a victim (i.e., Free) thread on the same
core, which issues a system call to reach the target gadget and
thus the victim kfree invocation. Next, Q) kfree acquires
the interrupt-safe spinlock and completes the freeing of the
victim memory object within uninterruptible execution. Next,
@ kfree releases the spinlock and resumes interruptible ex-
ecution. At this point, as long as the timer already expired
during uninterruptible execution, (5) the victim gets immedi-
ately interrupted at the start of the interruptible UAF window.
Indeed, when the timer expires, the hardware raises an inter-
rupt, but its actual delivery gets delayed until interrupts are
enabled again (i.e., upon spinlock release). In other words,

8

UAF Exploitation Window Size
(In getpid syscall executions)

0 2 4 6 8 10 12 15 - 24
Number of IPI Storming SMTs

Figure 5: Size of the UAF exploitation window vs. number of
IPI storming cores targeting the victim core. The size of the ex-
ploitation window is measured in number of getpid syscalls
(a standard benchmark to evaluate generic round trips to the
kernel [10]) that attackers can run before the victim core han-
dles all incoming membarrier IPIs and updates the dangling
hdev->cmd_pending_msg pointer to NULL. The experiment
is performed on a commodity client Intel 12th-generation
19-12900K CPU, which has 16 cores and 24 Simultaneous
Multithreads (SMTs). We observe that only 15 SMTs are
sufficient to obtain an unbounded UAF exploitation window.
We also observe that the location of the IPI storming cores
matters [22,56], as the physically closer a storming core is to
the victim core, the higher the IPI throughput due to the lower
latency on the interconnect. This explains the big increase
from 10 to 12 and from 12 to 15 SMTs as the storming cores
added in both experiments were physically the closest to the
victim core among all available cores.

even with imprecise timer calibration or jitter, the attacker
has significant chances to interrupt the victim at precisely
the right time. It is, in fact, sufficient to cause the timer to
expire any time within the core (uninterruptible) execution of
kfree, rather than in the original tiny eight-instruction UAF
window. Put differently, the interrupt-disabled behavior of
kfree ultimately helps rather than hinders the attack.

When the timer interrupt gets delivered, kernel execu-
tion switches from the victim thread to the timer interrupt
handler. The latter normally is short-lived, but one can am-
plify the window by registering several timer observers, e.g.,
via timerfd support. Still, while this strategy can inter-
rupt the victim thread at the right time and amplify the
original UAF window, the latter is still insufficient to ac-
commodate many SCUAF primitive invocations. However,
the amplified window is sufficient for the attacker to inter-
rupt the timer interrupt handler with a more jittery Inter-
Processor Interrupt (IPI) sent by another core. Building on
this intuition, @ the attacker schedules on the remaining
cores storming threads that constantly send IPIs to the vic-
tim core. For this purpose, the membarrier system call

void mutex_lock(struct mutex *lock){

1
2 e
3 if (!__mutex_trylock_fast(lock))

4 if (atomic_long_try_cmpxchg_acquire(&lock, ...))
5 return true;

6

7

3

Call Stack:
atomic_long_try_cmpxchg_acquire(&lock, ...)
L>arch_atomic_Long_try_cmpxchg_acquire(&l.ock, S |
L>arch_atomic_try_cmpxchg_acquire(&Lock, s eee)
L>arch_atomic_try_cmpxchg(&lock, , ...)
L»arch_try_cmpxchg((&Lock, s eel)
L»__raw_try_cmpxchg(ptr, |
asm volatile(
"lock cmpxchgq %2, %1"
: "=a" (ret), "+m" (¥*ptr)
:"r" (new), "@" (old)
: "memory"
);
»

Figure 6: Top part: The core implementation of the
mutex_lock synchronization primitive, with the conditional
branch which can be abused to craft SRCs in red. Bottom
part: The branch ultimately checks the outcome of the lock
cmpxchgq instruction which does not serialize the execution.

MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ IPI is ideal,
since, unlike other IPIs used by previous work [48], its deliv-
ery can be triggered via a low-latency system call targeting a
single (victim) core. The resulting IPI storm not only causes
the timer interrupt handler to be interrupted, but completely
overwhelms the victim core. Figure 5 relates the size of the
UAF exploitation window to an increasing number of storm-
ing cores on our test platform, with 15 SMTs being sufficient
to overwhelm the victim. Indeed, (7) the victim core is forced
to constantly handle an indefinite number of MEMBARRIER
IPIs, effectively creating an architectural unbounded UAF
exploitation window to mount an arbitrarily long end-to-end
attack. Finally, once the attack completes, the attacker ter-
minates the storming threads, victim thread execution re-
sumes, and only then the dangling hdev->cmd_pending_msg
pointer is updated to NULL. Note that, between steps (7) and
(®), the attacker may execute a speculative execution attack as
many times as they wish, given the unbounded window. This
means the steps (D to (8) here for creating the unbounded ex-
ploitation window only need to succeed once for the attacker
to be able to leak as many bytes as desired.

4.2 Crafting Speculative Race Conditions

To address @ and craft speculative race conditions, we turn
to the implementation of common synchronization primitives
(e.g., mutex, spinlock, etc.). At the architectural level, these
primitives guarantee mutual exclusion of critical regions and
this is no different for our gadget. However, they offer no

Intel Core i9-13900K (1 Core, 2 SMTs) [Intel Core i9-13900K (2 Cores)
AMD Ryzen 9 5950X (1 Core, 2 SMTs) [AMD Ryzen 9 5950X (2 Cores)

35
30

- = N
e o o o

0 —
Spin Spin RW Lock RW Lock Mutex RT RW Sem
Lock LockIRQ (w) IRQ (W) Lock Mutex Lock (W)
Lock

Number of Speculative Loads

Lock Types

Figure 7: Transient window size for different write-side syn-
chronization mechanisms, i.e., number of speculative loads
that leave an observable microarchitectural trace.

microarchitectural guarantees and their behavior is subject
to their implementation. To understand their behavior, we
investigated the implementation of common synchronization
primitives in the Linux kernel. The core implementation of
the mutex_lock primitive (Figure 6 top) serves to illustrate.

As shown in the figure, line 4 includes a conditional branch
that ultimately checks the outcome of the lock cmpxchgqg
instruction. Such instruction atomically compares the current
value of the mutex ptr with its old one o01d, and, if identical,
it means that the mutex can be locked—setting the mutex to
the new value new and granting access to the guarded critical
region. Likewise, if the comparison fails, it means that the
mutex has been locked by another thread, therefore the code
falls through after failing to acquire the mutex.

Although the comparison is done atomically, the instruc-
tion (as we experimentally verified) does not serialize the
execution stream. As a result, we can mistrain the conditional
branch at line 4 (e.g., simply by acquiring the mutex multiple
times) to be taken and consistently trick speculative execu-
tion into acquiring a mutex and entering the guarded critical
region. Since this is the case regardless of the current (ar-
chitectural) state of the mutex, we can speculatively acquire
a mutex already held by another thread. In other words, the
mutex becomes a no-op on the speculative path, leading to a
speculative race condition and opening the door to arbitrary
concurrency vulnerabilities at the microarchitectural level.

Generalizing, our analysis shows all the other common
write-side synchronization primitives in the Linux kernel are
ultimately implemented through a conditional branch and
are therefore vulnerable to speculative race conditions. To
experimentally confirm this intuition, we tested all such syn-
chronization primitives under speculative execution after mis-
training the vulnerable branch. In all cases, we confirmed
transient execution of the guarded critical region despite an-
other victim thread already architecturally executing in the
region. To determine the transient window size, we measured

the maximum number of speculative load instructions we
could speculatively execute inside the critical region.

