ialisenkinid g gtiols § ab.gp mm¢ mm* phipetialisedinfo phipedialisedinio ih#!mm-it Ihm.lii ﬁhﬂﬁﬂm
_"" -y ""_ t oY

- "—'—n.l-—-._.._

L]

\ ."" . .
\'ah*;»‘:,..* . ) :'. l,,_ e }.

l
[I5eth i ﬁtﬂtlﬂ.ﬁﬂlﬂ mam.m #h.specialiset i

Exploiting Windows Device Drivers

By Piotr Bania <bania.piotr@gmail.com>
http://pb.specialised.info

"By the pricking of my thumbs, something wicked this way comes . .."
- "Macbeth", William Shakespeare.

Disclaimer

Author takes no responsibility for any actions with provided informations or codes. The
copyright for material created by the author is reserved. Any duplication of codes or
texts provided here in electronic or printed publications is not permitted without the
author's agreement.

Introduction

Device driver vulnerabilities are increasingly becoming a major threat to the security of
Windows and other operating systems. It is a relatively new area, thus very few
technical papers covering this subject are available. To my knowledge, the first
windows device driver attack was presented by SEC-LABS team in the "Win32 Device
Drivers Communication Vulnerabilities" whitepaper. This publication presented useful
technique of drivers exploitation and layed a ground for further research. Second
publication surely worth to mention is an article by Barnaby Jack, titled ,Remote
Windows Kernel Exploitation Step into the Ring 0. Due to lack of technical paper on
the discussed subject, I decided to share results of my own research. In this paper I
will introduce my device driver exploitation technique, provide detailed description of
techniques used and include full exploit code with sample vulnerable driver code for
tests.

The reader should be familiar with IA-32 assembly and have previous experience with
software vulnerability exploitation. Plus, it is higly recommended to read the two
previously mentioned whitepapers.

Organising the lab

Here are the main things, I'm using in my small laboratory while playing with device
drivers:


mailto:<bania.piotr@gmail.com>
http://pb.specialised.info

- pc with 1024 MB RAM (it must handle the virtual machine so it’s good to keep it high)
- virtual machine emulator like Vmware of VirtualPC

- Windbg or Softice — well I was trying to use the second one with Vmware but it was
pretty unstable

- IDA disassembler

- some of my software I will introduce later

I'm using remote debugging with Vmware Machine and host over named pipe, but
generally any other method should be fine. That’s the main things you will probably
need to take a future play with the drivers.

The operating system can work on different levels - so called rings. The most
privileged mode is ring 0 also named as Kernel Mode, shortly if you have an ring 0
access you are system god. Kernel mode memory address starts at 0x80000000 and
ends at OxFFFFFFFF.

User land code (software applications) runs in ring 3 (it doesn’t have any access to ring
0 mode), and it is doesn’t have any direct access to operating system functions instead
it must call (request) them by using so called functions wrappers. User mode memory
address starts at 0x00000000 and ends at Ox7FFFFFFF.

Windows systems use only 2 rings modes (ring 0 and ring 3).

Before I will present the sample driver I will show how to load it, so here is the
program which does it:







Here is the sample code of vulnerable driver we will try to exploit in this article, the
skeleton is based on Iczelion’s datas.







As you can see the vulnerability is an obvious one:

e ONT P mm e m e

.IF eax == 011111111h

mov eax, (_IRP ptr [edi]).SystemBuffer
test eax,eax
jz no_write

mov edi, [eax]
mov esi, [eax+4]
mov ecx, 512
rep movsb

no write:
.ENDIF

’

inbuffer
[inbuffer] = dest
[inbuffer+4] = src
ecx = 512 bytes
Ccopy

e ONT P mm e m e



If driver gets an signal equal to 0x011111111 it checks the value of IpInputBuffer
parameter, if it is equal to null nothing happens. But when the argument is different,
driver reads data from the input buffer (source / destination) and copies 512 bytes
from source memory to destination area (you can name it as memcpy() if you want).
Probably now you are thinking what is hard within exploitation of such easy memory
corruption? Of course vulnerability seems to be very easy exploitable, however did you
consider the fact you have no writeable data in the driver and I think you are
enough clever to see passing hardcoded stack address as an destination memory
parameter is completely useless. Also you will be completely wrong if you say such
bugs don't exist in the software of popular products. Moreover exploitation technique
described here can be used for exploiting various types of memory corruptions
vulnerabilities, even for so called off-by-one bugs, where the value which overwrites
the memory is not specified by attacker - the limit is your imagination (well in most
cases :)). Lets now hunt.

