Binary Code Modification
[Patching Vulnerabilities]

Hellcode Research
Celil UNUVER
celilunuver[nOsp4m]gmail.com

http://tcc.hellcode.net/musashi

Introduction

Vulnerabilities which are published everyday in Bugtraq can be software that we use
daily. The most famous softwares can have vulnerabilities too. If you look at the bugtraq,
you can see the security advisories for big vendor's products.

Recently, web vulnerabilities have been famous; nevertheless, software vulnerabilities
like Buffer overflow are still the most dangerous programming errors. Also they cause
the most professional attacks. Fundamentally these dangerous programming mistakes
are emerging as a result of negligence of programmers.

In this paper, | will explain to patch a software which have a vulnerability.

Patching ??

This technique also known as “hotpatching” or “runtime patching” . Patching is a
method to modify a software's binary for an aim with the help of disassembler,
debugger , hex editor etc.

This is a very common technique for reversing. It can be used for api hooking ,
cracking, code injecting etc. But in my paper, | will explain to use this technique for
fixing security holes.

Tool Bag

The softwares which are well-known and used by all reverse engineers (debuggers,
disassemblers etc.) will be helpful for our work. But a disassembler/debugger which
have inline assembler and binary edit features like IDA Pro, Ollydbg can make it easy.

Unfortunately , inline assembler and binary edit features are only available for “x86”
executables in IDA or Ollydbg. For example , if you want to patch an arm, xbox
executable , you should look at opcode (instruction encoding) topics in processor
references.

http://tcc.hellcode.net/musashi

Practice

We will do “hotpatching” for the program which is below. As you see , it has a buffer
overflow vulnerability. Now compile it and forget the source code , it is our closed source
software anymore....

#include <stdio.h>

int main()
{
char buf[l6];
printf ("\nString giriniz:");
scanf ("%s", &buf);
return 0;

}

*| suppose you know what is buffer overflow etc..

mouy [ebp+var_1C], eax
mou eax, [ebp+var_1C]
call sub_481ACA
call sub_481778

mov [esp+38h+var 38], offset aStringGiriniz ; "“wnString giriniz:"
call printf

lea eax, [ebp+uar_18]

mouy [esp+38h+var_34], eax

mouv [esp+38h+var_ 38], offset as ; "%s”

call scanf

As you see in source code and assembly codes , scanf doesnt check the size of string.
(%s)

As you know the functions like scanf and sprintf can check the size of strings. Just we
need to put an integer in front of the format character. (e.g %15s or %.15s)

Lets try to fix this issue. | will prefer to use Ollydbg for patching. It is easy for patching. |
prefer IDA for only analysing.

Opening the vulnerable program via Ollydbg;

laly Lo e ol B | MUV EHA, UIURD FIR ool LEBF—L1L]

P = =1 L =t |
aedia1ZFE | - ES CEEPEESE | CALL hello.B@481ACE
384E12FE || . ES 7ER4BEEE | CALL hello.B@dBlrro
3p412FA|| - C7B424 BEZE4E HOU DWORD PTR SS:[ESPI, hello. BR4B3000 ASCII BA,"String gir”
33491201 || . ES 22098988 | CALL <JMP,&msvcrt.printf> printé
sa4e1366 | . SD4E5 ES LEA EA%,DWORD FTR S5: [EEF-181
dp40126% | - 994424 B4 | MOU DWORD PTR SS:[ESP+41,E0%
ia4E1 260 | . CPe424 113E4@ KOV DWORD FTR S5:[ESPI1,[ello. 00485611 || ASCII "as"|
341314 || . ES Br@SeEss | CALL_<JHP.&msvert.scanf TezoEnt

As you see in Disassembler , it call “00403011" offset for moving the string to the
buffer.

Lets go to “00403011” address via CTRL+G shortcut.

OllyDbg - hello.exe - [CPLU - main thread, module hello]

@ File Wiew Debug Plugins ©Options Window Help
44 X]| |11 W% 2:): = = LIE|MT|WE

BE4A3A1 1 25 VoAE40ET BHE EHA 62408073
a5 25) oOTS OR BEYTE FTR_CSTLEDTD

BEJASELT 6?:?? e 5| JA SHORT hello.B84823830
AE4B281A|--72 7& JB SHORT hello.B8482891
BE4EIEIC| EE auTs OX,BYTE FTE ES:[EDI]
B0482410|+74 £3 JE_SHORT hello.@8403823
Address |Hex dump HSCIT

ao4azalilae 72 B8 40 &9 6F &F 7l s Hingw
ge4Ezale 28 Y2 ¥ 6E 74 69 &0 65| runtime
aa4E3621) 28 66 61 69 6C Y5 V2 65| falilure
AE4E3829) 3H BR 88 28 28 56 62 F2| .. Uir

GEdnanad |24 9r cd seiEd Sp ee Al e oo -

| think everything is clear in the pictures :]
So we will assemble/modify this line --> “AND EAX, 694D0073" .

Blex] »[u] v

HE4E2611 25 31357368 AMD ERX, 722521
Ba463816| &E ouTsS DH B?TE FTR ES EEDI]
BE4E3817 67:FY 28 JA FF
BE4B381A(~7F2 ¥5
BR4E3E1C &E
BE4826810(~74 59
BE4E3E1F(6D

HE4A2E26| S5 2RGE &1
HE4E26824 | 696CTYE 72 EEZAA
BE4E382C1 2828

BE4E3EZE(56

BE4EZE2F | 6972 Y4 FEA16ECS
HR4B2636 (~F5 65
BE4B268328(~7F2 79

W Fill with NOP's .-'f-.sseml:-lel Cancel 1
HE4EZEZH| 2B66 61 BHO

AE4ASEE0(96065 &4 2EGEE] IMUC Eor, dmanD P10 oot LEorTed . g

ARARDIGRAD TRADE SAAS DTG MR DUTE DTD MCe F7Os22@s4A7 0l

We are writing “and eax, 733531" instead of “and eax , 694D0073"” code. (you know
313573 codes are the hex type of “%15s”. We wrote it inversely because Last In First
Out!)

Yeah , thats all! We patched the vulnerable part of our software easily. For saving
patched software , right click on the patched line and select “Copy to Executable >
Selection” . A new window will be opened , while closing it , it will ask a question for
saving or not. After saving it, you can try to overflow it :)

Lets look at our patched program via IDA PRO ;

mou [esp+38h+var_34], eax

mou [esp+38h+var_ 38], offset ailbs : "%155"
call scanf

mov eax, 0 al%s db '%15s°,8
leave

retn

Last words:

| hope this paper will be helpful to understand basics of patching. | am planning to
write about another patching tricks in my next paper.

Acknowledgments:

| would like to thank my brother, my gf , my family, my friends [murderkey, AhmetBSD
aka L4M3R , BoB (ulas), kurti]

Links:

http://tcc.hellcode.net
http://hellcoderesearch.wordpress.com

http://hellcoderesearch.wordpress.com/
http://tcc.hellcode.net/