Figure 7 presents our results for two microarchitectures
(Intel Core 19-13900K and AMD Ryzen 9 5950X) and two
configurations: (i) attacker and victim thread co-located on
the same core; (ii) attacker and victim thread running on dif-
ferent cores. As shown in the figure, the transient window
size is significant across settings (20+ loads). Moreover, the
window is usually larger when the two threads are running
across cores, evidencing that the cache coherency protocol
plays a crucial role in propagating the lock architectural state
across cores before speculation aborts. Finally, our results
show some variations across microarchitectures. For instance,
the AMD processor has a longer speculation window than the
Intel one, matching trends from prior work [60]. Overall, our
results show an attacker can speculatively bypass all the com-
mon (write-side) synchronization primitives and craft specu-
lative race conditions, turning every (architecturally race-free)
critical region into a potential generic Spectre gadget.

To conclude, we note that not all the vulnerable synchro-
nization primitives we analyzed are equally exploitable. For
instance, uninterruptible primitives (e.g., irg-safe spinlocks)
are not amenable to the interrupt-driven techniques we detail
in the next section, preventing the attacker from stretching the
race window. Moreover, our analysis focuses on the kernel,
excluding primitives that normally apply only to user exe-
cution (e.g., Intel TSX-based primitives, also uninterruptible
without aborting the underlying memory transactions).

4.3 Exploiting Speculative Race Conditions

To address @, we need to mount end-to-end information
disclosure attacks. To this end, armed with knowledge of
speculative race conditions (SRCs), we can now bypass syn-
chronization primitives (e.g., mutex) on a speculative path and
turn safe architectural uses into a speculative concurrent use-
after-free (SCUAF). Next, armed with control over memory
reuse, we can escalate our SCUAF primitive to first specula-
tive control-flow hijacking and then speculative information
disclosure of some target kernel data. Finally, armed with an
unbounded UAF window, we can repeatedly effect our prim-
itives, disclose arbitrary kernel data, and mount end-to-end
attacks leaking some target secret in kernel memory. Figure 8
details the steps of an attack based on our NFC gadget.

Initialization. To kickstart the attack, () the attacker starts
executing on a given (attacker) core and triggers the allocation
of hdev and hdev->cmd_pending_msg. Next, 2 the attacker
mistrains the victim mutex’s conditional branch by executing
the gadget and acquiring the mutex architecturally many times.
Next,) the attacker starts the victim thread and the storming
threads on the corresponding cores.

Attacker Timeline

Victim Timeline

ATTACKER CORE

mistrain_branch_predictor()
start_victim()
start_membarrier_storm()
for i in secret_length:
fake_cmd_pending_msg(secret_addr+i):
reallocate_fake_cmd_pending_msg()

! nfc_hci_msg_tx_work(hdev) Y

nfc_hci_msg_tx_work(hdev){

Architectural __

Architectural _| ' |
Memory Free

Set secret i-th

VICTIM CORE

Mutex Lock set_timer()

v nfc_hci_msg_tx_work(hdev)

nfc_hci_msg_tx_work(hdev){

Timer IPI_|
Handler

mutex_lock(&hdev->msg_tx_mutex); @

Infinite

Membarrier IPI——
Storm Handlers

o byte address z
mutex_Llock(&hdev->msg_tx_mutex); in the fake msg § kfree(hdev->cmd_pending_msg);
= @ hdev->cmd_pending msg = NULL;
hdev->cmd_pending_msg->cb(@ Architectural < cee
: Memory -
hdev->cmd_pending_msg-> Reallocation g
cb_context, NULL, -ETIME); g by
Speculative f:_:
Mutex Lock < . Non-terminating Architecturally
X 3 Executed Critical Region
2 ; -)
' Speculative 3 B Speculatlvel?/ Executed Cr|t|'cal Region
—— Control-Flow s Architectural Execution
3 i Hijacking 7 | |oaaa- Speculative Execution
: ------- User/Kernel Space Boundary

Figure 8: Speculative information disclosure attack exploiting a speculative race condition. Steps 1-4 and 8-10 run in user mode,
issuing syscalls to trigger the relevant kernel code. The other steps run in kernel mode. The nfc_hci_msg_tx_work gadget code
is shown only to explain how the speculative race condition is created.

Unbounded UAF Window. To create an unbounded UAF
window, (4) the attacker schedules a high-precision timer
on the victim core. Next, (5) the attacker causes the vic-
tim thread to trigger the execution of the NFC gadget, ar-
chitecturally locking the mutex and entering the guarded
critical region. Next, (6 the NFC gadget calls kfree
on the hdev->cmd_pending_msg pointer. Next, (7) the
high-precision timer expires, interrupting the victim thread
when the hdev->cmd_pending_msg pointer is still dangling.
Shortly after, the attacker signals the storming threads to target
the victim core with a storm of MEMBARRIER IPIs, prevent-
ing the victim thread to resume execution until the attacker
signals again the storming threads to terminate.

Speculative Control-Flow Hijacking. For each ker-
nel address to leak in order to disclose the target secret,
the attacker first crafts a speculative control-flow hijacking
(SCFH) primitive. To this end, the attacker needs to allo-
cate a controlled object reusing the memory slot kfreed
earlier via slab massaging. With SLUB (default slab imple-
mentation), the attacker can exploit same-CPU, same-size-
class slab cache collision techniques [47] to achieve mem-
ory reuse. Specifically, (9) the attacker first creates a mali-
cious struct msgbuf message, casts itto struct hci_msg,
and sets: (i) the hci_msg.cb callback to the speculative
SCFH target, (ii) the hci_msg.cb_context first callback

argument to the SCFH argument. Next, the attacker calls
the msgsnd system call with the malicious msgbuf message,
which ultimately gets allocated in the same slot as the freed
hdev->cmd_pending_msg. Next, @ the attacker triggers
the execution of the gadget. Due to the mistrained branch, the
CPU speculatively enters the critical region despite the mutex
being architecturally held by the victim thread. Next, @ the
gadget speculatively dereferences the dangling pointer, hijack-
ing control flow to the attacker-controlled callback target.

Speculative Information Disclosure. To craft a speculative
information disclosure primitive, the attacker needs to first
break KALSR using existing techniques [2]. Next, the attacker
needs to trigger the SCFH primitive with the callback target
set to a kernel disclosure gadget using the controlled first
callback argument (rdi) as input. For this purpose, we use
the vp_del_vqgs Spectre gadget in Figure 9, also exploited
in older kernel versions in prior work [26]. As shown in the
figure, the controlled memory referenced by rdi is referenced
by the gadget to compute the secret address (r12+0x28) and
the base address of an array (rax)—which we can use as the
reload buffer of a classic FLUSH+RELOAD Spectre covert
channel [44]. The gadget reads the secret in the rdx register,
then used to index the reload buffer with stride 8 at line 22. To
handle the small stride and the high secret entropy, we can use
sliding techniques, as done in prior work [26,72]. Ultimately,

1 ffffffff817ala2@ <vp_del_vgs>:

2 cee // Function Prologue

3 ffffffff817al1a39: mov rbx, rdi

4 ffffffff817ala3c: sub rsp, 0x8

5 ffffffff817ala40: mov rl2, QWORD PTR [rdi + 0x310]

6 ffffffff817ala47: mov QWORD PTR [rbp - 0x30], rax

7 ffffffff817ala4b: mov rl13, QWORD PTR [r12]

8 ffffffff817aladf: cmp rl2, rax

9 ffffffff817ala52: jne ffffffff817alabc <vp_del_vgs + 0x3c>
10 ffffffff817ala54: jmp ffff£ffff817alb43 <vp_del_vgs + 0x123>
11 ffffffff817ala59: mov rl3, rax

12 ffffffff817alabc: movzx rl4d, BYTE PTR [rbx + @x3e0]

13 ffffffff817alab3:

14 ffffffff817alaé4: cmp rl4b, Ox1

15 ffffffff817ala68: ja fEffffff£f81d05847 <vp_del_vgs.cold>

1 efree_scripte 1 @use_script@

2 expression LOCK; 2 expression LOCK;

3 type TARGET_FUNC_RET_TYPE; 3 type TARGET_FUNC_RET_TYPE;