Objective: Locating useful writeable data

First of all we need to locate some kernel mode module which is available in most of
Windows operating systems (I consider Windows as Windows NT). Generally this type
of thinking increases prosperity of successful attack on different machine. So lets scan
ntoskrnl.exe - the real kernel of Windows.

All these functions (exported - so they should be first to see):
- KeSetTimeUpdateNotifyRoutine
PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutine

PsSetLegoNotifyRoutine

PsSetLoadImageNotifyRoutine

Seems to be very useful. Lets check KeSetTimeUpdateNotifyRoutine for example:

PAGE:8058634C public KeSetTimeUpdateNotifyRoutine
PAGE:8058634C KeSetTimeUpdateNotifyRoutine proc near

PAGE:8058634C mov KiSetTimeUpdateNotifyRoutine, ecx
PAGE:80586352 retn

PAGE:80586352 KeSetTimeUpdateNotifyRoutine endp

Following functions write ECX registry value to the memory address named by me as
KiSetTimeUpdateNotifyRoutine, now it is time to check it cross refferences:

.text:8053512C loc 8053512C: ; CODE XREF: KeUpdateRunTime+5E[]]
.text:8053512C cmp ds:KiSetTimeUpdateNotifyRoutine, O
.text:80535133 jz short loc 80535148

.text:80535135 mov ecx, [ebx+1F0h]

.text:8053513B call ds:KiSetTimeUpdateNotifyRoutine
.text:80535141 mov eax, large fs:1Ch

.text:80535147 nop

As you can see instruction at 0x8053513B executes memory address from



KiSetTimeUpdateNotifyRoutine (of course when it is not equal to zero). This gives us
an opportunity to overwrite the KiSetTimeUpdateNotifyRoutine and change it to
memory address we want to execute. But there are some problems with this method, I
had an occasion to compare few Windows kernels and guess what - in most of them
procedures which call ,,routines” (like call dword ptr [KiSetTimeUpdateNotifyRoutine]
here) are missing - they are only read and written, never get executed. This gave me
very disappointing results, so I have started to find another potencial weak code
points. After comparing some few memory cross references, I have found the following
address:

(note I have named this value as KeUserModeCallback Routine by myself)

.data:8054B208 KeUserModeCallback Routine dd ? ; DATA XREF: sub 8053174B+94[Ir
.data:8054B208 ; KeUserModeCallback+C2[lr ...

Referenced by:

PAGE:8058696E loc 8058696E: ; CODE XREF: KeUserModeCallback+A6ll]
PAGE:8058696E cmp dword ptr [ebp-3Ch], O

PAGE:80586972 Jjbe short loc 80586980

PAGE:80586974 add dword ptr [ebx], OFFFFFFO0Oh

PAGE:8058697A call KeUserModeCallback Routine

Instruction at 0x8058697A seems to be const and it is available on all kernels I have
viewed. This gives enough results to take a strike, now we can plan some strategy.

NOTE: There are of course others locations that may be used for exploiting,

with a little bit of wicked ideas you can even setup your own System Service
Table or do some more hardcore things.

Writing the strategy (important notes)

Shortly here are the main points we need to do to exploit this vulnerability:
1) Locate ntoskrnl.exe base - since it should change every Windows run.

2) Load ntoskrnl.exe module to user land space and get KeUserModeCallback_Routine
address, finally add it with ntoskrnl base and get the correct virtual address.

