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Abstract

Control Flow Integrity (CFI) is a new technology to ensure a certain execution
flow of a program. One of its aims is to prevent attacks against programs such as
buffer overflow attacks. A sample implementation for Linux using the ptrace()
mechanism is explained in this paper.
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1 Introduction

The structure of a program can be described in various ways. Statically, the
source code describes exactly what it will do for certain input at runtime. Control
flow graphs which are generated from the source code are just a different view
of the same structure. At runtime, the binary code defines what the program,
now layed out in memory, will do. Even at this time, it is possible to generate
graphs in different ways to describe certain flows or to make certain structures
of the flow visible. One such way has been described in [4]. Another (different)
way is to record the execution of so called basic blocks of binary code. These
blocks consist of opcodes at contiguous addresses, for example a sequence of
instructions at assembler level without a branch or any other disruption of the
instruction pointer. Since programs are deterministic, the number, position in
memory and order of execution are fixed for the same input!. This results in a
unique structure for every program which allows for the detection of the execution
of code which has not been there before, for example code execution due to a
buffer overflow exploit or a computer virus.

The nodes of the flow-graph are the basic blocks and contain the disassembled
code executed within this block. The edges are the branch instructions between
these blocks. Loops can easily be detected by self-reference. Multiple edges
between the same blocks in the same direction can be collapsed 2 to shrink the
size of the output file and to make the drawing significantly faster.

Note that signals are also input.
2With help of the dot2dot.pl script which is part of the implementation available at [5].



2 THEBASICBLOCK STRUCTURE

Figure 1: A basic block from the libc vsyscall page.

Oxffffedl0: pop ebp
Oxffffedll: pop edx
Oxffffedl2: pop ecx
Oxffffedl3: ret

Figure 2: A basic block from the libc

0x400d7510: cnp dword [ 0x0000000c], (8)0x00000000
0x400d7518: j (ne, nz) byte (8)0x00000022
0x400d751a: push ebx

0x400d751b: nov edx, dword [esp + (8)0x00000010]
0x400d751f: nov ecx, dword [esp + (8)0x0000000c]
0x400d7523: nov ebx, dword [esp + (8)0x00000008]
0x400d7527: nov eax, (32)0x00000004

0x400d752c: call dword [ 0x00000010]

2 The basic block structure

The basic block graph from a program can be obtained statically in two ways:
by analyzing the binary image® or by tracing the control flow of the program at
runtime. The resulting graphs may differ for the following reasons. The program
used for tracing and recording the basic blocks structure [5] detects control flow
changes (for example branches) by comparing the address calculated for the next
instruction with the current address. This creates separate basic blocks such as
in Figure 1, because, when the execution flow returns from a syscall, the address
calculated for the next instruction does not match the instruction pointer.

With static analysis this block will not appear. On the other hand, conditional
branches may be detected which could be used theoretically, but are indeed never
executed as the condition will never or very seldom be true. An example is given
in Figure 2 where a jne is never executed.

From [15] it is known that the question of whether a branch will ever be
executed is undecidable in general.

The difference between the static and the dynamic basic block structures is
not really important as the running program is deterministic. Even small changes
in the graph, for example additional nodes and edges can be accepted if their
number is below a certain threshold.

3Thisincludes disassembling.
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3 Detecting control flow changes

For the detection of changes to a program a certain threshold is set. The exact
value of this threshold is determined empirically. It will influence the sensitivity
of the detection. To detect changes which go beyond this threshold, the structure
of the running program has to be recorded in a first step. This is as simple as
attaching the tracer program [5] to the process which should be protected. At-
taching the tracer to the test program from Figure 3 yields an output-file in the
dot-format which can be converted to the graph shown in Figure 4. Whenever the
test program is run, it will produce exactly this graph, except if someone subverts
the behavior, for example using a buffer overflow attack. In this case the graph
would look quite different depending on the new code blocks which are executed.
Figures 6 and 7 which have been produced by the same program can serve as an
instructive example.

Once the structure of the program has been saved, it can be loaded in a second
step, whenever the tracer is attached again to the test process. It will then com-
pare whether or not new basic blocks appear. Appropriate action, such as shutting
down the process, can then be taken.

The test process has a very simple structure. It does not contain buffer overflow
conditions. Examples for detected attacks are shown below.