4 identifier TARGET_FUNC; 4 identifier TARGET_FUNC;

5 type OUTERMOST_STRUCT_TYPE; 5 type OUTERMOST_STRUCT_TYPE;

6 OUTER_STRUCT_TYPE *QUTER_STRUCT_PTR; 6 OUTER_STRUCT_TYPE *OUTER_STRUCT_PTR;
7 identifier FREE_STRUCT_PTR; 7 identifier USE_STRUCT_PTR;

8 identifier LOCK_FUNC ~= "_lock|_trylock"; | 8 identifier FPTR

9 identifier UNLOCK_FUNC ~= "_unlock"; 9 identifier LOCK_FUNC ~= "_lock|_trylock";
10 identifier FREE_FUNC -= "kfree|..."; 10 identifier UNLOCK_FUNC ~= "_unlock";
11 ee 11 ee

TARGET_FUNC_RET_TYPE TARGET_FUNC(...){
LOCK_FUNC(LOCK)

FREE_FUNC(OUTER_STRUCT_PTR->
FREE_STRUCT_PTR)

TARGET_FUNC_RET_TYPE TARGET_FUNC(...){
LOCK_FUNC(LOCK)

OUTER_STRUCT_PTR->

USE_STRUCT_PTR->FPTR(. ..

)

16 ffffffff817alabe:
17 ffffffff817ala73:
18 ffffffff817ala77:
19 ffffffff817ala’e:
20 ffffffff817ala7f:
21 ffffffff817ala81l:
22 ffffffff817al1a88:

mov edx, DWORD PTR [rl2 + @x28]
and rl4d, ox1
lea rsi, [rdx *8+0x0]

je ffffffff817alac8 <vp_del_vgs + 0xa8d>
mov rax, QWORD PTR [rbx + @x3b8]
mov rax, QWORD PTR [rax + rdx* 8]

Figure 9: A double-load gadget in the vp_del_vgs function
with an attacker-controlled rdi argument in the Linux ker-
nel. Highlighted in blue are the instructions loading the se-
cret address and in orange the instructions loading the secret
byte into reload buffer with a cache stride of 0x8.The blue
and orange instructions are semantically equivalent to their
corresponding ones in the Spectre-v1 of Figure 1, with the
conditional branch being the red one in Figure 6.

this translates to 3 gadget repetitions needed to leak one byte
from a known prefix [72]. Finally, to break the entropy of
the kernel (direct map) address referencing the (user) reload
buffer, we can repeatedly probe for known secret data, guess
the kernel reload buffer address, and check for a cache signal
in the (user) reload buffer until successful.

4.4 Proof-of-Concept Exploit

We implemented a Proof-of-Concept exploit (PoC) based
on the end-to-end attack workflow described earlier. To ex-
ploit our NFC gadget (not easily reachable on commodity
platforms), we simulated an attacker-controlled service inter-
acting with the NFC function via a dedicated system call. We
evaluated our PoC an Intel 12th-generation i9-12900K Alder
Lake processor. We ran our PoC on Linux kernel v5.15.83,
using the default kernel configuration while enabling all tran-
sient execution mitigations. Using only 15 SMTs (out of 24
available on the 19-12900K CPU), we experimentally con-
firmed our PoC exploit can reliably create an unbounded UAF
exploitation window after a single attempt. We also observed
an average of 13 attempts to achieve successful memory reuse.
This confirms that, despite the entropy of slab massaging and
that of having to interrupt the victim thread at precisely the
right time, our proposed techniques are successful in making
exploitation reliable and almost deterministic. Note that some
nondeterminism is acceptable and has marginal impact on
the attack. Indeed, our PoC can detect unsuccessful mem-
ory reuse (i.e., lack of signal) and simply terminate the UAF

19 OUTER_STRUCT_PTR->FREE_STRUCT_PTR 19

UNLOCK_FUNC(LOCK)

= NULL [20 -
20 ... 21}
21 UNLOCK_FUNC(LOCK) 22
22 23 @type_script depends on use_script@
23 3 24 type USE_STRUCT_TYPE;
24 25 type use_script.OUTER_STRUCT_TYPE;
25 @type_script depends on free_scripte 26 identifier use_script.USE_STRUCT_PTR;
26 type FREE_STRUCT_TYPE; 27 ee
27 type free_script.OUTER_STRUCT_TYPE; 28
28 identifier free_script.FREE_STRUCT_PTR; 29 OUTER_STRUCT_TYPE {
29 ee 0 ...
30 31 USE_STRUCT_TYPE USE_STRUCT_PTR;
31 QUTER_STRUCT_TYPE { 32 -
32 506 33 };

33 FREE_STRUCT_TYPE FREE_STRUCT_PTR;

Figure 10: Simplified Cocci scripts (left Free and right Use)
scanning for SCUAF gadgets in the Linux kernel.

exploitation window and start over. Once memory reuse is
successful, we keep the window open and effect as many
(fully reliable) speculative information disclosure iterations
as needed to complete the attack. When instructing our PoC
to leak 10 MB of kernel memory (after breaking the kernel
reload buffer address entropy in milliseconds), we observed a
leakage rate of 12 KB/s with an error rate of 1% on average
(of 100 repetitions). To put things in perspective, on our idle
system running Ubuntu with 8 GB of RAM, this translates to
an end-to-end attack time of around 35 seconds (all in a sin-
gle race window) to leak the root password hash from Linux
kernel memory—a common target in previous user-to-kernel
Spectre exploits [26,65,72].

5 Gadget Scanner

The Linux kernel, as a linchpin of open-source software, is
susceptible to security vulnerabilities, among which UAFs
represent one of the most frequently recurring class of vul-
nerabilities [47]. Concurrent programming exacerbates the
detection and resolution of UAF vulnerabilities due to the
intricacies of shared resource management [8].

Existing solutions focus on gadget scanning for the ker-
nel [7,9,30,40,62,63,71,72], however, none of them target
SCUAF gadgets. Therefore, we systematically explore the at-
tack surface for speculative concurrent UAF gadgets in Linux
kernel, specifically focusing on (speculative) control-flow hi-
jacking primitives based on UAF. To this end, we rely on the

Coccinelle static code-pattern matching engine [57, 58] to
automate the detection of SCUAF vulnerabilities, which arise
from the intricate interplay of concurrent UAF patterns and
the effect of speculation-unsafe synchronization primitives in
critical regions. We immediately note that, since we focus on
SCUAF for control-flow hijacking, our SRC analysis is not
exhaustive. Moreover, the accuracy of the results is subject
to the precision of static pattern matching. Nonetheless, our
analysis helps estimate the extent of the problem.

5.1 SCUAF Coccinelle Scripts

Coccinelle is an advanced program matching and transfor-
mation engine. Its effectiveness lies in the utilization of the
Semantic Patch Language (SmPL) for expressing semantic
patches. SmPL enables developers to define intricate code
patterns and transformations in a human-readable manner. It
is widely used by Linux kernel developers to identify unde-
sirable code patterns across the kernel code base, including
misuse of APIs or vulnerabilities such as UAFs.

Coccinelle facilitates the automated identification of UAF
vulnerabilities, as an attacker can easily articulate complex
patterns indicative of SCUAF vulnerabilities using Coc-
cinelle’s pattern definition capabilities.

Figure 10 presents the Cocci scripts used to detect hundreds
of SCUAF gadgets, including the nfc_hci_msg_tx_work
gadget discussed in Section 4. On the left is the script scan-
ning for the Free part of the SCUAF vulnerability. Specifically,
the script scans for functions with synchronization primitives
guarding critical regions and the latter containing calls to
(slab) free functions (e.g., kfree) over a nested data structure
pointer followed by the NULL update of the pointer. On the
right of the Figure 10 is the Use Cocci script. The script scans
for functions with synchronization primitives guarding critical
regions with a nested function pointer-based call. Highlighted
in orange is the synchronizing pointer in shared memory (i.e.,
mutex, lock, etc.). The latter has to match between the Free
and Use for the architecturally exclusive execution of the
corresponding critical regions to be guaranteed (i.e., architec-
turally race-free invariant). In green is the pointer to the data
structure being freed and in red the pointer to the function
pointer being used. In blue is the matching data type of the
freed structure and the one containing the function pointer.