3) Send first signal and obtain 512 bytes from KeUserModeCallback_Routine address
(due to nature of the bug we have such possiblity, this will increase stability of our
exploit since we will change only 4 bytes of KeUserModeCallback_Routine)

4) Send a signal with specially crafted data (mostly read in previous step_ and
overwrite the KeUserModeCallBackRoutine value and make it point to our memory
(shellcode).

5) Develop special kernel mode shellcode (of course the shellcode will be ready before
point 4 - 4 th step ,executes it”)

5a) Reset the pointer of KeUserModeCallback_Routine



5b) Give our process SYSTEM process token.

5c¢) Flow the execution to old KeUserModeCallback_Routine

Ntoskrnl (windows kernel) base changes every boot run, due to this we can’t hardcore
its base address because it will be worthless. So shortly we need to obtain this address
from somewhere and to do this we will use NtQuerySystemInformation native API with
SystemModuleInformation class. Following code should describe the process:

NtQuerySystemInformation prototype:

NTSYSAPT

NTSTATUS

NTAPI

ZwQuerySystemInformation (

IN SYSTEM INFORMATION CLASS SystemInformationClass,
IN OUT PVOID SystemInformation,

IN ULONG SystemInformationLength,

OUT PULONG ReturnLength OPTIONAL

) 7




Loading ntoskrnl.exe into the application space is pretty simple, we will use
LoadLibraryEx API to do it. Well different Windows kernels have different addresses of
KeUserModeCallback_Routine, due to this we need to obtain to the correct address on
different kernels. As you can see the call request (call dword ptr
[KiSetTimeUpdateNotifyRoutine]) always comes from code located below
KeUserModeCallback function which is exported by ntoskrnl.exe. We will use this fact,
so shortly we just need to find KeUserModeCallback address and search the code
(located there) for specific call instruction (OxFF15 byte sequence) and then after few
calculations we will obtain the address of KeUserModeCallback_Routine. This code
should illustrate it:




When we will overwrite 512 bytes of kernel data with some other ,bad data” we have a
high probability we will crash the machine. To avoid this we will use some tricky
method: by sending first signal with specially filled IpInputBuffer (packet) structure we
will obtain original ntoskrnl datas (we will use the read data in next point), just like
this fragment from exploit code shows:




This point will force ntoskrnl.exe to execute our shellcode. Generally here we are
~Swapping” the values send in previous signals (packet members), and we only change
first 4 bytes of the read buffer in 1st signal:

Due to that we are exploiting an driver it is logical we cannot use normal shellcode. We
can use few other variants for example my windows syscall shellcode (published on
SecurityFocus - check the References section). But there exist more useful concept,
I'm talking here about shellcode that was firstly introduced by Eyas from Xfocus. The
idea is pretty simple, firstly we need to find System’s token and then we need to
assign it to our process - this trick will give our process System privileges.

Algorithm:

- find ETHREAD (always located at fs:[0x124])

- from ETHREAD we begin to parse EPROCESS

- we use EPROCESS.ActiveProcessLinks to check all running processes

- we compare the running process with System pid (for windows XP it is always equal
to 4)

- when we got it, we are searching for our PID and then we are assigning System
token to our process

Here is the full shellcode:






I hope you enjoyed the article, if you have any comments don't hesitate to contact me.
All binaries for the article should be also downloadable via my web-site,
http://pb.specialised.info. Sorry for my bad English anyway thank you for watching.

~When shall we three meet again
In thunder, lightning, or in rain?
When the hurlyburly's done,
When the battle's lost and won.”
- "Macbeth", William Shakespeare.

1) Win32 Device Drivers Communication Vulnerabilities

2) "Remote Windows Kernel Exploitation — Step into the Ring 0", by Barnaby Jack -
eEYE digital security — http://www.eeye.com

3) Eyas shellcode publication - ?
4) "The Windows 2000/NT Native Api Reference", by Gary Nebett

5) "Windows Syscall Shellcode", by myself -
http://www.securityfocus.net/infocus/1844

6) http://pb.specialised.info


http://pb.specialised.info
http://www.eeye.com
http://www.securityfocus.net/infocus/1844
http://pb.specialised.info
mailto:<bania.piotr@gmail.com>
http://pb.specialised.info



















