
Protecting a Web Application Against 
Attacks Through HTML Shared Files

Francisco Corella

November 2008

Patent Pending

Abstract

Many Web applications have a file-sharing feature that allows Web users to share files by 
uploading them to, and downloading them from, a Web-accessible file repository.  Shared files 
may include HTML files and other files containing scripts that are executed by the browser in 
the security context of the user that downloads the file.  This opens the door to a range of cross-
user attacks, including attacks by former users and even attacks by a user of a virtual application 
instance against a different virtual instance of the same application.  Such attacks are in essence 
XSS attacks, but the usual defenses against XSS are typically not available, because shared files 
cannot be sanitized.

This paper proposes a countermeasure that Web applications can use against attacks through 
HTML shared files, without sanitizing those files.  The countermeasure leverages the same-
origin policy by the use of carefully tailored hostnames for serving user files and application 
pages, including two different hostnames for downloading a shared file, linked by a redirection 
step.  Authentication is achieved by the use of different cookies for shared files and application 
pages, and ephemeral file-retrieval sessions.

1. Introduction

Many Web applications have a file-sharing feature that allows Web users to share files by uploading 
them to, and downloading them from, a Web-accessible file repository.  (I will refer to files stored in 
the repository as shared files or user files.)  Some of these applications provide file-sharing as their 
only purpose, while others provide file-sharing as one of several collaboration tools or social-
networking features.

These applications typically have multiple virtual application instances, each having its own file 
repository and its own group of instance users who are allowed to access the file repository. 
(Applications with multiple virtual instances are sometimes referred to as multitenant applications [1], 
where the word tenant refers to the group of users of a virtual instance.  In this paper I will simply say 
application instance to refer to a virtual application instance.)

Sharing files has the obvious risk that a virus or other malware may be present in a file being obtained 
through file sharing.  This risk however is not specific to the fact of sharing; it exists whenever a file is 
obtained by any means.  This risk is mitigated to a certain extent by warnings issued by browsers when 
downloading executable files, and may be further mitigated through the use of virus scanners.  This 
paper is concerned, however, with a somewhat different and more insidious risk, one that is not 
mitigated by browser warnings or scanners.

Some of the files in an instance repository may be HTML files. When a user downloads an HTML file 
from the repository, the file may be displayed by the browser.  This is a useful feature, as it allows one 
or more HTML shared files to serve as a private Web site accessible only to instance users, perhaps 
containing links to non-HTML files stored in the repository.  But an HTML file displayed by the 



browser may contain client-side code, such as scripts written in JavaScript or ActionScript, Java 
applets, or ActiveX controls.  A script planted by a malicious user in a shared file, when downloaded 
by a victim user, runs in the security context of the victim user, and can take advantage of any 
authentication cookies set in the victim's browser to impersonate the victim and take advantage of any 
access privileges granted to the victim by the application.

(Similar considerations apply to other types of files that may contain scripts that are executed by the 
browser when a file is downloaded, such as SWF files or PDF files.  References to HTML files in the 
rest of the paper should be understood to apply more broadly to any type of file that may contain client-
side code, if the browser executes such code without warning and the effects of the code are subject to 
the same-origin policy as discussed below.)

This problem is a variation on the cross-site scripting (XSS) [2] problem faced by sites, such as social 
networking sites, that allow users to upload HTML content that is displayed to other users.  Those sites 
typically defend against such attacks by sanitizing uploaded HTML content to remove or disable any 
scripts.  Web applications with a file sharing feature, on the other hand, do not take precautions against 
attacks through shared files.  Why is this?

One can think of two reasons.  First, it is not a good idea to sanitize uploaded files.  Users do not expect 
their files to be tampered with, and they may have legitimate reasons to share files that contain scripts. 
Second, an argument can be made that the Web application is entitled to assume that users of an 
application instance trust each other, and thus that it is not the responsibility of the application to 
prevent attacks of a user against another user (cross-user attacks).

The second reason, however, is not a valid one.  The application has a responsibility to defend users 
against attacks through HTML shared files because those attacks can be used to defeat security 
mechanisms implemented by the application and negate security assumptions that users take for 
granted.  For example, they can defeat user authentication and allow a user to impersonate another user, 
or a former user of an application instance to retain access to the instance without authorization.  They 
can defeat the system of file permissions, if one is in place, giving a user access to files he or she is not 
authorized to download.  They can even allow a user of one instance to access a different instance for 
which he or she does not have credentials (cross-instance attack).