Our gadget scanner can find different variants of potential
SCUAF gadgets, namely, as illustrated in Figure 11:

(A) Free: Guarded free

Free: Guarded free + list_del

(© Free: Guarded free + NULL

@ Free: Guarded free + pointer update

® Use: Guarded pointer dereference + function pointer call

FREE GADGETS VARIANTS USE GADGETS VARIANTS

TARGET_FUNC(. ..){
LOCK_FUNC(LOCK)
FREE_FUNC(FREE_STRUCT_PTR)

- TARGET_FUNC(. . .){
UNLOCK_FUNC(LOCK)

) @ LOCK_FUNC(LOCK)

E_STRUCT_PTR->FPTR(. ..
TARGET_FUNC(. . .){ USE_STRUCT_ SRR

LbEK_FUNC(Locx) UNLOCK_FUNC(LOCK)
FkéE_FUNC(FREE_STRUCT_PTR) 3 o
LiéT_DEL_FUNC(FREE_STRUCT_PTR)

DNLOCK_FUNC(LOCK)

y ®

TARGET_FUNC(. . .){ A
LbéK_FUNC(LOCK)

FREE_FUNC(FREE_STRUCT_PTR)

200 TARGET_FUNC(. . .){
FREE_STRUCT_PTR = NULL

UNLOCK_FUNC(LOCK) LOCK_FUNC(LOCK)

} ©

TARGET_FUNC(. ..){
FREE_STRUCT_PTR = X

FPTR_COPY =
USE_STRUCT_PTR->FPTR

FPTR_COPY(...)

LOCK_FUNC(LOCK) UNLOCK_FUNC(LOCK)

FREE_FUNC(FREE_STRUCT_PTR)
FREE_STRUCT_PTR = Y
UNLOCK_FUNC(LOCK)

) ® ®

Figure 11: Simplified Cocci scripts used to scan the Linux
kernel for different variants of guarded Free gadgets (left) and
guarded Use (right). Any combination of these Free and Use
variants results into a potential SCUAF vulnerability.

® Use: Guarded function pointer copy + function pointer
copy call

In the case of the nfc_hci_msg_tx_work gadget, both the
Free and Use happen to be in the same function (hence the
reason we used this gadget as our compact running exam-
ple), but generally this is not the case as shared resources are
more likely to be used in different contexts and functions. We
also scan for different levels of nested pointers both for Free
and Use. Our results show that the deepest (i.e., most nested)
function pointer in the Linux kernel is 3 chained pointer deref-
erences away e.g., ptrl->ptr2->ptr3->fptr(...), which
our scanner can identify. It can also automatically extract the
type of the data structure for each pointer in the chain and
match it with any Free gadget operating on the same data
type, resulting in a potential SCUAF gadget.

Table 1: Gadgets per lock type.

Sync Primitives ~ Gadgets Found
Mutex 887
Spin Lock 301
Spin Lock IRQ 95
Total 1283

5.2 Evaluation

We ran our gadget scanner on the source code of Linux ker-
nel v5.15.83. Table | presents our results. As shown in the
table, our scanner found a total of unique 1,283 gadgets, with
69% (887) of the gadget pairs guarded by Mutex, 23% (301)
guarded by Spin Lock, and 7% (95) guarded by Spin Lock IRQ.
Almost 78% of the identified gadgets are in device drivers
and 15% is located in kernel code serving (device) specific
implementations of kernel services (e.g., the NFC HCI core
in Figure 3). Table 2 reports the distribution of the nesting
levels of the different gadgets variants for both Free and Use
variants. As shown in the table, < 2 nesting levels are the
most common and so are variants @ and @ Overall, our
static analysis confirms these gadgets are prevalent in modern
operating system code bases such as the Linux kernel.

Limitations. Generally, false positives and negatives are
possible because we rely on types to match objects that are
freed before their uses. False positives occur when, despite
having the same type, the objects referenced in the code are
different. False negatives occur when a reference to an ob-
ject may be cast to one of a different type and our analysis
fails to account for it. Moreover, despite its widespread use,
Coccinelle does exhibit one significant limitation in the ex-
ploration of SCUAF gadgets in the Linux kernel. Specifically,
Coccinelle provides no inter-procedural analysis capabilities.
Inter-procedural analysis involves examining the interactions
and dependencies between different functions or procedures
within a program. In the case of the Linux kernel, which is
characterized by a multitude of interconnected functions, Coc-
cinelle’s inability to perform inter-procedural analysis may
result in incomplete vulnerability detection in general and for
SCUAF in particular. Indeed, SCUAF vulnerabilities often
span multiple functions and complex execution paths, thus the
lack of inter-procedural analysis may result in false negatives.
Moreover, additional imprecision may originate from static
pattern matching’s inability to capture arbitrarily complex
patterns, potentially leading to additional false negatives.

Finally, concerning false positives, our static analysis-based
approach cannot guarantee that the identified gadgets can be
realistically reachable in a practical attack. Indeed, reach-
ability verification is a hard problem for SCUAF and con-
current UAF in general, as many concurrent UAF vulner-
abilities plague device-specific code—as also reported in
previous work [8]—and reachability is subject to device

Table 2: Gadgets variants vs. nesting levels.

Gadget Nesting Levels

Variants 0 1 2 3
® 757 71 10
80 8 0 0
© 78 39 0 0
) 87 2 0 0
® 1387 565 71 2
® 9 1 0 0

availability. For instance, we could not easily reach the
nfc_hci_msg_tx_work gadget we used in our attack. Since
the gadget is in an NFC driver, we contacted the maintainers to
ask which devices use this code but never received an answer.
We tried 3 NFC devices and development platforms, but none
of them used the gadget code. Therefore, we implemented a
system call extension making use of the exact same code as
the NFC driver, to simulate it being exercised as realistically
as possible. Nonetheless, while precise gadget and reachabil-
ity analysis are crucial for gadget-specific mitigations (e.g.,
hardening seemingly dangerous Use patterns against attacks),
we found these properties to be less important for SCUAF
since a generic and efficient gadget-agnostic mitigation not
just for SCUAFs but for SRCs overall is at reach. We present
such mitigation in the next section.

6 Mitigation

To mitigate the SRC class of vulnerabilities, we implement
and evaluate the simplest, most robust, and generic one: intro-
ducing a serializing instruction in every affected synchroniza-
tion primitive before it grants access to the guarded critical
region, thus terminating the speculative path. This provides a
baseline to evaluate any future mitigations, and, as mentioned,
mitigates not only the SCUAF vulnerabilities presented in the
paper, but all other potential SRC vulnerabilities.

6.1 Mitigation via Serialization

Our approach to mitigate Speculative Race Conditions (SRCs)
is to place a serializing instruction such as 1fence after the
lock cmpxchg instruction (i.e., bottom instruction in Fig-
ure 6) in each of the affected synchronization primitives. We
have implemented such a mitigation in just a few lines of
code by patching the arch/x86/include/asm/cmpxchg.h
Linux kernel source file. Specifically, our patch adds
a lfence instruction in both the __ raw_cmpxchg and
__raw_try_cmpxchg assembly macros, which are used to
implement all (write-side) synchronization primitives.

Table 3: LMBench performance overhead of our mitigation.