Real-world programs are of far greater complexity as can be seen in their graphs,
such as the one from the top process in Figure 5. For larger programs the proba-
bility grows that there are basic blocks which are not executed because a certain
functionality is never or only rarely requested, such as particular menu items,
configure options or protocol add-ons. If they are not seen during the recording
phase, the tracer program will accidently see them as new blocks in the protection
phase. This is not a problem if the threshold is set correctly, for example, it may
be acceptable that there appear 10% “ new basic blocks during a run; on the other
hand, if new blocks occur in large numbers and with about the same complexity
as the program just traced, then it is likely something is wrong. Nevertheless,
while recording the structure, as much functionality as possible should be seen so
that the resulting graph is as complete as possible.

4 Usage details

The program to record and match the basic block graphs can be found at [5].
Graphs are saved in the graphivz [6] dot-file format but can be converted to the
VCG format with the dot2vcg.pl perl script [5]. The program is proof of concept.
It is slow but has already been improved to use caching mechanisms to avoid
multiple analysis of the same blocks. The block-matching in the protection phase
is very basic. The addresses of the basic blocks are loaded and whenever a new

41t is obvious that the number of never executed blocks is small compared to the blocks executed
during a run, if all functionality of the program is requested. However to have a strong value for a
threshold further statistical research and experiments are necessary.
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Figure 3: The source code of the test program.

1 #i ncl ude <stdi o. h>

2 int f()

3 {

4 wite(2, "hello world\n", 13);
5 return g();

6 }

7 int g()

8 {

9 usl eep(1000);

10 return 2;

11 }

12 int main()

13 {

14 char buf[1024];

15 printf("%\n", getpid());
16 sl eep(10);

17 for (5;) {

18 printf("hello world\n");
19 sl eep(3);

20 9();

21 f();

22 9();

23 }

24 return O;

25 )
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block is entered it is checked whether this block is known. A threshold could
be added very easily. Even far more complex scenarios could be added such as
sub-graph detection or the weight of nodes. This will, however, slow down the
process. The detection of new basic blocks is a reliable and fast way to detect
execution of new code.

5 Buffer Overflow example

The following program, which contains a buffer overflow condition, will be used
as an example of how the basic block structure is recorded during a normal pro-
gram run and how an attack can be detected.

The program is a simple server which accepts connections via the TCP/IP
protocol. Once a connection arrived, a new process is spawned to handle this
connection. The basic block structure of this program will be recorded while
it is handling the connection of a client. The job of the server is to read data
from the network and to answer with an OK. While reading the data from the
network, a buffer overflow can be triggered. This allows attackers to construct
evil clients which execute commands via this server. Since one can record the
normal execution flow of the server as shown below, it is possible to detect the
attack during a second run by comparing the two execution flows which should
be identical if no attack happened, but which are quite different.

1 #i ncl ude <stdio. h>
2 #include <netinet/in.h>
3 #incl ude <sys/socket. h>
4 #incl ude <sys/types. h>
5 #i ncl ude <errno. h>
6 #i ncl ude <unistd. h>
7 #i ncl ude <arpal/inet.h>
8 #i ncl ude <stdlib. h>
9 #incl ude <string. h>
10 #i ncl ude <sys/wait.h>
11 #i ncl ude <sys/mman. h>
12 voi d die(const char *s)
13
14 perror(s);
15 exit(errno);
16 }
17 int handl e_connection(int fd)
18 {
19 char buf[1024];
20 wite(fd, "OF Server 1.0\n", 14);
21 read(fd, buf, 4*sizeof(buf));
22 wite(fd, "OK\n", 3);
23 return O;
24 }

25 void sigchld(int x)

26

27 while (waitpid(-1, NULL, WNOHANG) != -1);
28 }

29 int main()
30 {

31 int sock = -1, afd = -1,
32 struct sockaddr_in sin;
33 int one = 1;

34 printf("&ock = % systen% mmap=%\n", &sock, system mmap);
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35 if ((sock = socket(PF_I NET, SOCK_STREAM 0)) < 0)

36 di e("socket");

37 nenset (&in, 0, sizeof(sin));

38 sin.sin_famly = AF_I NET;

39 sin.sin_port = htons(1234);

40 sin.sin_addr.s_addr = | NADDR_ANY;

41 set sockopt (sock, SOL_SOCKET, SO REUSEADDR, &one, sizeof(one));
42 if (bind(sock, (struct sockaddr *)&sin, sizeof(sin)) < 0)
43 di e("bind");

44 if (listen(sock, 10) < 0)

45 die("listen");

46 signal (SI GCHLD, sigchld);

47 for () {

48 if ((afd = accept(sock, NULL, 0)) < O & errno != EINTR)
49 die("accept");

50 if (afd < 0)

51 conti nue;

52 if (fork() ==0) {

53 cl ose(sock);

54 handl e_connection(afd);

55 exit(0);

56 }

57 cl ose(afd);

58 }

59 return O;