This paper proposes a countermeasure that Web applications can use to protect users against attacks 
through HTML shared files, without sanitizing those files.  The countermeasure leverages the same-
origin policy [3] by the use of carefully tailored hostnames for serving user files and pages constructed 
by the application (application pages); two different hostnames linked by a redirection step are used to 
download a user file.  Authentication is achieved by the use of different cookies for shared files and 
application pages, and ephemeral file-retrieval sessions.

The rest of the paper is organized as follows.  Section 2 surveys previous work.  Section 3 discusses 
attacks through HTML shared files in more detail.  Section 4 describes the proposed countermeasure. 
Section 5 discusses possible variations on the countermeasure and secondary benefits.  References can 
be found in Section 6.

2. Prior Work

Little work has been done concerning the risk of cross-user attacks through HTML shared files. 
Application service providers (ASPs) do not discuss the risk, and some do not authenticate access to 
user files.  US-CERT discusses the risks of file sharing in a Cyber Security Tip [4] but only considers 
peer-to-peer file sharing.  Carnegie Mellon's MySecureCyberspace Web site discusses File Sharing 
security [5], but only considers peer-to-peer file sharing and centralized file sharing via FTP.  A recent 



thread in the Web Security mailing list [6] touched on Web-based file sharing security, but was mostly 
concerned with the general problem of malware being present in uploaded files.

An interesting proposal [7] aimed at mitigating XSS is applicable to HTML file sharing.  It would 
allow the Web application to forbid the execution of scripts in files being downloaded, using a 
Content-Restrictions HTTP header.  However the proposal requires buy-in from the browsers, and thus 
is not immediately usable.  Also, users may want scripts to be executed, which the countermeasure of 
Section 4 below allows.

The only published thought that comes close to the proposal of Section 4 seems to be a single sentence 
in a Web page [8] that discusses XSS:

If you must allow unsanitized, untrusted HTML to be part of your site, ensure that those pages are not on the 
same hostname as where other users log in. (webmail, web hosts, attachments in a bug-tracking system, 
Google cache) (see Gerv's proposal)

(In the quoted sentence, "Gerv's proposal" is presumably a reference to [7].)  This recommendation 
does not explicitly apply to file sharing, but it does contain the idea of protecting against malicious 
scripts by using different hostnames for different purposes.  On the other hand it does not explain how 
to construct those hostnames nor how to provide authentication for accesses to both user files and 
application pages.

3. Cross-user and cross-instance attacks through HTML shared files

As briefly mentioned in the introduction, scripts embedded in shared files can be used to carry out a 
variety of cross-user and cross-instance attacks that cannot be mitigated by browser warnings or virus 
scanners.

The basic attack mechanism is as follows.  The attacker, a malicious user of an application instance, 
uploads an HTML attack file, containing an attack script, to the repository of shared files of an 
application instance.  The victim, another user of the same instance, downloads the file, causing the 
victim's browser to execute the script.  The script may then be able to download other user files using 
an authentication cookie set in the victim's browser and send their contents to the attacker, who may 
not be authorized to see those other files.  Furthermore, if the attack file is served with the same 
hostname as Web pages pertaining to the application instance (application instance pages) the same-
origin policy may allow the attack script to read the contents of application instance pages that the 
victim but not the attacker is authorized to access.  Worse, the script may thus be able to obtain a token 
embedded in a hidden field of an application instance form as a countermeasure against cross-site 
request forgery (CSRF) [9], and use it to defeat the countermeasure.  The script can then submit the 
form, thus allowing the attacker to act upon the application instance while impersonating the victim, 
and with the privileges of the victim.

As a slight variation on the basic attack, the attacker may plant the attack file in advance of an 
anticipated revocation of the attacker's rights to access the application instance.  The attacker may thus 
continue to read user files, read application instance pages, and interact with the application instance 
after revocation.  If the victim's privileges include the right to create application instance accounts for 
new users, the attacker may be able to restore his or her lost access rights.  This variation is of concern 
even for applications where all users have the same privileges and are authorized to access all files, a 
case in which cross-user attacks would seem at first glance to be inconsequential.

With a more elaborate variation, the attacker may be able to gain access to an application instance to 
which the attacker has not had access before.  This requires some social engineering.  The attacker 
wants access to a target application instance to which the victim has access.  The attacker uses a second 



application instance, to which the attacker has access, as a decoy; the decoy instance may already exist, 
or the attacker may register with the ASP and arrange for its creation.  The attacker lures the victim into 
obtaining a user account for the decoy instance and logging in to the decoy instance while being logged 
in to the target instance.  The attacker uploads an attack file with an attack script to the repository of the 
decoy instance and lures the victim into downloading the attack file.  If the same hostname is used to 
serve user files and application pages pertaining to all instances, the same origin policy allows the 
attack script to access the target instance, read user files and application pages of the target instance and 
forward their contents to the attacker, interact with the target instance, and even, if the victim has 
sufficient privileges, create a user account at the target instance for him or herself.