LMBench Mean 95%
Test Performance Confidence

Overhead Interval
null call 0.00% +0.00%
null /O 0.00% +0.00%
stat 0.32% +0.37%
open clos 11.02% +0.46%
slct TCP 0.19% +0.16%
sig inst 11.11% +1.42%
sig hndl 1.38% +1.05%
fork proc 10.82% +1.17%
exec proc 7.53% +0.56%
sh proc 5.93% +0.21%
2p/OK ctxsw 6.91% +0.37%
2p/16K ctxsw 6.10% +0.24%
2p/64K ctxsw 7.00% +0.47%
8p/16K ctxsw 5.76% +0.40%
8p/64K ctxsw 5.38% +0.73%
16p/16K ctxsw 5.83% +0.64%
16p/64K ctxsw 3.93% +1.45%
2p/OK ctxsw 6.91% +0.37%
Latency - Pipe 9.73% +0.13%
Latency - AF UNIX 7.37% +1.18%
UDP 7.98% +0.49%
RPC/UDP 8.54% +0.63%
Latency - TCP 14.29% +0.37%
RPC/TCP 8.30% +0.33%
OK File Create 8.64% +0.28%
OK File Delete 12.35% +0.13%
10K File Create 7.18% +0.27%
10K File Delete 11.37% +0.18%
Mmap Latency 9.67% +0.24%
Prot Fault 4.68% +2.62%
Page Fault 7.90% +0.32%
100fd selct -0.23% +1.40%
Bandwidth - Pipe 0.00% +0.00%
Bandwidth - AF UNIX -9.27% +0.95%
Bandwidth - TCP 6.67% +1.27%
File reread 3.40% +0.40%
Mmap reread 0.20% +0.39%
Bcopy (libc) 0.30% +0.20%
Bcopy (hand) -0.32% +0.32%
Mem read 0.00% +0.00%
Mem write -0.02% +0.19%
Overall Geomean 5.13%

6.2 Evaluation

To evaluate the performance impact of our mitigation on
the Linux kernel, we ran two benchmarks, i.e., the standard
LMBench [53] since: (i) it is a system call benchmark com-
monly used by the security and Linux community to evaluate
Linux kernel performance; (ii) it allows one to compare
mitigation overheads against other solutions; (iii) it includes
parallel benchmarks that stress synchronization primitives
and thus uncover the overhead of our mitigation unlike other
benchmarks we tried. To further evaluate our mitigation
overhead, we also included our own microbenchmark to
stress-test the synchronization primitives.

@ Spin Lock @ Spin Lock IRQ
B RW Lock IRQ (Write)
RT Mutex Lock * RW Sem Lock (Write)
== 95% Confidence Interval

RW Lock (Write) 4
Mutex Lock

60% T
50% 1+ o
40% +

30%

20%
15.35%15.35%

o, -
10% 7:80% - 7:74%.

"5.54%'5:68%*5.47% *'5:12% - 4.86% - 4:41%-4:20%

0% - 4 —P—

1 2 4 8 16 32 64 128 256 512 1,024

Ifence Average Performance Overhead

KThread Configurations

Figure 12: Average performance overhead of our mitigation
across different kernel thread configurations and synchroniza-
tion primitives. The branchless read-side synchronization
primitives (in grey) experience no performance overhead.

LMBench. Table 3 presents the results of the LMBench
benchmark for over 30 independent runs on our test platform
(Section 4). In the default Linux kernel configuration, we mea-
sured an overall geomean performance overhead of 5.13%.
We believe such a performance overhead is well within the
range of a practical mitigation, especially when compared to
the 95% LMBench geomean overhead of the default transient
attack mitigations enabled on Ubuntu [31].

Microbenchmark. We designed a stress-test microbench-
mark which consists of a kernel module measuring the time
it takes to simultaneously run N kthreads equally distributed
over all CPU cores, with each kthread acquiring and releasing
the same synchronization primitive for one million iterations.

Figure 12 presents the average (over 30 independent runs
on our test platform) performance overhead caused by our
mitigation, serializing the execution of each synchronization
primitive across the different kthreads configurations.

As shown in the figure, read-side synchronization primi-
tives (in grey), which contain no conditional branch, are unaf-
fected by the mitigation and thus experience no performance
overhead. On the write side, we observe the highest overhead
in a synthetic single-kthread configuration, ranging between
33% for Spin Lock IRQ to 53% for RT Mutex Lock. The
overhead decreases to 10% for 1,024 kthreads. This trend sug-
gests that, with an increasing number of kthreads contending
the same synchronization “lock”, the performance overhead
of our mitigation is increasingly masked by lock contention
overhead. Overall, our results confirm the overhead of our
mitigation is isolated in synchronization-heavy scenarios and
even then may be aggressively masked by lock contention.

7 Related Work

7.1 UAF Detection

Most of the work on detecting UAF is focused on sequential
bugs. Solutions like UAFChecker [77] and Hua et al. [74]
apply static analysis to find problematic code sequences, while
others [54,69] rely on fuzzing. Another technique to detect
UAF bugs is to observe memory accesses at runtime [13,45,
81]. To detect concurrency UAF vulnerabilities, UFO [35]
uses execution traces and applies model checking to infer
thread causality. Alternatively, DCUAF [8] relies and extends
lockset analysis to verify whenever a concurrency UAF is
present. ConVul [14] is also based on execution traces and
can detect concurrency UAF by identifying exchangeable
events. Finally, DDRace [79] specifically targets UAFs in
Linux drivers by implementing new heuristics and metrics to
simplify the work of the directed fuzzer in targeted locations.
Given that they do not analyze transient execution, none of
these solutions can find SCUAFs.

7.2 Fuzzing

Fuzzing is a popular technique to find vulnerabilities in soft-
ware. By feeding crafted input to a program, a fuzzer looks
for instances that make the program crash. In this section,
we briefly survey existing work on directed fuzzing and then
specifically focus on fuzzing to find race conditions. None of
the existing work described in this section can find SCUAFs.

Directed Fuzzing. Directed fuzzing techniques aim to
reach specific targets within the code [12,17,21,46,78]. For
instance, to reach its targets, AFLGo [12] attempt to minimize
the average distance of the basic blocks found in execution
traces that link an input to the fuzzing targets. Work like Fuz-
zGuard [81] and Beacon [34] instead apply techniques like
deep learning and static analysis to filter inputs that cannot
reach the fuzzing targets. Related to UAF fuzzing, CAFL [46]
uses a constraint-distance metric that is able to prioritize the
inputs towards the goal. The constraints are expressed as a
combination of a target site and data conditions which can
be used to find UAFs. However, CAFL is only focused on
sequential UAFs.

Fuzzing for Concurrency Bugs. Fuzzing techniques have
also been extended to concurrent programs to find specific
vulnerabilities such as data race bugs. In this area, solutions
like RAZZER [37], ConAFL [50], RaceFuzzer [61], and oth-
ers [27,38,43, 66] statically identify potential race situations
and then dynamically test the interleavings using generic
fuzzing. The program is executed with run-time instrumenta-
tion or in a virtualized environment where the race is checked.
DDRace [79] works in a similar fashion but employs directed
fuzzing instead of traditional fuzzing, reducing the input space

and improving performance. Given that data race bugs present
themselves in different settings, Conzzer [39], Muzz [16], and
KRace [73] design ad-hoc coverage metrics that are thread-
and context-aware.

7.3 Gadget Scanning

The ultimate goal of gadget scanning is to find code patterns
of interest in a target program, either for offensive or defen-
sive purposes. In the context of transient execution attacks,
the majority of scanners, with the exception of [40,42], are
designed to detect bounds check bypass patterns, like the one
in Figure 1. Two types of scanners exist, that is based on static
or dynamic analyzers, described in the following. None of the
existing work described in this section can find SCUAFs.

Static Analyzers. Existing static gadget analyzers use a
plethora of different techniques to scan either source or binary
code. For instance, Smatch and Respectre [15, 36] rely on
pattern matching against the program’s source code while
others [18] operate on binary code. 007 [68] uses static taint
analysis while Spectector [29] and KLEESpectre [67] use
symbolic execution to detect valid Spectre gadgets. Gadget
scanners based on static analysis techniques often lead to a
high number of false positives, while those based on symbolic
execution tend to suffer from path explosion issues, hindering
their scalability.