60 }

Once the server process has been started, the tracer program has to be attached
to record the basic block structure:

l'i nux: bbpai nt # ./server
&sock = Oxbffff37c systenr0x80485e4 nmap=0x80485b4

[1]+ Stopped ./ server

I'i nux: bbpai nt # bg

[1]+ ./server &

|'i nux: bbpai nt# ps aux|grep server

root 7111 0.0 0.1 1308 308 pts/8 S 09:20 0:00 ./server
r oot 7113 0.0 0.3 2676 692 pts/8 S+ 09: 21 0: 00 grep server
i nux: bbpaint # ./bbpaint -d server.dot -p 7111
New bl ock: 7111 0O

New bl ock: 7111 ffffe403

New bl ock: 7111 ffffe410

New bl ock: 7111 400e6021

New bl ock: 7111 80488d3

New bl ock: 7111 80488b0

New bl ock: 7111 8048594

New bl ock: 7111 8048554

New bl ock: 7111 4000c9e0

New bl ock: 7111 4000cb60

New bl ock: 7111 40012bab

New bl ock: 7111 4000cb76

New bl ock: 7111 40007e40

New bl ock: 7111 40007e53

New bl ock: 7111 40007a40

New bl ock: 7111 40007aab

New bl ock: 7111 40007e67

New bl ock: 7111 40007af 0

New bl ock: 7111 40007b12

New bl ock: 7111 400e6000
New bl ock: 7129 400b4c41l
New bl ock: 7129 400b4c48
New bl ock: 7129 4008bed0
New bl ock: 7129 4008bed8
New bl ock: 7129 400b4c74
New bl ock: 7129 400b4ca7
New bl ock: 7129 4008bef0
New bl ock: 7129 400b4cae
New bl ock: 7129 400b4c76
New bl ock: 7129 4008bf 10

This shows how the tracing process is learning the addresses and their rela-
tions while a legitimate client is connecting to the server. The tracer program
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prints out the process ID of the code from which it is currently handling a block
and the address of that block. As the server is handling new connections in a
different process, a new process ID appears during the run. The output of this run
eventually results in the graph of Figure 6.

Once one has learned all possible blocks, new clients will not trigger the execu-
tion of new or different blocks or execution in a different order, as long as they do
not try to exploit the overflow condition. The tracer process can then be attached
to the server process again. This time, the recorded basic block structure from the
last run is loaded to match it against the executed blocks:

linux: bbpaint # ./bbpaint -D server.dot -p 7111
Loaded 207 basic blocks.

There will be only few or no new basic blocks if new clients connect and
the server process is doing its normal job. There can be a few new basic blocks
due to signal handling which interrupt the normal code flow. The amount, how-
ever, should be less than the threshold. The number of basic blocks for a normal
program is very large compared to the number of new blocks during a normal
program run.

However there is a risk if detection of attacks is only based on the occurrence of
new blocks since attackers could potentially re-use existing code blocks. Strong
CFl implementations should use additional metrics, such as the execution path of
blocks or the weight of the nodes, to fend off attacks which try to stay below the
new-blocks threshold by slowly making the tracer learning new blocks.

Figure 6 shows the basic blocks of the server process during a normal run while
the graph in Figure 7 shows the same process while being successfully attacked
with an exploit executing a shell. The difference between the two is obvious. If
everything were OK then there would not be a difference.

6 Tracing child processes

As seen in the output of the tracer-program above, the tracing program which
protects the server process has to take care of spawned child processes too. Oth-
erwise it will not see the basic blocks which actually handle the input nor the
different execution flows triggered by attackers.

Programs with CFI protection need to be attached to by the tracer. Most of
these programs will handle untrusted input such as networking daemons. These
daemons usually fork() off a child for each new connection. Newer kernels allow
one to set the PTRACE_O_TRACEFORK and PTRACE_O_TRACEEXEC options in
order to follow fork() and execve() system calls. This is necessary since the child
process of the networking daemon also needs the protection as it actually handles
the input data.

By this requirement the tracing process must distinguish between different reg-
isters (the instruction pointer in particular) for the processes. The list of basic
blocks already handled and used for caching and also the disassembled code can
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be shared by the processes as fork() implements copy on write and the .text
segment is not written to.

The execve() system call however is much more complicated. On the one hand
it is necessary to follow it to detect the creation of new blocks if a shell is ex-
ecuted for example. On the other hand it is not possible to distinguish between
normal operations and attacks if the process, which is being traced, executed CGI
or shell-scripts and so on all the time. This will overlay the graph and this is sig-
nificant for the attack. It is not possible to protect processes which execute other
complex programs, e.g. interpreters reliably yet.