4. Countermeasure

The same-origin policy prevents a script contained in an HTML document from accessing the contents 
of a Web page or file downloaded from a different origin.  Assuming that all relevant pages or files are 
downloaded using the same protocol and port (typically https and 443 respectively), the origin of a 
page or file is, in effect, the DNS domain from which the page is served, or any domain that contains it 
as a subdomain.  In other words, the origin is the hostname portion of the URL used to retrieve the page 
or file (henceforth, the hostname of the page or file), or a broader domain to which that hostname 
belongs.

The same-origin policy can be used to prevent attacks through HTML shared files if the hostnames of 
user files and application pages are chosen so that they satisfy the following two conditions:

(1) The hostname of a user file of an application instance is different from, and is not a subdomain 
of, the hostname of any application page of the same or any other application instance.  This 
ensures that an attack script in a user file will not be able to read the contents of any application 
page.  It prevents an attacker, whether a current user or a former user, from using the script to 
obtain application data or to defeat CSRF countermeasures.

(2) The hostname of a user file of an application instance is different from, and is not a subdomain 
of, the hostname of any user file of the same or any other application instance.  This ensures 
that an attack script in a user file will not able to read the contents of any other user file.  It 
prevents the attacker from using the script to circumvent a system of file permissions or to 
continue reading user files after the attacker's credentials for accessing the application instance 
have been revoked.

These conditions could be satisfied, for example, by using user file hostnames of the form

userfiles-AppInstID-FileID.RegisteredDomain

and application page hostnames of the form

application-AppInstID.RegisteredDomain

where AppInstID is a unique application instance identifier, FileID is a unique file identifier, and 
RegisteredDomain is a domain name obtained by the ASP from an Internet domain registrar.

This hostname scheme, however, raises serious difficulties.

First, users may want to place links to an HTML user file in other HTML files (located anywhere in the 
World Wide Web).  It is unreasonable to ask users to embed a file identifier in the hostname portion of 
the URL when constructing such a link.  The file should instead be identified by an ordinary file path 
appended to a hostname that is the same for all user files pertaining to the same application instance.



Second, HTML user files belonging to the same application instance should be linkable to each other 
using relative URLs.  This requires, again, that all user files pertaining to the same application instance 
have the same hostname.

Last but not least, an authentication cookie set upon login in a user's browser, if associated with the 
domain

application-AppInstID.RegisteredDomain,

cannot be used to authenticate user files that use different hostnames.

The solution to these difficulties lies in the combination of two ideas:

(1) Use two different URLs to retrieve a user file, with a redirection step mapping the first one to 
the second.

(2) Set two different authentication cookies upon login, one for user files and the other for 
application pages.

Of the two different user file URLs, the first one is a standard URL consisting of a standard hostname 
of the form

userfiles-AppInstID.RegisteredDomain

and an ordinary file path that identifies the file.  Here is an example of a standard URL:

https://userfiles-123456.pomcor.com/folder1/folder2/file1.html

Standard URLs are reasonable ones to use in links to user files, and since all standard URLs for a given 
application instance have the same hostname, it is possible to use relative URLs in links to user files 
from other user files.

The second user file URL is an extended URL consisting of an extended hostname of the form

userfiles-AppInstID-FileRetrSessID.RegisteredDomain

and the same file path, e.g.:

https://userfiles-123456-
c4482d6f9e85d1a2c6441ea447c4167211ddc321.pomcor.com/folder1/folder2/file1.html

where FileRetrSessID is a random, high-entropy, file-retrieval session ID.  When the application 
receives a standard URL request, accompanied by a user file authentication cookie, it generates this ID 
and uses it as the primary key of an ephemeral file-retrieval session record that contains a reference to 
the login session identified by the cookie; then it redirects the browser to the extended URL.  When the 
extended URL is received, the application uses the ID embedded in the hostname to authenticate the 
request by locating the file-retrieval session record and the login session record that it refers to; then it 
deletes the file-retrieval session record.

Besides being used for authentication, the file-retrieval session ID present in the hostname also serves 
to prevent an attack script contained in the user file from accessing any other user file, just like the 
above FileID would.  Notice that it is not neccessary for the ID to identify the file, or for the file-
retrieval session record to contain a reference to the file.  The file is identified by the file path 
component of the URL.  The application verifies that the user has permission to download the file when 
the extended URL request is received, based on the file path and the user's user ID obtained from the 
login session record.