Dynamic Analyzers. Dynamic analysis techniques like
fuzzing and dynamic taint analysis (DTA) can also be used to
detect vulnerable patterns. SpecFuzz [55] relies on fuzzing
and sanitizers to detect bounds check bypass violations. Spec-
Taint [59] relies on DTA to link the memory accesses and
the leakage points. Finally, Kasper [40] is also based on DTA
and sanitizers but its the detection capabilities go beyond the
simple bounds check bypass gadget case. Dynamic analysis
techniques for Spectre gadgets, like static analysis, also suffer
from false positives. Moreover, they also suffer from false
negatives due to lack of coverage. Indeed, the analysis is lim-
ited to the code executed during the analysis. Reaching high
coverage is particularly challenging for large code bases such
as the Linux kernel.

7.4 Intel SGX

The techniques we use to control the race window are compa-
rable to those used in various SGX controlled-channel attacks.
AsyncShock [70] shows how controlled-channel attacks can
be used to exploit concurrency bugs in SGX enclaves. Similar
to the use of the non-interruptible kfree in our work, SGX-
Step [64] uses a coarse-grained APIC timer interrupt to re-
liably interrupt enclave execution at instruction granularity.
AEX-Notify [19] proposes a defense against such attacks.

8 Discussion

SRC Beyond SCUAF. In this paper, we mainly analyze
SCUAFs, because architectural UAF vulnerabilities represent
one of the most frequent class of memory error vulnerabili-
ties [4-6], thus it is very likely that SCUAF gadgets have the
recurrence. Nevertheless, other classes of exploitable SRCs
may exist. For example, an SRC where one thread may update
a shared, lock-protected index, into an array architecturally,
and another thread, speculatively bypassing the corresponding
lock and writing attacker-controlled data at that index (See
Appendix). Such a speculative buffer overflow type of SRC is
likely exploitable, however we have not found kernel coding
patterns likely to lead to such a condition in practice in the
Linux kernel. More generally, we deem that any SRC may
lead to leaking secret data as soon as the speculative thread is
susceptible to a speculative control-flow hijack, through any
traditional concurrent memory corruption pattern. Nonethe-
less, finding such gadgets in practice requires significant work
as we show in Section 5, and we leave to future work to de-
velop novel approaches to find such gadgets, for example by
extending a speculative vulnerability fuzzer [40,55] to a con-
current fuzzing setting. Note that the mitigation we propose
in Section 6 prevents all potential attacks in the generalized
SRC class, not merely SCUAFs.

SRC with Speculative Writing (Free) Thread. We recall
that, by definition, a traditional race condition requires at least
one writing thread. Our definition of SRCs in Section 3.1
is worded such that the architectural thread is the writing
(Free) thread, and the speculative thread is the reading (Use)
thread. This is because, on existing microarchitectures, writes
are only visible to other threads once they are committed,
therefore the writing thread cannot bypass the synchroniza-
tion mechanism. However, CPU architectures where writes
may become visible to other threads during speculation, via
Store-To-Load (STL) forwarding [32] across simultaneously
executing microarchitectural threads, have been discussed
in the literature [23,24]. Such a microarchitecture, if imple-
mented in practice, would unlock additional gadgets.

Beyond x86 and Linux. While we have explicitly focused
on x86 and Linux in the paper, SRCs affect other hardware and
software targets as well. On the hardware front, we have veri-
fied that all the major hardware vendors are affected by SRCs
since, regardless of the particular compare-and-exchange in-
struction implementation, the conditional branch that follows
is subject to branch (mis)prediction. In other words, all the
microarchitectures affected by Spectre-v1 are also affected by
SRCs. On the software front, any target relying on conditional
branches to determine whether to enter critical regions—a
common design pattern that extends well beyond Linux—is
vulnerable to SRCs. In summary, any OS, hypervisor, etc. im-
plementing synchronization primitives through conditional

branches and running on any microarchitecture (e.g., x86,
ARM, RISC-V, etc.) which allows conditional branches to be
speculatively executed without any serializing instruction on
that path, is vulnerable to SRCs.

9 Conclusion

In this paper, we presented Speculative Race Conditions
(SRCs), a new class of speculative execution vulnerabilities.
SRCs stem from all the common synchronization primitives
using a conditional branch as a building block (Section 4.2).
Such an implementation allows attackers to mistrain the
branch prediction unit and speculatively enter a critical region
already concurrently accessed by another thread. This enables
attackers to bypass these synchronization primitives (Sec-
tion 4.2) in all critical regions, reintroducing many (otherwise
architecturally-mitigated) security issues such as Use-After-
Free (UAF) and control-flow hijacking.

To study the security impact of SRCs, we focused on Specu-
lative Concurrent Use-After-Frees (Section 4.3), a subclass of
SRCs which speculatively exploits a concurrent UAF vulner-
ability. We demonstrated the practicality of SCUAF attacks
by developing a Proof of Concept (PoC) which allows an
attacker to speculatively disclose arbitrary kernel memory at
a leakage rate of 12 KB/s (Section 4.4). To mount an end-to-
end speculative disclosure attack with a tiny UAF exploitation
window, we presented a novel race window-massaging tech-
nique which allows an attacker to (i) precisely interrupt any
kernel thread at any point during its execution and (ii) create
an unbounded architectural UAF window (Section 4.1). While
our technique is also applicable to the (already challenging)
exploitation of architectural race conditions, it is particularly
powerful in the context of SRCs, allowing the attacker to
mount end-to-end attacks within a single race window. Fur-
thermore, to explore the SCUAF attack surface, we developed
a gadget scanner which identified 1,283 potentially vulnerable
SCUAF gadgets in the Linux kernel (Section 5). Finally, we
proposed and evaluated a new mitigation which tackles the
root cause of SRCs by placing a serializing instruction at the
vulnerable conditional branch, thus terminating the specula-
tive path. Our proposed mitigation incurs a ~5% geomean
performance overhead on LMBench (Section 6).

10 Disclosure

We disclosed Speculative Race Conditions to the major hard-
ware vendors (Intel, AMD, ARM, IBM) and the Linux kernel
in late 2023. Hardware vendors have further notified other
affected software (OS / hypervisors) vendors and all parties
have acknowledged the reported issue (CVE-2024-2193 [?]).
Specifically, AMD responded with an explicit impact state-
ment (i.e., “existing [Spectre-v1] mitigations apply”), pointing
to the attacks relying on conditional branch mis-speculation,

like Spectre-v1l. The Linux kernel developers have no im-
mediate plans to implement serialization of synchronization
primitives due to performance concerns. However, they con-
firmed the IPI storming issue (CVE-2024-26602 [1]) and
implemented an IPI rate limiting feature to address the CPU
saturation issue by adding a synchronization mutex on the
path of sys_membarrier and avoiding its concurrent execu-
tion on multiple cores [3]. Unfortunately, as our experiments
show (Figure 5), hindering IPI storming primitives (i.e., O
storming cores) is insufficient to completely close the attack
surface.

Acknowledgments

We would like to thank the anonymous reviewers for their
feedback, Andrew Cooper for his early comments on the pa-
per, Julia Lawall for the Coccinelle clarifications, and Alessan-
dro Sorniotti for the early discussions about the project. This
work was partially supported by Intel Corporation through
the “Allocamelus” project, by the Dutch Research Council
(NWO) through project “INTERSECT”, and by the European
Union’s Horizon Europe program under grant agreement No.
101120962 (“Rescale”).

References

[1] GhostRace - CVE-2024-2193.
org/CVERecord?id=CVE-2024-2193.

[2] Kernel address space layout derandomization (kasld).
https://github.com/bcoles/kasld.

[3] Membarrier IPI Storming - CVE-2024-
26602. https://lore.kernel.org/lkml/
2024022614-unhappily-python-2cd0@gregkh/.