7 Control Flow Integrity and Virus protection

CFI can be used to detect attacks against programs such as buffer overflows,
computer viruses and other kinds of attack. Viruses usually infect the binary
image of programs and add their own code in such a way that it is executed upon
start of the infected program. Computer viruses also consist of basic blocks which
need to be executed in order for the virus to work. There are two possible ways
to use CFI for virus protection:

e Signature detection
This is probably the weaker variant. Viruses are usually small pieces of
code but also consist of a particular basic block structure which can be
seen as a signature which can be detected upon execution. There are two
problems with this approach: viruses might use techniques such as poly-
morphism which change the structure of the basic blocks and may make
detection of signatures impossible. Additionally the addresses of the blocks
probably differ on each infection since viruses usually contain position in-
dependent code. This can be resolved by using other metrics than addresses
of the blocks in the same way as CFI would work for a randomized address
space. Self encryption by the virus would not protect it from detection by
the CFI engine since the basic block structure appears during execution of
the decrypted code.

e White listing

This is basically the same way as the one by which buffer overflows would
be detected; one has to keep in mind that the attack is performed locally.
For every program a description file can be placed in a special directory
which must be protected by the Operating System from modification. The
description file contains the basic block graph and has to be complete in
order to avoid false positives. A virus which infects the program changes
the flow-graph. Upon execution of the program the Operating System has
to ensure that code can only be executed as permitted by the original flow-
graph. Nodes added by the virus will be detected regardless of whether
the virus is self-encrypting or polymorphic or of any other kind. The virus
should, of course, not be able to modify the description file. This can be
achieved by putting it onto a read-only file system.
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8 Drawbacks and Problems

This paper developed a way to implement Control Flow Integrity on the Linux
operating system. It could be implemented on any Operating System. One
only needs to adapt the debugging mechanism to properly attach to the processes
which need to be protected. The main drawback of this technique is, of course,
the slowdown of the process since it runs in debugging mode. In the future it
might be possible to add support by the kernel or even CPU support for debug-
ging traps at branch instructions, to avoid the reliance on single stepping. Newer
CPUs support the so-called Branch Trace Flag (BTF) in the debugging register
which will cause debugging traps only on branches [11]. It is also possible to per-
form some binary translation during program loading to obtain the addresses of
the branch instructions. Intermediate Language (IL) and Virtual Machine (VM)
technology, as used in Java and C#, add another execution layer which can be
used to create and match control flow graphs.

In principle: for CFI to work properly one needs (better) support from the kernel
(speedup, child tracing, traps etc) and possibly even from the CPU. For VM and
IL systems this is not needed.

The detection of new basic blocks does not work if the address space is ran-
domized ° since the blocks will have different addresses at each startup, so the
structure saved from the previous run is useless as long as the detection is done
by comparing the addresses of the basic blocks. However it might be possible to
match the graphs or to recognize new blocks nevertheless using metrics, different
from that comparing the addresses of the basic blocks,such as their length, crc32
or a hash of the blocks.

For a working CFI system based on ptrace() it is necessary that the attached pro-
cess runs with privileges different from those of the tracing process. Otherwise
the attacker could kill the protection process easily during the attack. If the pro-
tected process needs to run as root one needs special support from the kernel such
as Role Based Access Control to defend against this attack.

9 Related Work

There is already work done by others in the field of CFI and program protection
[9], [13]. Some also deal with basic blocks, in particular [12] which defines
stronger goals in order to prevent attacks and which focuses on buffer overflows.
Their implementation is not based on ptrace(). Control Flow Integrity can also
be performed on the syscall level as shown in [10].

SCertain kernel-patches randomize addresses of the mapped code in order to make exploitation of
buffer overfbws harder.
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10 Conclusion

In this paper a method to implement CFl on a ptrace() basis has been described.
Using the debugging hook from the kernel, it is possible to record and match the
basic block structure of a process. This will work as long as the addresses are
fixed, e.g. no address space randomization is used for the .text segments.
For a randomized address space, other metrics can be used to detect attacks.
The speed of the recording- and detection-phase can be increased dramatically
if certain CPU and Operating System support is added such as single stepping on
branches. This will allow one to build a very strong mechanism for preventing at-
tacks against programs such as viruses or buffer overflow attacks. Sample graphs
of traces are shown in Figures 4 and 5.

10
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I

Figure 4. Basic blocks from the test process
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Figure 5: Basic blocks from the top process.
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Figure 6: Basic blocks from the example server process if running regular without
attacks.
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Figure 7: Basic blocks from the example server process if attacked with an exploit.
Output of the tracing process has been fi Itered through dot2dot.pl.
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