As for the two authentication cookies, their associated domains are the standard user file hostname and 
the application page hostname respectively.  The application can set the user file cookie upon login by 



redirecting the browser to a special URL whose hostname component is the standard user file 
hostname, and then redirecting it again to the URL of the initial application page.  The special URL 
must have a path component that cannot be interpreted as the path of a user file; for example, user file 
and folder names beginning with a dot could be disallowed, and the path of the special URL could 
begin with a dot.  The special URL must also contain an ephemeral secret, analogous to the ephemeral 
file-retrieval session ID, to authenticate the redirection.

5. Remarks

5.1  It is important that the extended user file hostname begin with the string "userfiles" or some other 
string that makes it clear that the hostname is used to serve user files, and the difference between user 
file hostnames and application page hostnames should be brought to the attention of the users.  There 
are two reasons for this.

First, the extended user file hostname appears in the address box of the browser when an HTML user 
file is displayed.  Making the hostname recognizable as a user file hostname will mitigate the risk of an 
HTML user file masquerading as the login page or some other application page.

Second, the warning issuing by the browser before running an executable user file will show the 
hostname of the file.  Making the hostname recognizable as a user file hostname will mitigate the risk 
of an executable user file masquerading as a helper client-side program that the application is asking 
the user to install.

5.2  The countermeasure prevents a script contained in an HTML user file from reading any other user 
file.  This imposes a constraint on the functionality of the private Web site comprised by the collection 
of HTML files of an application instance.  It is possible to remove or relax this constraint at the cost of 
some reduction of security.

If there is no system of file permissions and all instance users are allowed to download all files, then 
the constraint could be removed by eliminating the extended user file hostnames and the user file 
redirection.  The security cost would be the risk that a former user could retain access to user files.

If there is a system of file permissions based on a partition of the file space into several security areas, 
then the constraint could be relaxed by replacing the file-retrieval session ID with a security area ID.  A 
script contained in an HTML user file could then access other files in the same security area.  The 
security cost would be the risk that a former user could retain access to user files in the same security 
areas that user could access before his or her credentials were revoked.

5.3  The countermeasure remains useful in the case where there is only one application instance.  (Of 
course, there are then no application instance IDs in hostnames.)  There is no risk of cross-instance 
attacks in this case, but the countermeasure still protects against cross-user attacks and former user 
attacks.

6. References

[1] M  ultitenancy  .  Wikipedia article, http://en.wikipedia.org/wiki/Multitenancy

[2] Cross-  Site Scripting  .  Wikipedia article.  http://en.wikipedia.org/wiki/Cross-site_scripting

[3] Sa  me Origin Policy  .  Wikipedia article.  http://en.wikipedia.org/wiki/Same_origin_policy

[4] R  isks of File-Sharing Technology  .  Cyber Security Tip ST05-007.  http://www.us-
cert.gov/cas/tips/ST05-007.html

http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Same_origin_policy
http://www.us-cert.gov/cas/tips/ST05-007.html
http://www.us-cert.gov/cas/tips/ST05-007.html
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Multitenancy
http://en.wikipedia.org/wiki/Multitenancy


[5] MySecureCyberspace: File Sharing.  http://www.mysecurecyberspace.com/secure/file-sharing.html

[6] Web Security Mailing List. Thread: File Uploading Vulnerabilities. 
http://www.webappsec.org/lists/websecurity/archive/2008-09/msg00022.html

[7] Gervase Markham, C  ontent Restrictions  .  http://www.gerv.net/security/content-restrictions/

[8] Jesse Ruderman, Security Tips for Web Developers.  http://www.squarefree.com/securitytips/web-
developers.html

[9] Cross-S  ite Request Forgery  .  Wikipedia article.  http://en.wikipedia.org/wiki/Cross-
site_request_forgery

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://www.squarefree.com/securitytips/web-developers.html
http://www.gerv.net/security/content-restrictions/
http://www.gerv.net/security/content-restrictions/
http://www.webappsec.org/lists/websecurity/archive/2008-09/msg00022.html
http://www.mysecurecyberspace.com/secure/file-sharing.html

	Protecting a Web Application Against Attacks Through HTML Shared Files
	1. Introduction
	2. Prior Work
	3. Cross-user and cross-instance attacks through HTML shared files
	4. Countermeasure
	5. Remarks
	6. References