[4] sched/membarrier: reduce the ability to
hammer on sys_membarrier. https://
git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=
944d5fe50£3f03daacfeal6300e656al691cdaz3.

[5] Cwe-416: Use after free, 2006.

[6] Analysis and exploitation of pegasus kernel vulnerabili-
ties (cve-2016-4655 / cve-2016-4656), 2016.

[7] Mac os x privilege escalation via use-after-free: Cve-
2016-1828, 2016.

[8] Intel research on disclosure gadgets at indirect branch
targets in the linux* kernel, 2022.

[9] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min
Hu. Effective static analysis of concurrency use-after-
free bugs in linux device drivers. In USENIX ATC, 2019.

https://www.cve.

[10] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert
Bos, and Cristiano Giuffrida. Branch history injection:
On the effectiveness of hardware mitigations against
cross-privilege Spectre-v2 attacks. In USENIX Security,
2022.

[11] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David
Terei, David Mazieres, and Christos Kozyrakis. Dune:
Safe user-level access to privileged {CPU} features. In
0SDI, 2012.

[12] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi,
Mathias Payer, and Anil Kurmus. SMoTherSpectre:
exploiting speculative execution through port contention.
In CCS, 2019.

[13] Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In CCS, 2017.

[14] Juan Caballero, Gustavo Grieco, Mark Marron, and An-
tonio Nappa. Undangle: Early detection of dangling
pointers in use-after-free and double-free vulnerabilities.
In ISSTA, 2012.

[15] Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He,
Purui Su, and Bin Liang. Detecting concurrency mem-
ory corruption vulnerabilities. In ESEC/FSE, 2019.

[16] Dan Carpenter. Smatch check for Spectre stuff, 2018.

[17] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui,
Cen Zhang, Yuekang Li, Haijun Wang, and Yang Liu.
MUZZ: Thread-aware grey-box fuzzing for effective
bug hunting in multithreaded programs. In USENIX
Security, 2020.

[18] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye:
Towards a desired directed grey-box fuzzer. In CCS,
2018.

[19] Nick Clifton. Spectre variant 1 scanning tool, 2018.

[20] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao,
Cedric Xing, Ilya Alexandrovich, Taesoo Kim, Frank
Piessens, Mona Vij, and Mark Silberstein. AEX-Notify:
Thwarting precise single-stepping attacks through in-
terrupt awareness for Intel SGX enclaves. In USENIX
Security, 2023.

[21] Craig Disselkoen, David Kohlbrenner, Leo Porter, and
Dean Tullsen. Prime+Abort: A timer-free high-
precision L3 cache attack using Intel TSX. In USENIX
Security, 2017.

https://www.cve.org/CVERecord?id=CVE-2024-2193
https://www.cve.org/CVERecord?id=CVE-2024-2193
https://github.com/bcoles/kasld
https://lore.kernel.org/lkml/2024022614-unhappily-python-2cd0@gregkh/
https://lore.kernel.org/lkml/2024022614-unhappily-python-2cd0@gregkh/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=944d5fe50f3f03daacfea16300e656a1691c4a23
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=944d5fe50f3f03daacfea16300e656a1691c4a23
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=944d5fe50f3f03daacfea16300e656a1691c4a23
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=944d5fe50f3f03daacfea16300e656a1691c4a23

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Zhengjie Du, Yuekang Li, Yang Liu, and Bing Mao.
Windranger: A directed greybox fuzzer driven by devia-
tion basic blocks. In ICSE, 2022.

Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr,
and Dejan Kosti¢. Make the most out of last level cache
in intel processors. In EuroSys, 2019.

Josué Feliu, Alberto Ros, Manuel E Acacio, and Ste-
fanos Kaxiras. Itslf: Inter-thread store-to-load for-
wardingin simultaneous multithreading. In MICRO,
2021.

Josué Feliu, Alberto Ros, Manuel E Acacio, and Ste-
fanos Kaxiras. Speculative inter-thread store-to-load
forwarding in smt architectures. Journal of Parallel and
Distributed Computing, 173:94-106, 2023.

Thomas Gleixner and Douglas Niehaus. Hrtimers and
beyond: Transforming the linux time subsystems. In
Proceedings of the Linux symposium, volume 1, pages
333-346. Citeseer, 2006.

Enes Goktas, Kaveh Razavi, Georgios Portokalidis, Her-
bert Bos, and Cristiano Giuffrida. Speculative Probing:
Hacking Blind in the Spectre Era. In CCS, 2020.

Sishuai Gong, Deniz Altinbiiken, Pedro Fonseca, and
Petros Maniatis. Snowboard: Finding kernel concur-
rency bugs through systematic inter-thread communica-
tion analysis. In SOSP, 2021.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+flush: A fast and stealthy cache
attack. In DIMVA, 2016.

Marco Guarnieri, Boris Kopf, Jos¢ F Morales, Jan
Reineke, and Andrés Sanchez. Spectector: Principled
detection of speculative information flows. In S&P,
2020.

Mathé Hertogh, Sander Wiebing, and Cristiano Giuf-
frida. Leaky address masking: Exploiting unmasked
Spectre gadgets with noncanonical address translation.
In S&P, 2024.

Mathé Hertogh, Manuel Wiesinger, Sebastian Osterlund,
Marius Muench, Nadav Amit, Herbert Bos, and Cris-
tiano Giuffrida. Quarantine: Mitigating transient execu-
tion attacks with physical domain isolation. In RAID,
2023.

Jann Horn. speculative execution, variant 4: speculative
store bypass, 2018.

Jann Horn. Exploiting race conditions on [ancient]
Linux. In LSSEU, 2019.

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao,
Rongxin Wu, and Charles Zhang. BEACON: Directed
grey-box fuzzing with provable path pruning. In S&P,
2022.

Jeff Huang. Ufo: Predictive concurrency use-after-free
detection. In ICSE, 2018.

Open Source Security Inc. Respectre: The state of the
art in Spectre defenses, 2018.

Dae Jeong, Kyungtae Kim, Basavesh Shivakumar, By-
oungyoung Lee, and Insik Shin. Razzer: Finding kernel
race bugs through fuzzing. In S&P, 2019.

Dae R Jeong, Byoungyoung Lee, Insik Shin, and
Youngjin Kwon. Segfuzz: Segmentizing thread inter-
leaving to discover kernel concurrency bugs through
fuzzing. In S&P, 2023.

Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu.
Context-sensitive and directional concurrency fuzzing
for data-race detection. In NDSS, 2022.

Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. Kasper: Scan-
ning for Generalized Transient Execution Gadgets in
the Linux Kernel. In NDSS, April 2022.

Vladimir Kiriansky and Carl Waldspurger. Spec-
ulative buffer overflows: Attacks and defenses.
arXiv:1807.03757.

Ofek Kirzner and Adam Morrison. An analysis of spec-
ulative type confusion vulnerabilities in the wild. arXiv
preprint arXiv:2106.15601, 2021.

Youngjoo Ko, Bin Zhu, and Jong Kim. Fuzzing with
automatically controlled interleavings to detect con-
currency bugs. Journal of Systems and Software,
191:111379, 2022.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In S&P, 2019.

Byoungyoung Lee, Chengyu Song, Yeongjin Jang,
Tielei Wang, Taesoo Kim, Long Lu, and Wenke Lee.
Preventing use-after-free with dangling pointers nullifi-
cation. In NDSS, 2015.

Gwangmu Lee, Woochul Shim, and Byoungyoung Lee.
Constraint-guided directed greybox fuzzing. In USENIX
Security, 2021.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Yoochan Lee, Jinhan Kwak, Junesoo Kang, Yuseok Jeon,
and Byoungyoung Lee. Pspray: Timing {Side-Channel }
based linux kernel heap exploitation technique. In
USENIX Security, 2023.

Yoochan Lee, Changwoo Min, and Byoungyoung Lee.
ExpRace: Exploiting kernel races through raising inter-
rupts. In USENIX Security, 2021.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security, 2018.

Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and
Hai Jin. A heuristic framework to detect concurrency
vulnerabilities. In ACSAC, 2018.

Andrea Mambretti, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, and Anil Kur-
mus. Two methods for exploiting speculative control
flow hijacks. In USENIX WOOT 19.

Andrea Mambretti, Alexandra Sandulescu, Alessan-
dro Sorniotti, William Robertson, Engin Kirda, and
Anil Kurmus. Bypassing memory safety mechanisms
through speculative control flow hijacks. In IEEE Eu-
roS&P, 2021.

Larry W McVoy, Carl Staelin, et al. Imbench: Portable
tools for performance analysis. In USENIX ATC, 1996.

Manh-Dung Nguyen, Sébastien Bardin, Richard Boni-
chon, Roland Groz, and Matthieu Lemerre. Binary-level
directed fuzzing for use-after-free vulnerabilities, 2020.

Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and
Christof Fetzer. SpecFuzz: Bringing Spectre-type vul-
nerabilities to the surface. In USENIX Security, 2020.

Riccardo Paccagnella, Licheng Luo, and Christopher W
Fletcher. Lord of the ring (s): Side channel attacks on
the cpu on-chip ring interconnect are practical. arXiv
preprint arXiv:2103.03443, 2021.

Yoann Padioleau, René Rydhof Hansen, Julia L. Lawall,
and Gilles Muller. Semantic patches for documenting
and automating collateral evolutions in linux device
drivers. In PLOS, 2006.

Yoann Padioleau, Julia L. Lawall, and Gilles Muller. Se-
mantic patches, documenting and automating collateral
evolutions in Linux device drivers. In OLS, 2007.

Zhenxiao Qi, Qian Feng, Yueqgiang Cheng, Mengjia Yan,
Peng Li, Heng Yin, and Tao Wei. SpecTaint: Speculative
taint analysis for discovering Spectre gadgets. 2021.

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Hany Ragab, Enrico Barberis, Herbert Bos, and Cris-
tiano Giuffrida. Rage Against the Machine Clear: A
Systematic Analysis of Machine Clears and Their Im-
plications for Transient Execution Attacks. In USENIX
Security, 2021.

Koushik Sen. Race directed random testing of concur-
rent programs. In PLDI, 2008.

Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel
Genkin, and Kang G Shin. SpecHammer: Combining
Spectre and Rowhammer for new speculative attacks. In
S&P, 2022.

Daniél Trujillo, Johannes Wikner, and Kaveh Razavi.
Inception: exposing new attack surfaces with training in
transient execution. In USENIX Security, 2023.

Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-
step: A practical attack framework for precise enclave
execution control. In SysTEX, 2017.

Stephan van Schaik, Alyssa Milburn, Sebastian Oster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
in-flight data load. In S&P, 2019.

Nischai Vinesh and M. Sethumadhavan. Confuzz—
a concurrency fuzzer. In Ashish Kumar Luhach,
Janos Arpad Kosa, Ramesh Chandra Poonia, Xiao-Zhi
Gao, and Dharm Singh, editors, ICTSCI, 2020.

Guanhua Wang, Sudipta Chattopadhyay, Arnab Ku-
mar Biswas, Tulika Mitra, and Abhik Roychoudhury.
KleeSpectre: Detecting information leakage through
speculative cache attacks via symbolic execution.
TOSEM, 29(3), 2020.

Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotov-
chits, Tulika Mitra, and Abhik Roychoudhury. 007: Low-
overhead defense against Spectre attacks via program
analysis. /[EEE TSE, PP:1-1, 11 2019.

Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang
Li, Yang Liu, Shengchao Qin, Hongxu Chen, and Yulei
Sui. Typestate-guided fuzzer for discovering use-after-
free vulnerabilities. In ICSE, 2020.

Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and
Riidiger Kapitza. Asyncshock: Exploiting synchronisa-
tion bugs in intel sgx enclaves. In ESORICS, 2016.

Sander Wiebing, Alvise de Faveri Tron, Herbert Bos,
and Cristiano Giuffrida. InSpectre Gadget: Inspecting
the residual attack surface of cross-privilege Spectre v2.
In USENIX Security, 2024.

[73] Johannes Wikner and Kaveh Razavi. RETBLEED: Arbi-
trary speculative code execution with return instructions.
In USENIX Security, 2022.

[74] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-
soo Kim. Krace: Data race fuzzing for kernel file sys-
tems. In S&P, 2020.

[75] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue.
Spatio-temporal context reduction: A pointer-analysis-
based static approach for detecting use-after-free vulner-
abilities. In ICSE, 2018.

[76] Yuval Yarom and Naomi Benger. Recovering OpenSSL
ECDSA Nonces Using the FLUSH+RELOAD Cache
Side-channel Attack. JACR Cryptology ePrint Archive,
2014.

[77] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-channel
Attack. In USENIX Security, 2014.

[78] Jiayi Ye, Chao Zhang, and Xinhui Han. Poster:
Uafchecker: Scalable static detection of use-after-free
vulnerabilities. In CCS, 2014.

[79] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang,
Xiaojing Liao, Pan Bian, and Bin Liang. Semfuzz:
Semantics-based automatic generation of proof-of-
concept exploits. In CCS, 2017.

[80] Ming Yuan, Bodong Zhao, Penghui Li, Jiashuo Liang,
Xinhui Han, Xiapu Luo, and Chao Zhang. Ddrace: Find-
ing concurrency uaf vulnerabilities in linux drivers with
directed fuzzing.

[81] Google Project Zero. Racing against the clock — hitting
a tiny kernel race window, 2023.

[82] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng,
Ruigang Liang, and Kai Chen. FuzzGuard: Filtering out
unreachable inputs in directed grey-box fuzzing through
deep learning. In USENIX Security, 2020.

A Additional SRC Code Patterns

We discuss SRC code patterns other than SCUAFs that are
potentially exploitable. In principle, any data race pattern that
may lead to a memory error could be vulnerable, but they
must also exhibit a Spectre-like transmitter pattern as shown
in the examples below.

A data race may lead for example to an out-of-bounds ac-
cess. We show in Listing | a code pattern where Thread 1,
which is the architecturally executing thread, performs an up-
date on a shared index variable. We can also assume that the
offset value can be attacker-controlled. Such a pattern could
occur for example when using a circular buffer. The tran-
siently executed thread performs a speculative write, which
can be out-of-bounds. Assuming that array elements are the
same size as pointers, this scenario would lead to the ability
to control the function pointer. Note that a speculative control
flow hijack is not necessary, and any known Spectre transmit-
ter pattern could also suffice, as shown in Listing 2. This case
immediately leads to an arbitrary read primitive, without the
need for additional gadgets.

Listing 1: OOB access SRC

mutex_lock (&m);
shared_idx += offset;
if (shared_idx > ARRAY_SIZE)

shared_idx = 0;
mutex_unlock (&m);

mutex_lock (&m);

array[shared_idx] = val;

fptr();
mutex_unlock (&m);

Listing 2: Other transmitter

mutex_lock (&m);

byte = array[shared_idx];

val = probe_array[4096*byte];
mutex_unlock (&m);

Other patterns are highly likely to exist. We expect future
work to further study their prevalence and exploitability.

	Introduction
	Background
	Transient Execution
	Concurrency Bugs

	Definitions and Threat Model
	Definitions
	Threat Model

	GhostRace Attacks
	Creating an Unbounded UAF Window
	Crafting Speculative Race Conditions
	Exploiting Speculative Race Conditions
	Proof-of-Concept Exploit

	Gadget Scanner
	SCUAF Coccinelle Scripts
	Evaluation

	Mitigation
	Mitigation via Serialization
	Evaluation

	Related Work
	UAF Detection
	Fuzzing
	Gadget Scanning
	Intel SGX

	Discussion
	Conclusion
	Disclosure
	Additional SRC Code Patterns

